《圆锥曲线中的三角形面积问题》课件
微考点6-2 圆锥曲线中的弦长面积类问题(解析版)

微考点6-2 圆锥曲线中的弦长面积类问题(三大题型)直线与圆锥曲线相交,弦和某个定点所构成的三角形的面积,处理方法:①一般方法:d AB S 21=(其中AB 为弦长,d 为顶点到直线AB 的距离),设直线为斜截式m kx y +=.进一步,d AB S 21==20011221214)(121k m y kx x x x x k ++--++②特殊方法:拆分法,可以将三角形沿着x 轴或者y 轴拆分成两个三角形,不过在拆分的时候给定的顶点一般在x 轴或者y 轴上,此时,便于找到两个三角形的底边长.12PAB PQA PQB A B S S S PQ y y ∆∆∆=+=-=12PAB PQA PQB A B S S S PQ x x ∆∆∆=+=-=③坐标法:设),(),,(2211y x B y x A ,则||211221y x y x S AOB -=∆④面积比的转化:三角形的面积比及其转化有一定的技巧性,一般的思路就是将面积比转化为可以利用设线法完成的线段之比或者设点法解决的坐标形式,通常有以下类型:1.两个三角形同底,则面积之比转化为高之比,进一步转化为点到直线距离之比2.两个三角形等高,则面积之比转化为底之比,进一步转化为长度(弦长之比)3.利用三角形面积计算的正弦形式,若等角转化为腰长之比4.面积的割补和转化⑤四边形的面积计算在高考中,四边形一般都比较特殊,常见的情况是四边形的两对角线相互垂直,此时我们借助棱形面积公式,四边形面积等于两对角线长度乘积的一半;当然也有一些其他的情况,此时可以拆分成两个三角形,借助三角形面积公式求解.⑥注意某条边过定点的三角形和四边形当三角形或者四边形某条边过定点时,我们就可以把三角形,四边形某个定顶点和该定点为边,这样就转化成定底边的情形,最终可以简化运算.当然,你需要把握住一些常见的定点结论,才能察觉出问题的关键.题型一:利用弦长公式距离公式解决弦长问题【精选例题】【例1】已知椭圆()2222:10x y E a b a b +=>>,1F ,2F 分别为左右焦点,点(1P,2P -⎛⎝在椭圆E 上.(1)求椭圆E 的离心率;(2)过左焦点1F 且不垂直于坐标轴的直线l 交椭圆E 于A ,B 两点,若AB 的中点为M ,O 为原点,直线OM交直线3x =-于点N ,求1ABNF 取最大值时直线l 的方程.则2222(2)(2)2x y x -+=-【跟踪训练】1.已知椭圆C :()222210x y a b a b +=>>,圆O :22320x y x y ++--=,若圆O 过椭圆C 的左顶点及右焦点.(1)求椭圆C 的方程;(2)过点()1,0作两条相互垂直的直线1l ,2l ,分别与椭圆相交于点A ,B ,D ,E ,试求AB DE +的取值范围.【点睛】方法点睛:圆锥曲线中取值范围问题的五种求解策略:(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新的参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围;(4)利用已知的不等关系建立不等式,从而求出参数的取值范围;(5)利用求函数值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.题型二:利用弦长公式距离公式解决三角形面积类问题【精选例题】圆心O 到直线CD 的距离为2||51m d k ==+联立22132y kx mx y =+⎧⎪⎨+=⎪⎩,消去y 得()2223k x ++()()()2226423360km k m ∆=-+->,可得设()11,A x y 、()22,B x y ,则12623km x x k -+=+()2222121236141k m AB kx x x x k=++-=+()()()(2222261322612k km k ⋅++-+【点睛】方法点睛:圆锥曲线中最值与范围问题的常见求法:(特征和意义,则考虑利用图形性质来解决;(首先建立目标函数,再求这个函数的最值,式长最值.P x y满足方程【例3】动点(,)【点睛】求解动点的轨迹方程,可通过定义法来进行求解型的轨迹的定义,由此来求得轨迹方程用不等式的性质、基本不等式等知识来进行求解【例4】已知椭圆C的中心在原点,一个焦点为(1)求椭圆C的标准方程;【点睛】思路点睛:本题第二小问属于直线与圆锥曲线综合性问题,设出过点达定理可得12y y +,12y y ,可求出1142ABF S a r =⋅⋅△,由此可求得直线【跟踪训练】(1)求椭圆C的标准方程;(2)判定AOMV(O为坐标原点)与理由.【答案】(1)2212xy+=;(2)面积和为定值,定值为【分析】(1)根据题意求,a b)方程为22221x ya b+=,焦距为2c,则2221b a c=-=,的标准方程为221 2xy+=.()0,1A,()0,1B-,直线l:x(1)求椭圆C的方程;(2)过B作x轴的垂线交椭圆于点①试讨论直线AD是否恒过定点,若是,求出定点坐标;若不是,请说明理由.△面积的最大值.②求AOD②设直线AD 恒过定点记为M 由上()222481224t m ∆=-+=⨯所以1222423t y y t +=+,122y y =)题型三:利用弦长公式距离公式解决定四边形面积问题【精选例题】(1)求椭圆的标准方程;(2)求四边形ABCD面积的最大值;(3)试判断直线AD与BC的斜率之积是否为定值,若是,求出定值;若不是,请说明理由【答案】(1)2214xy+=;(2)4;(3))当直线1l,2l中的一条直线的斜率不存在、另一条直线的斜率为1AB CD=⨯⨯=.4122当直线1l,2l的斜率都存在且不为0时,【跟踪训练】2.已知焦距为2的椭圆M :于A ,B 两点,1ABF V 的周长为(1)求椭圆M 的方程;F l)斜率不存在时.1l 方程为1x =,2l 方程为1134622ABCD S AB CD =⋅=⋅⋅=四边形斜率为0时.1l 方程为0y =,此时无法构成斜率存在且不为0时.设1l 方程为y =12.已知圆O :224x y +=,点点P 的轨迹为E .(1)求曲线E 的方程;(2)已知()1,0F ,过F 的直线m【点睛】方法点睛:设出直线的方程,与椭圆方程联立,根据韦达定理结合弦长公式得出弦长3.已知椭圆2222:1(x yEa b+=()2,1T,斜率为k的直线l与椭圆(1)求椭圆E的标准方程;(2)设直线AB的方程为6.已知椭圆(2222:1x y C a a b+=两点,且1ABF V 的周长最大值为(1)求椭圆C 的标准方程;(2)已知点P 是椭圆C 上一动点(不与端点重合),则112AF AH AF AF +≤+=故当AB 过右焦点2F 时,ABF V 因为椭圆C 的离心率为c e a =22121,2A F a c A A a =-===则11214A PQ PA A S S =V V ,故PQ =设(,),(02)P P P P x y x <<,则又P 点在22143x y +=上,则又2(2,0)A ,所以直线2A P 的方程为)O 中,由OA l ⊥,2EOF EOA ∠=∠,则EOA V 中,cos 601OA OE =⋅=o ,则S 当直线l 的斜率不存在时,可得:1l x =±,代入方程可得:2114y +=,解得32y =±,可得MN 当直线l 的斜率存在时,可设:l y kx b =+,联立可得))得1(0,3)B ,2(1,0)F ,12B F k =所以直线MN 的斜率为33,所以直线()2231313x y =++=.消去y 并化简得13(1)求椭圆E的方程;(2)是否存在实数λ,使椭圆若不存在,请说明理由;(3)椭圆E的内接四边形ABCD4t4t【点睛】方法点睛:本题(2圆联立求出弦长,然后再结合基本不等式求解出最值11.已知椭圆221:184x yC+=与椭圆(1)求椭圆2C的标准方程:不妨设P 在第一象限以及x 故000022AP AQ k y y k x x -+⋅=⋅=-由题意知直线AP 存在斜率,设其方程为若直线l ,m 中两条直线分别与两条坐标轴垂直,则其中有一条必与直线所以直线l 的斜率存在且不为零,设直线()()1122,,,A x y B x y ,()1y k x ⎧=+。
圆锥曲线中的弦长及面积问题2022优秀课件

|t 1
2
| t2 ,则 t1
t2
10
①
t t 2t t cos 60 8 圆圆锥锥曲 曲线线中中的的弦弦长长问问题题及及面面2积积问问题题2
2
圆锥曲线中的弦长问题及面1 积问题2
12
由① -②得 圆锥曲线中的弦长问题及面积问题2
圆锥曲线中的弦长问题及面积问题
入求弦长;| AB | x1 x2 2 y1 y2 2
法二:但有时为了简化计算,常设而不求,运用韦达定理
来处理. | AB | 1 k 2 x1 x2 2 4x1x2
面积问题
20.P
为椭圆
x2 25
y2 9
1上一点,F1、F2 为左右焦点,若 F1PF2
60
(1)求△ F1PF2 的面积;
t1t2 12
②,
圆锥曲线中的弦长问题及面积问题
圆锥曲线中的弦长问题及面积问题
S F1PF2
1 2 t1t2
sin 60
1 2
Hale Waihona Puke 12 3 3 23
圆锥曲线中的弦长问题及面积问题
圆锥(曲线2中)的弦求长问题P及点面积的问题坐标.
圆锥曲线中的弦长问题及面积问题
圆锥曲线中的弦长问题及面积问题
解:∵a=5,b=3 c=4 圆锥曲线中的弦长问题及面积问题
圆锥曲线中的弦长问题及面积问题
圆锥曲线中的弦长问题及面积问题
(1)设 , | PF | PF 圆锥曲线中的弦长问题及面积问题
圆锥曲线中的弦长问题及面积问题
弦长问题
19.已知椭圆 C 的中心在原点,焦点在 x 轴上,它的一个顶点
恰好是抛物线
y
圆锥曲线中的三角形问题(含解析)

专题12 圆锥曲线中的三角形问题一、题型选讲题型一 、由面积求参数或点坐标等问题例1、(2020·浙江学军中学高三3月月考)抛物线22y px =(0p >)的焦点为F ,直线l 过点F 且与抛物线交于点M ,N (点N 在轴上方),点E 为轴上F 右侧的一点,若||||3||NF EF MF ==,MNE S =△则p =( ) A .1B .2C .3D .9例2、(2020·浙江高三)如图,过椭圆22221x y C a b+=:的左、右焦点F 1,F 2分别作斜率为C 上半部分于A ,B 两点,记△AOF 1,△BOF 2的面积分别为S 1,S 2,若S 1:S 2=7:5,则椭圆C 离心率为_____.例3、【2020年高考江苏】在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求12AF F △的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅的最小值; (3)设点M 在椭圆E 上,记OAB △与MAB △的面积分别为S 1,S 2,若213S S =,求点M 的坐标.题型二、与面积有关的最值问题例4、(2020·浙江温州中学高三3月月考)过点()2,1P 斜率为正的直线交椭圆221245x y +=于A ,B 两点.C ,D 是椭圆上相异的两点,满足CP ,DP 分别平分ACB ∠,ADB ∠.则PCD ∆外接圆半径的最小值为( )A .5B .5C .2413D .1913例5、【2020年新高考全国△卷】已知椭圆C :22221(0)x y a b a b+=>>过点M (2,3),点A 为其左顶点,且AM 的斜率为12, (1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.例6、【2019年高考全国△卷理数】已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G .(i )证明:PQG △是直角三角形; (ii )求PQG △面积的最大值.例7、(2020届浙江省温丽联盟高三第一次联考)已知1F ,2F 是椭圆2222:1x y C a b+=的左右焦点,且椭圆C,直线:l y kx m =+与椭圆交于A ,B 两点,当直线l 过1F 时2F AB 周长为8. (△)求椭圆C 的标准方程;(△)若0OA OB ⋅=,是否存在定圆222x y r +=,使得动直线l 与之相切,若存在写出圆的方程,并求出OAB 的面积的取值范围;若不存在,请说明理由.例8、(2020届浙江省十校联盟高三下学期开学)如图,已知抛物线24y x =的焦点为F ,准线为l ,过点F 的直线交抛物线于A ,B 两点,点B 在准线l 上的投影为E ,若C 是抛物线上一点,且AC EF ⊥.(1)证明:直线BE 经过AC 的中点M ;(2)求ABC ∆面积的最小值及此时直线AC 的方程.二、达标训练1、(2020届浙江省杭州市高三3月模拟)设12,F F 是椭圆222:1(02)4x y C m m+=<<的两个焦点,00(,)P x y是C 上一点,且满足12PF F ∆则0||x 的取值范围是____.2、【2018年高考全国I 理数】已知双曲线22:13x C y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若OMN △为直角三角形,则||MN = A .32B .3C .D .43、(2020届浙江省宁波市鄞州中学高三下期初)已知抛物线E :24y x =和直线l :40x y -+=,P 是直线上l 一点,过点P 做抛物线的两条切线,切点分别为A ,B ,C 是抛物线上异于A ,B 的任一点,抛物线在C 处的切线与PA ,PB 分别交于M ,N ,则PMN ∆外接圆面积的最小值为______.4、(2020届浙江省嘉兴市5月模拟)设点(,)P s t 为抛物线2:2(0)C y px p =>上的动点,F 是抛物线的焦点,当1s =时,54PF =.(1)求抛物线C 的方程;(2)过点P 作圆M :22(2)1x y -+=的切线1l ,2l ,分别交抛物线C 于点,A B .当1t >时,求PAB △面积的最小值.5、(2020届浙江省绍兴市4月模拟)如图,已知点(0,0)O ,(2,0)E ,抛物线2:2(0)C y px p =>的焦点F为线段OE 中点.(1)求抛物线C 的方程;(2)过点E 的直线交抛物线C 于, A B 两点,4AB AM =,过点A 作抛物线C 的切线l ,N 为切线l 上的点,且MN y ⊥轴,求ABN 面积的最小值.6、(2020届浙江省台州市温岭中学3月模拟)如图,已知抛物线214y x =的焦点为F .()1若点P为抛物线上异于原点的任一点,过点P作抛物线的切线交y轴于点Q,证明:2∠=∠.PFy PQF ()2A,B是抛物线上两点,线段AB的垂直平分线交y轴于点()D(AB不与x轴平行),且0,4+=.过y轴上一点E作直线//6AF BFm x轴,且m被以AD为直径的圆截得的弦长为定值,求ABE△面积的最大值.一、题型选讲题型一、由面积求参数或点坐标等问题例1、(2020·浙江学军中学高三3月月考)抛物线22y px =(0p >)的焦点为F ,直线l 过点F 且与抛物线交于点M ,N (点N 在轴上方),点E 为轴上F 右侧的一点,若||||3||NF EF MF ==,MNE S =△则p =( ) A .1 B .2C .3D .9【答案】C 【解析】设准线与x 轴的交点为T ,直线l 与准线交于R ,||||3||3NF EF MF a ===,则||||3NF EF a ==,||MF a =,过M ,N 分别作准线的垂线,垂足分别为,P Q ,如图,由抛物线定义知,||MP a =,||3NQ a =,因为MP ∥NQ ,所以||||||||PM RM QN RN =, 即||3||4a RM a RM a=+,解得||2RM a =,同理||||||||FT RF QN RN =,即||336FT aa a=,解得 3||2FT a =,又||FT p =,所以32a p =,23a p =,过M 作NQ 的垂线,垂足为G ,则||MG ===,所以1||||2MNES EF MG =⋅=△ 132a ⨯⨯=2a =,故332p a ==. 故选:C.例2、(2020·浙江高三)如图,过椭圆22221x y C a b+=:的左、右焦点F 1,F 2分别作斜率为C 上半部分于A ,B 两点,记△AOF 1,△BOF 2的面积分别为S 1,S 2,若S 1:S 2=7:5,则椭圆C 离心率为_____.【答案】12【解析】作点B 关于原点的对称点B 1,可得S 21'BOF B OF S =,则有11275A B y S S y ==,所以175A B y y =-. 将直线AB 1方程4x c =-,代入椭圆方程后,222241x y c x y a b ⎧=-⎪⎪⎨⎪+=⎪⎩, 整理可得:(b 2+8a 2)y 2﹣b 2cy +8b 4=0,由韦达定理解得12228A B cy y b a+=+,142288A B b y y b a -=+, 三式联立,可解得离心率12c e a ==. 故答案为:12. 例3、【2020年高考江苏】在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求12AF F △的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅的最小值; (3)设点M 在椭圆E 上,记OAB △与MAB △的面积分别为S 1,S 2,若213S S =,求点M 的坐标.【解析】(1)椭圆22:143x y E +=的长轴长为2a ,短轴长为2b ,焦距为2c , 则2224,3,1a b c ===.所以12AF F △的周长为226a c +=.(2)椭圆E 的右准线为4x =. 设(,0),(4,)P x Q y ,则(,0),(4,)OP x QP x y ==--, 2(4)(2)44,OP QP x x x ⋅=-=--≥-在2x =时取等号.所以OP QP ⋅的最小值为4-.(3)因为椭圆22:143x y E +=的左、右焦点分别为12,F F ,点A 在椭圆E 上且在第一象限内,212AF F F ⊥,则123(1,0),(1,0),(1,)2F F A -.所以直线:3430.AB x y -+=设(,)M x y ,因为213S S =,所以点M 到直线AB 距离等于点O 到直线AB 距离的3倍. 由此得|343||30403|355x y -+⨯-⨯+=⨯,则34120x y -+=或3460x y --=.由2234120,143x y x y -+=⎧⎪⎨+=⎪⎩得2724320x x ++=,此方程无解;由223460,143x y x y --=⎧⎪⎨+=⎪⎩得271240x x --=,所以2x =或27x =-.代入直线:3460l x y --=,对应分别得0y =或127y =-. 因此点M 的坐标为(2,0)或212(,)77--.题型二、与面积有关的最值问题例4、(2020·浙江温州中学高三3月月考)过点()2,1P 斜率为正的直线交椭圆221245x y +=于A ,B 两点.C ,D 是椭圆上相异的两点,满足CP ,DP 分别平分ACB ∠,ADB ∠.则PCD ∆外接圆半径的最小值为( ) A.5B.5C .2413D .1913【答案】D 【解析】如图,先固定直线AB ,设()BM f M AM =,则()()()f C f D f P ==,其中()BPf P AP=为定值, 故点P ,C ,D 在一个阿波罗尼斯圆上,且PCD 外接圆就是这个阿波罗尼斯圆,设其半径为r ,阿波罗尼斯圆会把点A ,B 其一包含进去,这取决于BP 与AP 谁更大,不妨先考虑BP AP >的阿波罗尼斯圆的情况,BA 的延长线与圆交于点Q ,PQ 即为该圆的直径,如图:接下来寻求半径的表达式, 由()2,2AP BP r BP BQ r AP AQ AP AP AQ BP ⋅+==+=+,解得111r AP BP=-, 同理,当BP AP <时有,111r BP AP=-, 综上,111r AP BP=-; 当直线AB无斜率时,与椭圆交点纵坐标为1,1AP BP ==,则1912r =; 当直线AB 斜率存在时,设直线AB 的方程为()12y k x -=-,即21y kx k =-+, 与椭圆方程联立可得()()()22224548129610k x k k x k k ++-+--=,设()11,A x y ,()22,B x y ,则由根与系数的关系有,()()12221224821245961245k k x x k k k x x k ⎧-+=⎪+⎪⎨--⎪=⎪+⎩,211112r AP BP x ∴=-=-,注意到12x -与22x -异号,故1119r ===,设125t k =+,则11121226131919192419r ==≤⋅=,,当15169t =,即1695t =,此时125k =,故1913r ≥,又19191213>,综上外接圆半径的最小值为1913. 故选:D .例5、【2020年新高考全国△卷】已知椭圆C :22221(0)x y a b a b+=>>过点M (2,3),点A 为其左顶点,且AM 的斜率为12, (1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值. 【解析】(1)由题意可知直线AM 的方程为:13(2)2y x -=-,即24-=-x y . 当y =0时,解得4x =-,所以a =4,椭圆()2222:10x y C a b a b+=>>过点M (2,3),可得249116b +=, 解得b 2=12.所以C 的方程:2211612x y +=.(2)设与直线AM 平行的直线方程为:2x y m -=,如图所示,当直线与椭圆相切时,与AM 距离比较远的直线与椭圆的切点为N ,此时△AMN 的面积取得最大值.联立直线方程2x y m -=与椭圆方程2211612x y +=,可得:()2232448m y y ++=,化简可得:2216123480y my m ++-=,所以()221444163480m m ∆=-⨯-=,即m 2=64,解得m =±8, 与AM 距离比较远的直线方程:28x y -=, 直线AM 方程为:24-=-x y ,点N 到直线AM 的距离即两平行线之间的距离,利用平行线之间的距离公式可得:d ==,由两点之间距离公式可得||AM ==.所以△AMN的面积的最大值:1182⨯=. 【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.例6、【2019年高考全国△卷理数】已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G .(i )证明:PQG △是直角三角形; (ii )求PQG △面积的最大值.【答案】(1)见解析;(2)(i )见解析;(ii )169. 【解析】(1)由题设得1222y y x x ⋅=-+-,化简得221(||2)42x y x +=≠,所以C 为中心在坐标原点,焦点在x 轴上的椭圆,不含左右顶点.(2)(i )设直线PQ 的斜率为k ,则其方程为(0)y kx k =>.由22142y kxx y =⎧⎪⎨+=⎪⎩得x =.记u =,则(,),(,),(,0)P u uk Q u uk E u --.于是直线QG 的斜率为2k ,方程为()2ky x u =-. 由22(),2142k y x u x y ⎧=-⎪⎪⎨⎪+=⎪⎩得 22222(2)280k x uk x k u +-+-=.①设(,)G G G x y ,则u -和G x 是方程①的解,故22(32)2G u k x k +=+,由此得322G uky k=+. 从而直线PG 的斜率为322212(32)2uk uk k u k kuk -+=-+-+.所以PQ PG ⊥,即PQG △是直角三角形.(ii )由(i)得||2PQ =||PG =△PQG 的面积222218()18(1)||12(12)(2)12()k k k k S PQ PG k k k k++===++++‖. 设t =k +1k ,则由k >0得t ≥2,当且仅当k =1时取等号.因为2812t S t =+在[2,+∞)单调递减,所以当t =2,即k =1时,S 取得最大值,最大值为169. 因此,△PQG 面积的最大值为169.例7、(2020届浙江省温丽联盟高三第一次联考)已知1F ,2F 是椭圆2222:1x y C a b+=的左右焦点,且椭圆C,直线:l y kx m =+与椭圆交于A ,B 两点,当直线l 过1F 时2F AB 周长为8. (△)求椭圆C 的标准方程;(△)若0OA OB ⋅=,是否存在定圆222x y r +=,使得动直线l 与之相切,若存在写出圆的方程,并求出OAB 的面积的取值范围;若不存在,请说明理由.【答案】(△)223144x y +=;(△)221x y +=,⎡⎢⎣⎦.【解析】(△)由题意可得,22||48F A F B AB a ++==, 故2a =,又有3c e a ==,∴c = 椭圆的标准方程为223144x y +=;(△)法1:设||OA m =,||OB n =,∵0OA OB ⋅=,∴OA OB ⊥, 设点(cos ,sin )A m m θθ,点(sin ,cos )B n n θθ-,22222222cos 3sin 144cos 3sin 144m m n n θθθθ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相加得22131144m n +=+, 2222m n m n +=⋅,222AB OA OB =⋅,∴1r =,442222222111||1111n n AB m n n n n n -+=+===++---,24,43n ⎡⎤∈⎢⎥⎣⎦,∴AB ⎡∈⎢⎣⎦,OABS ⎡∈⎢⎣⎦△. 法2:()2222234136340x y k x kmx m y kx m⎧+=⇒+++-=⎨=+⎩, ()()22222236434131248160k m m k m k ∆=--+=-++>,1212OA OB x x y y ⋅=+()()2212121k x x km x x m =++++222444013m k k--==+, ∴221m k =+,∴1r ===,122||13AB xk=-==+当0k=时,||2AB=,当0k≠时,||AB=≤213k=时取到等号,此时243m=符合>0∆∴1,3OABS⎡∈⎢⎣⎦△.例8、(2020届浙江省十校联盟高三下学期开学)如图,已知抛物线24y x=的焦点为F,准线为l,过点F 的直线交抛物线于A,B两点,点B在准线l上的投影为E,若C是抛物线上一点,且AC EF⊥.(1)证明:直线BE经过AC的中点M;(2)求ABC∆面积的最小值及此时直线AC的方程.【答案】(1)详见解析;(2)面积最小值为16,此时直线方程为30x y±-=.【解析】(1)由题意得抛物线24y x=的焦点()1,0F,准线方程为1x=-,设()2,2B t t,直线AB:1x my=+,则()1,2E t-,联立1x my=+和24y x=,可得244y my=+,显然40A By y+=,可得212,At t⎛⎫-⎪⎝⎭,因为EFk t=-,AB EF⊥,所以1AC k t=, 故直线AC :2211y x t t t ⎛⎫+=- ⎪⎝⎭, 由224120y xx ty t ⎧=⎪⎨---=⎪⎩, 得224480y ty t---=. ∴4A C y y t +=,248A C y y t =--, 所以AC 的中点M 的纵坐标2M y t =,即M B y y =, 所以直线BE 经过AC 的中点M .(2)所以A C y A C =-== 设点B 到直线AC 的距离为d ,则2212t d ++==.所以1162ABCS AC d ∆=⋅=≥=,当且仅当41t =,即1t =±,1t =时,直线AD 的方程为:30x y --=,1t =-时,直线AD 的方程为:30x y +-=.另解:2221112222ABC A C S BM y y t t t ∆=⋅-=++-3222122t t ⎛⎫=++ ⎪⎝⎭.二、达标训练1、(2020届浙江省杭州市高三3月模拟)设12,F F 是椭圆222:1(02)4x y C m m+=<<的两个焦点,00(,)P x y是C 上一点,且满足12PF F ∆则0||x 的取值范围是____. 【答案】[]0,1【解析】依题意,122F F =,所以120122PF F S y ∆=⨯=0y =,而2200214x y m +=,所以2200224124144y x m m m ⎛⎫=-=- ⎪-⎝⎭.由于02m <<,204m <<,根据二次函数的性质可知:()(]22424240,4m m m -=--+∈,所以241234m m -≤--,所以22412414x m m =-≤-,解得[]00,1x ∈.故答案为:[]0,12、【2018年高考全国I 理数】已知双曲线22:13x C y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若OMN △为直角三角形,则||MN = A .32B .3C .D .4【答案】B【解析】由题可知双曲线C 的渐近线的斜率为,且右焦点为(2,0)F ,从而可得30FON ∠=︒,所以直线MN 的倾斜角为60︒或120︒,根据双曲线的对称性,设其倾斜角为60︒,可以得出直线MN 的方程为2)y x =-,分别与两条渐近线3y x =和3y x =-联立,求得M,3(,22N -,所以||3MN ==,故选B . 3、(2020届浙江省宁波市鄞州中学高三下期初)已知抛物线E :24y x =和直线l :40x y -+=,P 是直线上l 一点,过点P 做抛物线的两条切线,切点分别为A ,B ,C 是抛物线上异于A ,B 的任一点,抛物线在C 处的切线与PA ,PB 分别交于M ,N ,则PMN ∆外接圆面积的最小值为______. 【答案】258π【解析】设三个切点分别为222(,),(,),(,)444a b c A a B b C c ,若在点A 处的切线斜率存在,设方程为2()4a y a k x -=-与24y x =联立,得,222440,164(4)0ky y a k a k a k a --+=∆=--+=, 即222440,a k ak k a-+=∴=, 所以切线PA 方程为2202a x ay -+= ①若在点A 的切线斜率不存在,则(0,0)A , 切线方程为0x =满足①方程,同理切线,PB MN 的方程分别为2202b x by -+=,2202c x cy -+=,联立,PA PB 方程,22202202a x ay b x by ⎧-+=⎪⎪⎨⎪-+=⎪⎩,解得42ab x a b y ⎧=⎪⎪⎨+⎪=⎪⎩,即,42ab a b P +⎛⎫ ⎪⎝⎭同理,,,4242ac a c bc b c M N ++⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,(),42a c b c b PM --⎛⎫= ⎪⎝⎭, ()(),,,4242b c a c a c b a b a PN MN ----⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,设PMN ∆外接圆半径为R ,|||||||||PM b c PN a c MN a b =-=-=-,11||||sin ||||22PMN S PM PN MPN PM PN ∆=∠=21||||()2||||PM PN PM PN ===||||||1||||||1622a b b c a c MN PM PN R---==,||||||4PM PN MN R S ⋅⋅==08c =≥时取等号,点P在直线40,4,8422ab a b ab x y a b +-+=∴+=∴+=+,8R =∴≥8==4≥=, 当且仅当1,6,0a b c =-==或6,1,0a b c ==-=时等号成立, 此时PMN ∆外接圆面积最小为258π. 故答案为:258π.4、(2020届浙江省嘉兴市5月模拟)设点(,)P s t 为抛物线2:2(0)C y px p =>上的动点,F 是抛物线的焦点,当1s =时,54PF =.(1)求抛物线C 的方程;(2)过点P 作圆M :22(2)1x y -+=的切线1l ,2l ,分别交抛物线C 于点,A B .当1t >时,求PAB △面积的最小值.【答案】(1)2y x =(2)最小值 【解析】(1)当1s =时,5||24p PF s =+=, 所以12p =,故所求抛物线方程为2y x =. (2)点(),P s t 为抛物线2y x =上的动点,则2s t =,设过点2(,)P t t 的切线为2()x m y t t =-+, 21=, 得22222(1)2(2)(2)10(*)t m t t m t -+-+--=, 12,m m 是方程(*)式的两个根, 所以21222(2)1t t m m t -+=-,2123m m t =-, 设()()221122,,,A y y B y y ,因直线2:()l x m y t t =-+,与抛物线2:C y x =交于点A ,则212()x m y t t y x⎧=-+⎨=⎩得22110y m y m t t -+-=, 所以211ty m t t =-,即11y m t =-,同理22y m t =-,设直线()1212:AB x y y y y y =+-,则12||||AB y y =-,d =,又12122221t y y m m t t -+=+-=-, 2121223()()1t y y m t m t t -=--=-, 所以212121211|||||()|22PAB S AB d y y t t y y y y ==--++22222311t t t t t --=-⨯+--=令210u t=->,4(PAB S u u =++当且仅当2u =,即t =时,PAB S 取得最小值5、(2020届浙江省绍兴市4月模拟)如图,已知点(0,0)O ,(2,0)E ,抛物线2:2(0)C y px p =>的焦点F为线段OE 中点.(1)求抛物线C 的方程;(2)过点E 的直线交抛物线C 于, A B 两点,4AB AM =,过点A 作抛物线C 的切线l ,N 为切线l 上的点,且MN y ⊥轴,求ABN 面积的最小值.【答案】(1)24y x =;(2)【解析】(1)由已知得焦点F 的坐标为(1, 0), 2p ∴=,∴抛物线C 的方程为:24y x =;(2)设直线AB 的方程为:2x my =+,设()11,A x y ,()22,B x y ,()00,M x y ,联立方程224x my y x=+⎧⎨=⎩,消去x 得:2480y my --=, 216320m ∴∆=+>,124y y m +=,128y y =-,设直线l 方程为:()11y y k x x -=-,联立方程()1124y y k x x y x ⎧-=-⎨=⎩,消去x 得:2114440y y y x k k-+-=, 由相切得:112164440k k y x ⎛⎫∆=--= ⎪⎝⎭,112110y x k k ∴-+=, 又2114y x =,21121104y y k k ∴-+=, 21102y k ⎛⎫∴-= ⎪⎝⎭,12k y ∴=, ∴直线l 的方程为:11220x y y x -+=,由4AB AM →→=,得12034x x x +=,12034y y y +=, 将12034y y y +=代入直线l 方程,解得221121888N yy y y x +-==, 所以01212ABN N S x x y y =-⨯-△212112138248x x yy y +-=-⨯-2212121632y y y y ++=⨯-31232y y -=311832y y +=,又118y y +≥ 所以42ABN S △,当且仅当1y =±时,取到等号,所以ABN面积的最小值为6、(2020届浙江省台州市温岭中学3月模拟)如图,已知抛物线214y x =的焦点为F .()1若点P 为抛物线上异于原点的任一点,过点P 作抛物线的切线交y 轴于点Q ,证明:2PFy PQF ∠=∠. ()2A ,B 是抛物线上两点,线段AB 的垂直平分线交y 轴于点()0,4D (AB 不与x 轴平行),且6AF BF +=.过y 轴上一点E 作直线//m x 轴,且m 被以AD 为直径的圆截得的弦长为定值,求ABE △面积的最大值.【答案】()1证明见解析; ()2 【解析】()1由抛物线的方程可得()0,1F ,准线方程:1y =-,设200,4x P x ⎛⎫ ⎪⎝⎭, 由抛物线的方程可得2x y '=,所以在P 处的切线的斜率为:02x k =, 所以在P 处的切线方程为:()200042x x y x x -=-, 令0x =,可得204x y =-, 即2040,Q x ⎛-⎫ ⎪⎝⎭, 所以2014x FQ =+,而P 到准线的距离2014x d =+,由抛物线的性质可得PF d = 所以PF FQ =,PQF QPF ∠=∠,可证得:2PFy PQF ∠=∠.()2设直线AB 的方程为:y kx m =+,()11,A x y ,()22,B x y ,直线与抛物线联立24y kx mx y =+⎧⎨=⎩,整理可得:2440x kx m --=,216160k m ∆=+>,即20k m +>,124x x k +=,124x x m =-,()21212242y y k x x m k m +=++=+,所以AB 的中点坐标为:()22,2k k m +,所以线段AB 的中垂线方程为:()212(2)y k m x k k -+=--,由题意中垂线过()0,4D ,所以2224k m ++=,即222k m +=,① 由抛物线的性质可得:1226AF BF y y +=++=,所以24226k m ++=,即222k m +=,②设()0,E b ,()222114AD x y =+-,AD 的中点的纵坐标为142y +,所以以AD 为直径的圆与直线m 的相交弦长的平方为:2214442y AD b ⎡⎤+⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦()()()222112114444444y y x b b y ⎡⎤-+=+--++⎢⎥⎢⎥⎣⎦()221111444434y b b y by b y b b ⎡⎤-+-+=-+-⎣⎦⎡⎤⎣⎦,要使以AD 为直径的圆截得的弦长为定值则可得3b =,时相交弦长的平方为定值12,即()0,3E所以E 到直线AB的距离为:d = 而弦长AB ==,所以1232EAB S AB d =⋅==-将①代入可得2322212ABE S k k =-+=+=设()6424472f k k k k =-+++为偶函数,0k >>的情况即可,()()()()5342222416142126722167f k k k k k k k k k k ++=---=-+=--' 令()0f k '=,6k =当06k <<,()0f k '>,()f k 单调递增;当k 6<<()0f k '<,()f k 单调递减,所以(k ∈且0k ≠上,66f f ⎛⎫⎛⎫=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭为最大值9,所以ABE S的最大值为:212+=。
数学复习:圆锥曲线双变量型三角形面积最值问题

最值问题——数学复习:圆锥曲线双变量型三角形面积最值问题构造函数最值问题的基本解法有几何法和代数法:几何法是根据已知的几何量之间的相互关系、平面几何和解析几何知识加以解决的(如抛物线上的点到某个定点和焦点的距离之和、光线反射问题等);代数法是建立求解目标关于某个或两个变量的函数,通过求解函数的最值普通方法、基本不等式方法、导数方法等解决的.【例题选讲】[例1] (2020·新全国Ⅱ)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点M (2,3),点A 为其左顶点,且AM 的斜率为12.(1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.[规范解答] (1)由题意可知直线AM 的方程为y -3=12(x -2),即x -2y =-4.当y =0时,解得x =-4,所以a =4.由椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点M (2,3),可得416+9b 2=1,解得b 2=12.所以C 的方程为x 216+y 212=1.(2)设与直线AM 平行的直线方程为x -2y =m .如图所示,当直线与椭圆相切时,与AM 距离比较远的直线与椭圆的切点为N ,此时△AMN 的面积取得最大值.联立{x -2y =m ,x 216+y 212=1,可得3(m +2y )2+4y 2=48,化简可得16y 2+12my +3m 2-48=0,所以Δ=144m 2-4×16(3m 2-48)=0,即m 2=64,解得m =±8,与AM 距离比较远的直线方程为x -2y =8,点N 到直线AM 的距离即两平行线之间的距离,即d+由两点之间的距离公式可得|AM |所以△AMN 的面积的最大值为12×318.[例2] 已知椭圆C :x 2a 2+y 2b 2=1(a >b>0)的离心率为12,点M在椭圆C 上.(1)求椭圆C 的方程;(2)若不过原点O 的直线l 与椭圆C 相交于A ,B 两点,与直线OM 相交于点N ,且N 是线段AB 的中点,求△OAB 面积的最大值.[规范解答] (1)由椭圆C :x 2a 2+y2b 2=1(a>b >0)的离心率为12,点M在椭圆C 上,得{c =1,1,a 2=b 2+c 2,解得{a 2=4,b 2=3.所以椭圆C 的方程为x 24+y 23=1.(2)易得直线OM 的方程为y =12x .当直线l 的斜率不存在时,AB 的中点不在直线y =12x 上,故直线l 的斜率存在.设直线l 的方程为y =kx +m (m ≠0),与x 24+y 23=1联立消y ,得(3+4k 2)x 2+8kmx +4m 2-12=0,所以Δ=64k 2m 2-4(3+4k 2)(4m 2-12)=48(3+4k 2-m 2)>0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8km3+4k 2,x 1x 2=4m 2-123+4k 2,由y 1+y 2=k (x 1+x 2)+2m =6m3+4k 2,所以AB 的中点N (-4km3+4k 2,3m 3+4k 2),因为N 在直线y =12x 上,所以-4km3+4k 2=2×3m 3+4k 2,解得k =-32,所以Δ=48(12-m 2)>0,得-mm ≠0,|AB |2-x 1|又原点O 到直线l 的距离d所以S △OAB =12×当且仅当12-m 2=m 2,即m =m m ≠0,所以△OAB [例3] 已知平面上一动点P 到定点F0)的距离与它到直线x P 的轨迹为曲线C .(1)求曲线C 的方程;(2)设直线l :y =kx +m 与曲线C 交于M ,N 两点,O 为坐标原点,若k OM ·k ON =54,求△MON 的面积的最大值.[规范解答] (1)设P (x ,y ),化简,得x 24+y 2=1.(2)设M (x 1,y 1),N (x 2,y 2),联立{y =kx +m ,x 24+y 2=1,得(4k 2+1)x 2+8kmx +4m 2-4=0,依题意,得Δ=(8km )2-4(4k 2+1)(4m 2-4)>0,化简,得m 2<4k 2+1, ①x 1+x 2=-8km4k 2+1,x 1x 2=4m 2-44k 2+1,y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2,若k OM ·k ON =54,则y 1y 2x 1x 2=54,即4y 1y 2=5x 1x 2,∴4k 2x 1x 2+4km (x 1+x 2)+4m 2=5x 1x 2,∴(4k 2-5)·4(m 2-1)4k 2+1+4km (-8km 4k 2+1)+4m 2=0,即(4k 2-5)(m 2-1)-8k 2m 2+m 2(4k 2+1)=0,化简,得m 2+k 2=54, ②|MN |1-x 2|∵原点O 到直线l 的距离d ∴S △MON =12|MN|·d =12设4k 2+1=t ,由①②得0≤m 2<65,120<k 2≤54,∴65<t ≤6,16≤1t <56,S △MON =12=12,∴当1t =12,即k =±12时,△MON 的面积取得最大值为1.[例4] 已知动圆过定点F (0,14),且与定直线l :y =-14相切.(1)求动圆圆心的轨迹曲线C 的方程;(2)若点A (x 0,y 0)是直线x -y -1=0上的动点,过点A 作曲线C 的切线,切点记为M ,N ,求证:直线MN 恒过定点,并求△AMN 面积S 的最小值.[规范解答] (1)根据抛物线的定义,由题意可得,动圆圆心的轨迹C 是以点F (0,14)为焦点,以定直线l :y =-14为准线的抛物线.设抛物线C :x 2=2py (p >0),因为点F (0,14)到准线l :y =-14的距离为12,所以p =12,所以圆心的轨迹曲线C 的方程为x 2=y .(2)证明:因为x 2=y ,所以y ′=2x ,设切点M (x 1,y 1),N (x 2,y 2),则x 21=y 1,x 22=y 2,则过点M (x 1,y 1)的切线方程为y -y 1=2x 1(x -x 1),即y =2x 1x -x 21,即y =2x 1x -y 1.同理得过点N (x 2,y 2)的切线方程为y =2x 2x -y 2.因为过点M ,N 的切线都过点A (x 0,y 0),所以y 0=2x 1x 0-y 1,y 0=2x 2x 0-y 2,所以点M (x 1,y 1),N (x 2,y 2)都在直线y 0=2xx 0-y 上,所以直线MN 的方程为y 0=2xx 0-y ,即2x 0x -y -y 0=0.又因为点A (x 0,y 0)是直线x -y -1=0上的动点,所以x 0-y 0-1=0,所以直线MN 的方程为2x 0x -y -(x 0-1)=0,即x 0(2x -1)+(1-y )=0,所以直线MN 恒过定点(12,1).联立{2x 0x -y -y 0=0,y =x 2,得x 2-2x 0x +y 0=0,又x 0-y 0-1=0,所以x 2-2x 0x +x 0-1=0,则Δ=4x 20-4(x 0-1)>0,x 1+x 2=2x 0,x 1·x 2=x 0-1,所以MN又因为点A (x 0,y 0)到直线2x 0x -y -y 0=0的距离为d|2x 0·x 0-y 0-y 0||2x 20-2x 0-1|2|x 20-x 0+1|所以S =12MN·d20-0+x 20-x 0+1|.令tS =2t 3所以当点A 的坐标为(12,-12)时,△AMN 的面积S[例5] 已知抛物线Γ:x 2=2py (p >0),直线y =2与抛物线Γ交于A ,B (点B 在点A 的左侧)两点,且|AB |=(1)求抛物线Γ在A ,B 两点处的切线方程;(2)若直线l 与抛物线Γ交于M ,N 两点,且M ,N 的中点在线段AB 上,MN 的垂直平分线交y 轴于点Q ,求△QMN 面积的最大值.[规范解答] (1)由x 2=2py,令y =2,得x =p =3,即x 2=6y .由y =x 26,得y ′=x3,故y ′|x =所以在A 点的切线方程为y -2x -,即2x-0;同理可得在B 点的切线方程为2x +0.(2)由题意得直线l 的斜率存在且不为0,故设l :y =kx +m ,M (x 1,y 1),N (x 2,y 2),由x 2=6y 与y =kx +m 联立,得x 2-6kx -6m =0,又Δ=36k 2+24m >0,故x 1+x2=6k ,x 1x 2=-6m ,故|MN |又y 1+y 2=k (x 1+x 2)+2m =6k 2+2m =4,所以m =2-3k 2,所以|MN |=由Δ=36k 2+24m >0k k ≠0.因为M ,N 的中点为(3k ,2),所以M ,N 的垂直平分线方程为y -2=-1k (x -3k ),令x =0,得y =5,即Q (0,5),所以点Q 到直线kx -y +2-3k 2=0的距离d2所以S △QMN =12·2令1+k 2=u ,则k 2=u -1,则1<u <73,故S △QMN =设f (u )=u 2(7-3u ),则f ′(u )=14u -9u 2,结合1<u <73,令f ′(u )>0,得1<u <149;令f ′(u )<0,得149<u <73,所以当u =149,即k =(S △QMN )max =【对点训练】1.如图所示,已知直线l :y =kx -2与抛物线C :x 2=-2py (p >0)交于A ,B 两点,O 为坐标原点,OA →+OB →=(-4,-12).(1)求直线l 和抛物线C 的方程;(2)抛物线上一动点P 从A 到B 运动时,求△ABP 面积的最大值.1.解析 (1)由{y =kx -2,x 2=-2py ,得x 2+2pkx -4p =0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2pk ,y 1+y 2=k (x 1+x 2)-4=-2pk 2-4.因为OA → +OB →=(x 1+x 2,y 1+y 2)=(-2pk ,-2pk 2-4)=(-4,-12),所以{-2pk =-4,-2pk 2-4=-12,解得{p =1,k =2.所以直线l 的方程为y =2x -2,抛物线C 的方程为x 2=-2y .(2)设P (x 0,y 0),依题意,知抛物线过点P 的切线与l 平行时,△ABP 的面积最大,又y ′=-x ,所以-x 0=2,故x 0=-2,y 0=-12x 20=-2,所以P (-2,-2).此时点P 到直线l 的距离d----由{y =2x -2,x 2=-2y ,得x 2+4x -4=0,故x 1+x 2=-4,x 1x 2=-4,所以|AB |所以△ABP 面积的最大值为52=2.椭圆C :x 2a2+y 2b 2=1(a >b >0)(1)求椭圆C 的方程;(2)设斜率存在的直线l 与椭圆C 交于A ,B 两点,坐标原点O 到直线l△AOB 面积的最大值.2.解析 (1)设椭圆的半焦距为c ,依题意知{ca =a∴c b =1,∴所求椭圆方程为x 23+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),设直线AB 的方程为y =kx +m .|m |m 2=34(k 2+1).把y =kx+m 代入椭圆方程,整理,得(3k 2+1)x 2+6kmx +3m 2-3=0.Δ=36k 2m 2-4(3k 2+1)(3m 2-3)=36k 2-12m 2+12>0.∴x 1+x 2=-6km 3k 2+1,x 1x 2=3(m 2-1)3k 2+1.∴|AB |2=(1+k 2)(x 2-x 1)2=(1+k 2)[36k 2m 2(3k 2+1)2-12(m 2-1)3k 2+1]=12(k 2+1)(3k 2+1-m 2)(3k 2+1)2=3(k 2+1)(9k 2+1)(3k 2+1)2=3+12k 29k 4+6k 2+1=3+129k 2+1k2+6(k ≠0)≤3+122×3+6=4.当且仅当9k 2=1k 2,即k =3k =0时,|AB||AB |max =2.∴当|AB |最大时,△AOB 的面积取得最大值S =12×|AB |max223.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的两焦点与短轴一端点组成一个正三角形的三个顶点,且焦点到椭圆上的点的最短距离为1.(1)求椭圆E 的方程;(2)若不过原点O 的直线l 与椭圆交于A ,B 两点,求△OAB 面积的最大值.3.解析 (1)由题意知{bc =a -c =1,又a2=b 2+c 2,所以a =2,b 所以椭圆E 的方程为x 24+y 23=1.(2)当直线l 的斜率存在时,设其方程为y =kx +m (m ≠0),代入椭圆方程,整理,得(4k 2+3)x 2+8kmx +4m 2-12=0.由Δ>0,得4k 2-m 2+3>0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8km4k 2+3,x 1·x 2=4m 2-124k 2+3.于是|AB |3又坐标原点O到直线l 的距离d |m |所以△OAB 的面积S =12·|AB |·d =m因为|m33≤m 2+(4k 2-m 2+3)24k 2+3=12,所以S =12·|AB |·d当直线l 的斜率不存在时,设其方程为x =t ,同理可求得S =12·|AB |·d =12|t综上,△OAB 4.已知△ABP 的三个顶点都在抛物线C :x 2=4y 上,F 为抛物线C 的焦点,点M 为AB 的中点,PF →=3FM → .(1)若|PF |=3,求点M 的坐标;(2)求△ABP 面积的最大值.4.解析 (1)由题意知焦点F (0,1),准线方程为y =-1.设P (x 0,y 0),由抛物线定义知|PF |=y 0+1,得y 0=2,所以P 2)或P (-2),由PF → =3FM →,得M (,23)或M ,23).(2)设直线AB 的方程为y =kx +m ,点A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),由{y =kx +m ,x 2=4y ,得x 2-4kx -4m =0,于是Δ=16k 2+16m >0,x 1+x 2=4k ,x 1x 2=-4m ,所以AB 中点M 的坐标为(2k ,2k 2+m ).由PF → =3FM →,得(-x 0,1-y 0)=3(2k ,2k 2+m -1),所以{x 0=-6k ,y 0=4-6k 2-3m .由x 20=4y 0得k 2=-15m +415,由Δ>0,k 2≥0,得-13<m ≤43.又因为|AB |点F (0,1)到直线AB 的距离为d |m -1|所以S △ABP =4S △ABF =8|m -记f (m )=3m 3-5m 2+m +1(-13<m ≤43),令f ′(m )=9m 2-10m +1=0,解得m 1=19,m 2=1,可得f (m )在(-13,19)上是增函数,在(19,1)上是减函数,在(1,43)上是增函数,又f(19)=256243>f (43)=59.所以当m =19时,f (m )取到最大值256243,此时k =所以△ABP。
高中数学圆锥曲线之焦点三角形面积

高中数学圆锥曲线之焦点三角形面积
Q1
什么是焦点三角形?
定义:
椭圆(双曲线)上任意一点与两个焦点所组成的三角形叫做焦点三角形,它是由焦距和焦半径构成的特别的三角形。
其中焦点三角形的面积也是一个非常重要的几何量。
Q2
怎么求焦点三角形的面积呢?先看一道例题
例题展示:
在这道题中,求出焦点三角形的面积还是要花费一些时间去计算。
Q3
能不能根据上面的解题思路,得到一般结论呢?
公式推导:
大家可以尝试自己去证明焦点在y轴的椭圆焦点三角形面积。
同样的方法可以也可以证明得到双曲线的焦点三角形面积公式。
公式如下:
接下来在给出关于焦点三角形顶角的一个结论:
这个结论可以借助焦点三角形面积公式的推导过程来继续说明:
Q4
是否学会了使用焦点三角形的面积公式呢?
实战演练:
显然能够灵活地应用焦点三角形的面积公式,可以使复杂的问题简单化,减少运算量,使问题迎刃而解。
标签:高考数学备战高考。
圆锥曲线中三角形面积问题

2.已知椭圆2212x y +=,12,F F 分别是椭圆的左右焦点,过点B(0,-2)作直线1BF 交椭圆于,C D ,求2F CD S ∆(9)4.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为3,短轴一个端点到右焦点的距离为。
(1)求椭圆C 的方程(2213x y +=) (2)设直线l 与椭圆C 交于A,B 两点,坐标原点O 到直线l,求AOB ∆面积最大值。
) ()的方程求直线时当的最大值的条件下求在的面积为记两点、交于与椭圆直线浙江AB ,S AB ,S b k S AOB ,B A y x b kx y 1,2)2(;10,0)1(.1407.122==<<=∆=++= (Ⅰ)解:设点A 的坐标为1()x b ,,点B 的坐标为2()x b ,,由2214x b +=,解得12x =±, 所以1212S b x x =-221b b =-2211b b +-=≤. 当且仅当b =S 取到最大值1. (Ⅱ)解:由2214y kx b x y =+⎧⎪⎨+=⎪⎩,,得22212104k x kbx b ⎛⎫+++-= ⎪⎝⎭,2241k b ∆=-+,211||||AB x x =-22224214k b k -==+. ②设O 到AB 的距离为d ,则21||S d AB ==,又因为d =221b k =+, 代入②式并整理,得42104k k -+=,解得212k =,232b =,代入①式检验,0∆>, 故直线AB 的方程是22y x =+或22y x =-或22y x =-+,或22y x =-- 7.已知方向向量为()3,1=v 的直线l过点()32,0-和椭圆)0(1:2222>>=+b a by a x C 的焦点,且椭圆C 的中心关于直线l 的对称点在椭圆C 的右准线上.(1)求椭圆C 的方程; (2)是否存在过点()0,2-E 的直线m交椭圆C于点M 、N ,满足().0tan 1364为原点O MONON OM ≠=⋅若存在,求直线m 的方程;若不存在,请说明理由.解:(1)椭圆C 的方程为12622=+y x(2)直线l 的方程为2,33233,33233-=--=+=x x y x y ()的面积的最小值求四边形证明点的坐标为设垂足为且两点、的直线交椭圆于过两点、的直线交椭圆于过、的左、右焦点分别为已知椭圆ABCD y x ,y x P P BD AC ,C A F ,D B F F F y x )2(;123:,)1(.,.123.32020*******2<+⊥=+(Ⅰ)椭圆的半焦距1c ==,由AC BD ⊥知点P 在以线段12F F 为直径的圆上,故22001x y +=,所以,222200021132222y x y x ++=<≤. (Ⅱ)(ⅰ)当BD 的斜率k 存在且0k ≠时,BD 的方程为(1)y k x =+,代入椭圆方程22132x y +=,并化简得2222(32)6360k x k x k +++-=. 设11()B x y ,,22()D x y ,,则2122632k x x k +=-+,21223632k x x k -=+2221222121)(1)()432k BD x xk x x x x k +⎡=-=++-=⎣+;因为AC 与BC 相交于点P ,且AC 的斜率为1k-, 所以,2222111)12332k k AC k k⎫+⎪+⎝⎭==+⨯+. 四边形ABCD 的面积222222222124(1)(1)962(32)(23)25(32)(23)2k k S BD AC k k k k +24+===++⎡⎤+++⎢⎥⎣⎦≥. 当21k =时,上式取等号.(ⅱ)当BD 的斜率0k =或斜率不存在时,四边形ABCD 的面积4S =. 综上,四边形ABCD 的面积的最小值为9625. 21.(本题满分15分)如图,点P (0,−1)是椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的一个顶点,C 1的长轴是圆C 2:x 2+y 2=4的直径.l 1,l 2是过点P 且互相垂直的两条直线,其中l 1交圆C 2于A ,B 两点,l 2交椭圆C 1于另一点D . (Ⅰ)求椭圆C 1的方程;(Ⅱ)求△ABD 面积取最大值时直线l 1的方程.【命题意图】本题考查椭圆的几何性质,直线与圆的位置关系,直线与椭圆的位置关系等基础知识,同时考查解析几何的基本思想方法和综合解题能力 【答案解析】 (Ⅰ)由题意得⎩⎨⎧b =1,a =2.所以椭圆C 的方程为x 24+y 2=1.(Ⅱ)设A (x 1,y 1),B (x 2,y 2),D (x 0,y 0).由题意知直线l 1的斜率存在,不妨设其为k ,则直线l 1的方程为y =kx −1.又圆C 2:x 2+y 2=4,故点O 到直线l 1的距离d =1k 2+1,所以|AB |=24−d 2=24k 2+3k 2+1 .又l 1⊥l 2,故直线l 2的方程为x +ky +k =0.由⎩⎨⎧x +ky +k =0, x 24+y 2=1. 消去y ,整理得(4+k 2)x 2+8kx =0故x 0=−8k 4+k 2.所以|PD |=8k 2+14+k 2.设△ABD 的面积为S ,则S =12|AB |⋅|PD |=84k 2+34+k 2,所以S =324k 2+3+134k 2+3≤3224k 2+3 ⋅134k 2+3=161313,当且仅当k =±102时取等号 所以所求直线l 1的方程为y =±102x −1题目:已知圆221:(1)F x y r ++=与圆2222:(1)(4)F x y r -+=-(04)r <<的公共点的轨迹为曲线E ,且曲线E 与y 轴的正半轴相交于点M .若曲线E 上相异两点,A B 满足直线,MA MB 的斜率之积为14.(1)求曲线E 的方程;(2)证明直线AB 恒过定点,并求定点的坐标; (3)求ABM 面积的最大值.解:(1)设12,F F 的公共点为Q ,由已知得,12||2=F F ,1||QF r =,2||4QF r =-.故1212||||4||QF QF F F +=>, 因此,曲线E 是长轴长24a,焦距22c的椭圆,且2223b a c .所以,曲线E的方程为22143x y .(2)由曲线E 的方程,得上顶点M ,记1122(,),(,)A x y B x y ,由题意知,120,0x x ≠≠. 若直线AB 的斜率不存在,则直线AB 的方程为1xx ,故12y y ,且222112314x yy ,因此2121212133334MA MB y y y k k x x x ,与已知不符,因此直线AB 的斜率存在,设:AB ykxm ,因为直线AB 与曲线E 有公共点,A B ,由22143ykx m x y 得方程222(34)84(3)0k x kmxm 有两非零不等实根12,x x ,所以2221222122(8)4(34)4(3)08344(3)034km k m kmx x k m x x k;又112211223333,MA MBy kx m y kx m k k x x x x ,且14MA MBk k , 故12124(3)(3)x x kx mkx m , 即221212(41)4(3)()4(3)0k x x k mx x m,则22224(3)(41)4(3)(8)4(3)(34)0mk k m km mk ,整理得,23360m m ,即3m 或23m .由120x x ≠知,23m ,即直线AB 恒过定点(0,N . (3)由0∆>且23m得32k >或32k <-, 又212121213||||||()422ABMANMBNMSSSMN x x x x x x22222222384(3)64963412234343424949km m k k k kk k . 所以,当且仅当24912k -=,2k =±时,ABM 的面积最大为2. 考查目标 本题考查的知识点主要有椭圆的定义、直线与椭圆的位置关系、圆锥曲线中的定点问题及基本不等式的简单应用;同时考查学生的运算求解能力与分类讨论及解析几何计算中的设而不求、整体运算等基本思想方法.22.如图所示,椭圆22122:1(0)x y C a b a b+=>>的离心率为2,曲线22:C y x b =-经过椭圆1C 的右焦点. (1)求12,C C 的方程;(2)设2C 与y 轴的交点为M ,过坐标原点O 的直线l 与2C 相交于点,A B .直线,MA MB分别与1C 相交于,D E . (i )证明:MD ME ⊥;(ii )记,MAB MDE ∆∆得面积分别是12,S S .问:是否存在直线l ,使得1258S S =?请 说明理由.22.(1)由题意知:2c e b c a ==∴=,又从而1a b ==,故12,C C 的方程分别为2221,12x y y x +==-. (2)(i )由题意知:直线l 的斜率存在,设为k ,则直线l 的方程为y kx =,由21y kx y x =⎧⎨=-⎩,消去y 得:210x kx --=,设1122(,),(,)A x y B x y ,则 1212,1x x k x x +=⋅=-, 又点M 的坐标为(0,1)-,所以21212121212121211(1)(1)()11MA MB y y kx kx k x x k x x k k x x x x x x ++++⋅+++⋅=⋅===-⋅⋅所以 MA MB ⊥,即MD ME ⊥.(ii )设直线MA 的斜率为1k ,则直线MA 的方程为11y k x =-由1211y k x y x =-⎧⎨=-⎩,消去y 得:210x k x -⋅=,解得01x y =⎧⎨=-⎩,或1211x k y k =⎧⎨=-⎩ 即点A 的坐标为211(,1)A k k -.又直线MB 的斜率为11k -,同理可得点B 的坐标为21111(,1)B k k --于是21111122k S MA MB k +===由122112y k x x y =-⎧⎪⎨+=⎪⎩,消去y 得:2211(12)40k x k x +-⋅=,解得01x y =⎧⎨=-⎩,或12121214122112k x k k y k ⎧=⎪+⎪⎨-⎪=⎪+⎩,即点D 的坐标为2112211421(,)1212k k D k k -++ 因为直线MB 的斜率为11k -,同理可得点E 的坐标为211221142(,)22k k E k k --++.于是211222118(1)12(12)(2)k k S MD ME k k +===++ 因此:22421111122211(12)(2)1(252)1616S k k k k S k k ++==++ 由题意知424211112115(252),2520168k k k k k ++=∴-+=,212k ∴=或2112k =. 又由点,A B 的坐标可知21211111111k k k k k k k -==-+,2k ∴=± 故满足条件的直线l存在且有两条,其方程分别为,y x y x ==. 22.(本题满分15分)已知斜率为(0)k k的直线l 交椭圆22:14x C y 于1122(,),(,)M x y N x y 两点.(1)记直线,OM ON 的斜率分别为12,k k ,当123()8k k k 时,证明:直线l 过定点;(2)若直线l 过点(1,0)D ,设OMD ∆与OND ∆的面积比为t ,当2512k <时,求t 的取值范围.(3)在(2)的条件下,求OMN ∆面积的最大值. 解: (1)解法1:依题意可设直线l 的方程为y kx n ,其中0k .代入椭圆方程得:222(14)8440k x knxn ,则有12221228144414kn x x k n x x k .……………2分 则121221211212121212()()y y y x y x x kx n x kx n k k x x x x x x12122122()844kx x n x x kx x n .……………5分由条件有224844k k n ,而0k,则有12n, 从而直线l 过定点1(0,)2或1(0,)2-.……………8分 解法2:依题意可设直线l 的方程为x myn ,代入椭圆方程得:222(4)240my mnyn ,则有12221222444mn y y m n y y m .……………2分 则121221122112121212()()()()y y y x y x y my n y my n k k x x x x my n my n1212222212122()2()my y n y y mm y y mn y y n m n .……………5分由条件有2268mm n m ,得12n m .……………7分 则直线l 的方程为12x my m ,从而直线l 过定点1(0,)2或1(0,)2-.……………8分(2)依题意可设直线l 的方程为(1)y k x ,其中0k .代入椭圆方程得:2222(14)8440k x k xk ,则有212221228144414k x x k k x x k .……………9分从而有121222(2)14ky y k x x k …………① 2221212121223(1)(1)()114k y y k x x k x x x x k…………② 由①②得212212()43(14)y y y y k ,……………11分由25012k <<,得244133(14)2k .……………13分 又12OMD OND y St S y ∆∆==,因120y y ,故12y ty ,又212121221()122y y y y ty y y y t,从而有411232tt,得22310302520t t t t ⎧-+<⎨-+>⎩, 解得23t <<或1132t <<.……………15分 解法2:依题意可设直线l 的方程为x my n ,代入椭圆方程得:22(4)230my my ,则有1221222434m y y m y y m .……………2分由①②得22212212()4(1)3(4)y y m t y y m t,……………11分 222222444448,1,13(1)3(1)3(1)3m ttt m t m t t 从而有411232tt,得22310302520t t t t ⎧-+<⎨-+>⎩, 解得23t <<或1132t <<.……………15分 21.(本小题满分15分)已知椭圆222210)x y a b a b+=>>(的离心率3e =,过点A (0,)b -和B (,0)a的直线与原点的距离为2. (1)求椭圆的方程;(2)设12F F 、为椭圆的左、右焦点,过2F 的内切圆半径r 的最大值.21、(理)()221 1 3xy += ()22213x PQ x ty y =++=设:并整理得22(3)10t y ++-=,22)4(3)0t ∆=++>()()1,12,2,P x y Q x y 设,1212213y y y y t +=-+则 =12|y y -==|==212max2111|34t y y t ∴==-=+当,即时,|1121211|||22PQF s F F y y ∆∴=-≤⋅=|11111(||||||)22PQF s PF QF PQ r ∆=++=⋅=又,max 12r ∴==。
圆锥曲线中的面积问题

圆锥曲线中的面积问题一、基础知识:1、面积问题的解决策略:(1)求三角形的面积需要寻底找高,需要两条线段的长度,为了简化运算,通常优先选择能用坐标直接进行表示的底(或高)。
(2)面积的拆分:不规则的多边形的面积通常考虑拆分为多个三角形的面积和,对于三角形如果底和高不便于计算,则也可以考虑拆分成若干个易于计算的三角形2、多个图形面积的关系的转化:关键词“求同存异”,寻找这些图形的底和高中是否存在“同底”或“等高”的特点,从而可将面积的关系转化为线段的关系,使得计算得以简化3、面积的最值问题:通常利用公式将面积转化为某个变量的函数,再求解函数的最值,在寻底找高的过程中,优先选择长度为定值的线段参与运算。
这样可以使函数解析式较为简单,便于分析4、椭圆与双曲线中焦点三角形面积公式(证明详见“圆锥曲线的性质”)(1)椭圆:设P 为椭圆()222210x y a b a b+=>>上一点,且12F PF θ∠=,则122tan 2PF F S b θ=(2)双曲线:设P 为椭圆()22221,0x y a b a b-=>上一点,且12F PF θ∠=,则122cot 2PF F S b θ=⋅二、典型例题:例1:设12,F F 为椭圆2214x y +=的左右焦点,过椭圆中心任作一直线与椭圆交于,P Q 两点,当四边形12PF QF 的面积最大时,12PF PF ⋅的值等于___________例2:已知点P 是椭圆2216251600x y +=上的一点,且在x 轴上方,12,F F 分别为椭圆的左右焦点,直线2PF 的斜率为-,则12PF F △的面积是( )A. B. C. D.例3:已知F 为抛物线2y x =的焦点,点,A B 在该抛物线上且位于x 轴的两侧,2OA OB ⋅=,则ABO △与AFO △面积之和的最小值是( )A. 2B. 3C.8D.例4:抛物线24y x =的焦点为F ,准线为l ,经过F的直线与抛物线在x 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则AFK △的面积是( )A. 4B.C.D. 8例5:以椭圆22195x y +=的顶点为焦点,焦点为顶点的双曲线C ,其左右焦点分别为12,F F ,已知点M 的坐标为()2,1,双曲线C 上点()()0000,0,0P x y x y >>满足11211121P F M F F F M FP F F F ⋅⋅=,则12PMF PMF S S -△△等于( ) A. 2 B. 4 C. 1 D. 1-例6:已知点P 为双曲线()222210,0x y a b a b-=>>右支上一点,12,F F 分别是双曲线的左右焦点,且212b F F a=,I 为三角形12PF F 的内心,若1212IPF IPF IFF S S S λ=+△△△成立,则λ的值为()A.12+ B.1C. 1D. 1例7:已知点()0,2A -,椭圆()2222:10x y E a b a b +=>>的c a 为,F 是椭圆E 的右焦点,直线AF ,O 为坐标原点 (1)求E 的方程(2)设过点A 的动直线l 与E 相交于,P Q 两点,当OPQ 面积最大时,求l 的方程例8:已知椭圆()2222:10x y C a b a b +=>>的c a 为12,过右焦点F 的直线l 与C 相交于,A B两点,当l 的斜率为1时,坐标原点O 到l 的距离为2 (1)求椭圆C 的方程(2)若,,,P Q M N 是椭圆C 上的四点,已知PF 与FQ 共线,MF 与FN 共线,且0PF MF ⋅=,求四边形PMQN 面积的最小值例9:在平面直角坐标系xOy 中,已知点()1,1A -,P 是动点,且三角形POA 的三边所在直线的斜率满足OP OA PA k k k +=(1)求点P 的轨迹方程(2)若Q 是轨迹C 上异于点P 的一个点,且PQ OA λ=,直线OP 与QA 交于点M ,问:是否存在点P 使得PQA 和PAM 的面积满足2PQM PAM SS =?若存在,求出点P 的坐标,若不存在,请说明理由。
圆锥曲线中一类三角形面积的最值问题

圆锥曲线中一类三角形面积的最值问题圆锥曲线中一类三角形面积的最值问题是一个关于几何学的主题,它是关于在特定几何结构和条件下确定三角形面积最大值和最小值的问题。
问题的描述:
求解一类圆锥曲线上定义三角形的面积的最值。
问题的分析:
1.首先该问题的结构存在一个圆锥曲线,其上定义三角形,该三角形的面积是需要求解的最值。
2.其次,在求解最值的过程中,需要确定三角形的形状及尺寸,包括三边的长度及锥角的内切圆和外接圆的半径。
3.此外,在确定三角形面积的最值时,需要考虑到所在圆锥曲线的几何结构及其内接圆的大小,以确定最合适的三角形及其面积最优值。
求解方法:
1.采用穷举和搜索的方法,在一类圆锥曲线上逐步去确定目标三角形的形状及尺寸,其面积最小或最大符合条件;
2.在该类圆锥曲线上,启发式搜索也可以用于最值问题,进行穷举时可以根据当前搜索状态而进行学习及调整;
3.此外,还可以采用以下几种数学方法去求解:(1)利用微积分中极大值极小值的概念,结合拉格朗日乘子法;(2)利用数学规划方法,比如模拟退避法;(3)用贪婪算法去寻找最优解;(4)还可以用神经网络技术去求解。
结论:
以上求解最值问题的方法都可以有效地求出圆锥曲线上三角形面积的
最值,通过不同的搜索方法可以解决规模越大问题所对应的最值问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三步,代数运算。
此时点
P
到直线
l
|2·-2--2-2|
的距离为
=
22+-12
4 5=
45 5 .∴|AB| =
1+k2 · x1+x22-4x1x2 =
1+22· -42-4-4=4 10,故△ABP 面积的最大值
4 为
10×4 2
2
2.利用共同的底边,拆分三角形为面积和(或差),
常化为
S
1 2
|
公共底边长
||
x1
x2
|
或S
1 2
|
公共底边长
||
y1
y2
|
“联立方程+韦达定理+ ”是前提,最值问题常化为
函数、不等式最值等。
问题 2
如图,已知直线 l:
y=2x-2 与抛物线 C: x2=-2y 交于 A、B 两
点,O 为坐标原点.若
k
y kx 2
位置关系代数化:由
x2 2
y2
,消去
1
y
得关于
x
的
方程:(1 2k2)x2 8kx 6 0 。由直线 l 与椭圆相交于 A、
B 两点, 0 64k 2 24(1 2k 2 ) 0 解得 k2 3 。
2
问题目标代数化:
方法
1:
S SAAOOBB
1 2
| OD | |
x2 a2
y2 b2
1(a
b
0)
的离心率
为
6 3
,右焦点为
(2
2,0)。斜率为 1 的直线l与
椭圆 G 交于 A, B 两点,以 AB 为底边作等腰
三角形,顶点为 P(3,2) 。
(Ⅰ)求椭圆 G 的方程;
(Ⅱ)求△ABP 的面积。
x1
x2
6 9
| AB | 1 k 2 | x1 x2 | 1 k 2 (x1 x2 )2 4x1x2
10 2 。 原 点 O 到 直 线 l 的 距 离 9
d
2 55 。SAOB
1 2
|
AB
|
d
2
10 9
.
典例导入
问题
1
已知椭圆 C:
x2 a2
y2 b2
1(a
b
0) 的离心
率为 2 ,短轴长为 2。过点 P(0, 2) 的直线 l 与 2
问题 1
已知椭圆 C:
x2 a2
y2 b2
1(a
b
0) 的离心率
为 2 ,短轴长为 2。过点 P(0, 2) 的直线 l 与椭圆 C
2
交于 A 、 B 两点,
(Ⅰ)当直线 l 的斜率为 2 时,求 AOB 的面积。
(Ⅰ)第一步,分析几何对象几何特征,理解题意,并画出图像。
本问题中,直线 l 与椭圆相交于 A 、 B 。
问题目标代数化: S 1 | AB | d
2
第三步,代数运算。 ∴|AB| = 1+k2 · x1+x22-4x1x2 = 1+22 · -42-4·-4 = 4 10.∵|AB|为定值。∴当点 P 到直线 l 的距离 d 最大时,△ABP
的面积最大.而 d= |22t+2+12t2--12|2=|12t+252-4|,又-2-2 2<t<-2
(x1 x2 )2 4x1x2
1 k2 1 2k 2
16k 2 24
原点 O 到直线 l 的距离 d 2
1 k2
SAOB
11||AABB| |dd 22
16k 2 24 2 1 2k 2
2 1
2k 2 2k 2
3
.
m
2k2 3(m 0) ,
2k 2
m2 3 S
2 m2
2m 4
2k 2
m2 3 S
2 2m m2 4
22 m 4
2 2
m
当且仅当 m
4 m
即m
2 时,
Smax
2 此时 k 2
14 .所以,所求 2
直线方程为 14 2 y 4 0
由题悟法
圆锥曲线中三角形面积表示的方法有:
1. S 1 | AB | d (弦长公式求| AB | ,点到直线距离求 d )
a2
b
1.
可得 c2 a2
a2 b2 a2
a2 1 a2
1 ,即a2 =2. 所以 椭圆
2
C
的方程为
x2 y2 1. 由题意知直线 l 的斜率存在且不为零.设直线 l
2
的方程为 y kx 2, A(x1, y1), B(x2, y2 ) ,则直线 l 与 x 轴的交点
D( 2 , 0) .
椭圆 C 交于 A 、 B 两点,
(Ⅱ)当 AOB 面积取得最大值时,求直线
l 的方程。
(Ⅱ)解法一:第一步,分析几何对象几何特征,理解题意,并画出图像。本问题中,直
线 l 与椭圆相交于 A 、 B 。
第二步,进行代数化。
元 素 代 数 化 : 由 已 知 得 e c 2 , 2b 2. 解 得 a2
+2 2,∴当 t=-2 时,dmax=4 5 5.∴当 P 点坐标为(-2,-2)时,
4 △ABP 面积的最大值为
10×4 2
5
5 =8
2.
解:方法二 第一步,几何特征分析,理解题意。
直线与抛物线相交于 A、B 两点,抛 物线上动点 P 从 A 到 B 运动。
第二步,进行代数化。
元素代y数化kx:设2, A(x1, y1), B(x2 , y2 ) ,P(x0,y0),依题 意,知当抛物线在点 P 处的切线与 l 平行时,△ABP 的面积最大.∵y′=-x,∴x0=-2,y0=-21x20=-2, P(-2,-2).
5
5 =8
2.
回顾梳理
1.选择合理的方法求圆锥曲线 中三角形面积。 2.能利用方程思想、数形结合、 转化与化归思想解决圆锥曲线 中的三角形面积问题。
课后作业
1.椭圆
C:
x2 4
y2 3
1,过点 M (
3,0) 的直
线 l 交椭圆 C 于 A、B两点,求 AOB 面积 S
的最大值。
2.已知椭圆 G :
b
1.
可得 c2 a2
a2 b2 a2
a2 1 a2
1 ,即a2 =2.所以椭圆 C 的方程为 x2
2
2
y2
1. 由题
意知直线 l 的斜率存在,设直线 l 的方程为 y kx 2, A(x1, y1), B(x2, y2 ) 。
位置关系代数化:由
y kx 2
x2 2
y2
,消去
1
立足基础,提升时效
圆锥曲线中的三角形 面积问题
思考
解法回顾
解析几何有哪些解题步骤 ?
(1)分析几何对象的几何特征。理解题 意,并画出图像。
(2)进行代数化。包括几何元素的代数 化、位置关系代数化、问题目标代数化。
(3)进行代数运算。包括联立方程组、消 参、运用函数性质等。
(4)得出几何结论。
典例导入
y
得关于
x
的方程:(1
2k
2 )x2
8kx
6
0
。
由直线 l 与椭圆相交于 A、B 两点, 00 64k 2 24(1 2k 2 ) 0 解得 k2 3 。
2
问题目
AB
|
d
第三步,代数运算。 由韦达定理得
x1
x2
8k 1 2k 2
x1
x2
6 1 2k 2
| AB | 1 k 2 | x1 x2 | 1 k 2
第二步,进行代数化。
元 素 代 数 化 : 由 已 知 得 e c 2 , 2b 2. 解 得 a2
b 1.
可得 c2 a2
a2 b2 a2
a2 1 a2
1 2
,即a2
=2.
所
以
椭
圆
C
的方程为
x2 y2 1. 由 题 意 知 直 线 l 的 斜 率 存 在 , 设 直 线 l 的 方 程 为 2
y1
y2
|
1 2
|
2 k
||
kx1
2
kx2
2|
=| x1 x2 |
16k 2 24 2 2 2k 2 3 .
1 2k 2
1 2k 2
方法
2: SAOB
SPOB SPOA
1 2
2 ||
x2
|
|
x1
||
|
x2
x1
|
=
2 2 2k 2 3 。 1 2k 2
第三步,代数运算。
m 2k2 3(m 0) ,
22 m 4
2 2
m
当且仅当 m
4 m
即
m
2
时,
Smax
2 此时 k
2
14 .
2
所以,所求直线方程为 14 2y 4 0
解法二: 第一步,分析几何对象几何特征,理解题意,并画出图像。 本问题中,直线 l 与椭圆相交于 A 、 B 。 第二步,进行代数化。
元 素 代 数 化 : 由 已 知 得 e c 2 , 2b 2. 解 得
抛物线上一动点 P 从 A
到 B 运动时,求△ABP
面积的最大值.
以题试法
解:方法一 第一步,几何特征分析,理解题意。
直线与抛物线相交于 A、B 两点, 抛物线上动点 P 从 A 到 B 运动。
第二步,进行代数化。
元素代y数化kx:设2, A(x1, y1), B(x2 , y2 ) ,P(t,-12t2) (-2-2 2<t<-2+2 2) 位置关系代数化:由yx= 2=2-x-2y2 ,得 x2+4x-4=0