V带传动多目标优化设计
机械设计V带传动设计及其计算

α 1↓→Femax↓
a ↑
尺寸↑→工作时
拍击、颤动
初算带长 L0
D γ D L0 2a cos 2 ( π γ) 1 ( π γ) 2 2 2 γ π γ 2a cos ( D1 D2 ) ( D2 D1 ) 2 2 2 γ 1γ cos 1 2 22
1
O1
n1 F1>F0 (紧边)
O2
Ff α2
F' f
工作时
3、带传递的有效工作力Fe a、带两边所受的力F1,F2之差即为有效拉力Fe(从 动轮上看)。
Fe=F1-F2
b、有效拉力Fe由带和轮之间接触弧上摩擦力的总和 Ff承受(接触弧段看)。
Fe=Ff
c、效拉力Fe与功率之间的关系(传递运动功率看)
★ 分类
★ 带的结构、型号和长度
ቤተ መጻሕፍቲ ባይዱ
一、特点和应用
1 、优点
2 、缺点
3、 应用
二、 类 型
1、按传动原理:摩擦和啮合。 2、按带的形状:如下分类
Standard V-belt
3、按传动形式分: 开口传动 交叉传动 半交叉传动 张紧轮传动
见表5-1
三、带的结构、型号和长度
1. 普通V带 2. 平形带 3. 多楔带 4. 同步齿形带
五、承载能力确定
(受打滑和疲劳破坏两种失效形式制约 ) 1. 单根V带在特定条件下,能传递的功率P0
⑴不打滑条件下,带传递的最大载荷:
Femax (F1 qυ 2 )(1 1 1 2 ) ( σ A q υ )( 1 ) 1 μα μα e e
v带的传动的设计准则

v带的传动的设计准则1.合理选择带型以满足要求V带传动的带型有多种,如A、B、C等。
对于不同的传动应用,需要根据其传动功率、转速等参数来选择合适的带型。
一般情况下,选用带宽和带长相对较大的带型,在传动功率相同的情况下,其承载能力更高,能够承受更大的负载。
而选用带宽和带长相对较小的带型,则可以实现较高的传动速度,满足高速传动要求。
2.确定带轮的轮径和材料带轮的轮径和材料也是V带传动设计中非常关键的一步。
带轮的轮径直接影响到传动的速比和功率传递效率。
一般情况下,选用直径较大的带轮可提高传动效率,同时也能减小带的弯曲半径,延长带的使用寿命。
带轮的材料一般选用灰口铸铁、球墨铸铁、钢等。
根据传动的要求和工作环境的不同,可以选择不同的材料。
例如,在高温和潮湿的环境下,应选用不易生锈的钢制带轮。
3.正确的安装和调整安装和调整V带传动时,必须确保带轮的距离和平行度都符合要求。
带轮之间的距离太近或太远都会影响传动效率和带的寿命。
同时,必须保证带的张力适当。
过紧或过松的带都会影响传动效率和寿命。
调整带的张力时,应根据工作负载和传动功率来调整带的张力,以保证传动效率最大化。
4.避免过载和不良工作环境在使用V带传动时,必须避免过载和不良工作环境。
过载会导致带轮和带的磨损加剧,甚至导致带的损坏。
不良的工作环境也会影响V带传动的寿命和效率。
例如,在高温或潮湿的环境下使用,会加速带的老化和失效。
5.定期检查和维护V带传动需要定期检查和维护,以确保其正常工作和延长其寿命。
定期检查带的磨损程度、带轮的磨损程度和轴承的状态等。
如果发现有磨损或损坏,需要及时更换。
同时,对于带轮和轴承需要定期润滑,以保证其正常工作。
总之,V带传动的设计准则包括合理选择带型、确定带轮的轮径和材料、正确的安装和调整、避免过载和不良工作环境以及定期检查和维护。
只有严格遵守这些准则,才能确保V带传动的高效、可靠和安全工作。
汽车机械式变速器变速传动机构可靠性优化设计

汽车机械式变速器变速传动机构可靠性优化设计摘要:目前,随着我国社会不断进步与发展,我国的汽车拥有量呈现出明显的上升趋势。
目前,很多汽车生产厂商,在一定程度上都在为满足人们的日常生活需求与带来更好的驾驶体验而努力。
因此,在随着人们对汽车设计要求不断提高的同时,企业的变速器质量与性能的可靠性备受瞩目,成为诸多汽车设计与制造厂商需要重点关注的内容之一。
汽车的机械式变速器是目前得到诸多好评的变速器,其有着寿命长、稳定性高等优点,是诸多汽车上配备的标准变速器。
但是,为了促进汽车行业更好的进步与发展,在机械式变速器变速传动机构的可靠性方面进行优化设计,更能够提高汽车的变速器使用性能,进而提高汽车的使用性能。
所以,本次主要针对其可靠性进行分析与探究。
关键词:机械式变速器;变速传动机构;可靠性优化汽车的性能优化,在一定程度上离不开汽车的变速器优化,汽车在发展的历史进程中,特别是汽车的主要动力以内燃机为主之后,变速器对于汽车的重要性越发明显,其是确保汽车能够正常使用的关键组成部分,不可缺少。
在实际应用的过程中,变速器能够改变汽车的传动比,能够确保发动机在最有利的范围内为汽车的行驶提供动力,是优化汽车行驶的关键元器件。
本文研究的变速器,之所以能够沿用至今,这与其高效率、高性能、长使用寿命和更强的稳定性有着直接的关系,得到诸多汽车制造厂商与驾驶人员的认可。
但是,在汽车行业的发展中,如何提高机械式变速器在传动性能与减小变速器的体积成为主要的研究内容,是未来汽车主要研究领域之一。
1汽车机械式变速器传动结构的可靠性分析针对汽车机械式变速器传动结构的可靠性分析,在一定程度上需要结合数学建模的方式进行综合研究与探究,其中主要包括了对各个零部件的尺寸、荷载以及制造材料等数据的研究,通过数学建模的方式能够极大程度地提高变速器的设计精准度,是确保变速器设计合理的关键。
因此,下文主要结合数学建模方式对其传动结构的可靠性展开研究。
1.1机械式变速器传动机构可靠度分配首先需要做的就是对其可靠度进行分配,并通过结合约束条件分析的方式对其可靠度进行建模分析。
纯电动汽车传动系统参数匹配及优化

4、跨领域合作:加强汽车、电子、电力等多个领域的合作与交流,共同推动 纯电动汽车传动系统参数匹配及优化的技术创新和发展。通过跨领域合作,可 以充分利用各领域的优势资源和技术成果,实现传动系统性能的全面提升。
参考内容二
随着环保意识的不断提高和电动汽车技术的不断发展,纯电动汽车成为了现代 交通工具的重要选择。而传动系统作为纯电动汽车的关键部分,其性能和效率 直接影响到整个车辆的性能和续航里程。因此,对纯电动汽车传动系统参数进 行优化,可以提高车辆的动力学性能和能源利用效率。本次演示将开展纯电动 汽车传动系统参数优化的仿真研究。
总之,本次演示通过对纯电动汽车传动系统参数优化的仿真研究,找出了最优 的参数组合并分析了其对车辆性能的影响。这一研究对于提高纯电动汽车的动 力学性能和能源利用效率具有重要意义,并为未来纯电动汽车的发展提供了有 益参考。
参考内容三
随着全球对环保和可持续发展的日益,电动汽车(EV)作为一种零排放、低噪 音、高效率的交通工具,在近年来得到了快速发展。其中,纯电动汽车(BEV) 由于其完全依赖电力驱动,具有更高的能源利用效率和环保性能。然而,要实 现纯电动汽车的广泛应用,仍需解决诸多技术难题,其中包括动力传动系统的 匹配与整体优化。本次演示将就这一主题进行深入探讨。
对于未来展望,本次演示认为,纯电动汽车传动系统参数优化的仿真研究仍有 很多工作需要做。首先,需要进一步深入研究不同参数组合下的传动系统性能 表现,以找到更为优秀的参数组合。其次,需要新型材料和制造工艺在纯电动 汽车传动系统中的应用,探讨其对于提高传动系统性能和效率的影响。此外, 还需要考虑不同驾驶工况和路况下的传动系统性能表现,以进一步提高仿真研 究的现实意义。
基于MATLAB的多级齿轮传动多目标可靠性优化设计研究

基于MATLAB的多级齿轮传动多目标可靠性优化设计研究I. 内容概述随着工业自动化的发展,多级齿轮传动系统在各个领域得到了广泛的应用。
然而由于其复杂的结构和工作条件,齿轮传动系统的可靠性一直是设计者关注的重点。
为了提高齿轮传动系统的可靠性,本文提出了一种基于MATLAB的多级齿轮传动多目标可靠性优化设计方法。
首先本文对多级齿轮传动系统的工作原理进行了详细的阐述,包括齿轮啮合、齿面接触、磨损和疲劳等方面的问题。
在此基础上,分析了齿轮传动系统的可靠性评价指标体系,包括寿命、失效率、维修性等关键性能指标。
其次针对多级齿轮传动系统的可靠性优化设计问题,本文提出了一种基于遗传算法和粒子群优化算法的多目标优化设计方法。
通过对比分析不同优化算法的优缺点,最终确定了基于MATLAB的遗传算法作为本研究的主要优化方法。
本文以某型号齿轮传动系统为例,运用所提方法对其进行了多目标可靠性优化设计。
实验结果表明,所提方法能够有效地提高齿轮传动系统的可靠性指标,为实际工程应用提供了有力的理论支持。
A. 研究背景和意义随着科学技术的不断发展,齿轮传动技术在各个领域的应用越来越广泛。
齿轮传动具有传动效率高、承载能力大、传动精度高等优点,因此在工业生产中得到了广泛的应用。
然而齿轮传动系统的可靠性一直是制约其性能的重要因素,为了提高齿轮传动系统的可靠性,降低故障率,保证设备的正常运行,需要对齿轮传动系统进行多目标可靠性优化设计。
目前基于数值计算的可靠性优化设计方法已经成为齿轮传动系统研究的主要手段。
MATLAB作为一种广泛应用于工程领域的数值计算软件,具有强大的数学运算能力和图形化编程功能,为齿轮传动系统的可靠性优化设计提供了有力的支持。
因此基于MATLAB的多级齿轮传动多目标可靠性优化设计研究具有重要的理论和实际意义。
首先研究基于MATLAB的多级齿轮传动多目标可靠性优化设计方法有助于提高齿轮传动系统的可靠性。
通过合理的参数设置和优化策略选择,可以有效地提高齿轮传动系统的可靠性指标,降低故障率,延长设备使用寿命。
基于粒子群算法的汽车传动系参数多目标优化

基于粒子群算法的汽车传动系参数多目标优化钱娟;王东方;缪小东【摘要】对单轴并联式混合动力汽车进行传动系多目标参数优化分析,通过ADVISOR仿真软件建立整车模型,选取加速时间和百公里油耗为优化目标,传动系主减速器速比和变速器各档速比为优化变量,动力性能相关要求为约束条件,采用粒子群算法(PSO)结合ADVISOR软件进行优化,并对优化结果进行对比分析.仿真实例表明,优化后可以有效地解决传动系参数优化问题,对动力系统其他部件的参数优化也有一定的指导意义.【期刊名称】《机械制造与自动化》【年(卷),期】2018(047)003【总页数】3页(P168-170)【关键词】混合动力汽车;传动系;参数优化;粒子群算法【作者】钱娟;王东方;缪小东【作者单位】南京工业大学机械与动力工程学院,江苏南京211800;南京工业大学机械与动力工程学院,江苏南京211800;南京工业大学机械与动力工程学院,江苏南京211800【正文语种】中文【中图分类】U462.30引言混合动力汽车作为纯电动汽车突破瓶颈技术问题之前现实可行的新能源车型,能够很好缓解能源短缺和环境污染问题,但传动系参数匹配和控制策略作为影响混合动力汽车性能的两个关键技术,一直是研究的重点。
现从传动系的参数入手,利用优化算法寻找传动系速比最优解,通过改进这些参数获得更佳的整车性能。
由于混合动力汽车的动力参数比较复杂,普通的优化算法已经满足不了需求[1]。
目前在汽车领域的优化工作中应用比较多的智能优化算法主要有:遗传算法、模拟退火算法、禁忌搜索算法、粒子群优化算法、蚁群算法等[2-3]。
粒子群算法在搜索全局最优解的过程中不需要像遗传算法那样必须进行交叉和变异操作,算法规则简单容易实现,在实际应用过程中没有许多参数的调节,收敛速度快,所以对于解决带约束非线性多目标参数优化问题有比较好的效果。
1 混合动力汽车系统设计与建模1.1 动力系统设计混合动力汽车以国内某款紧凑级轿车为基础车型,考虑到原车型结构特点和技术难度,最终采用并联式混合动力电驱动系的单轴结构形式进行布置,其特点是发动机与电机同轴,电机的转子起着转矩耦合器的作用,运作时发动机和电机拥有相同的转速,具体的结构形式如图1所示。
多目标优化设计方法PPT39页

间接法
线性加权和法、主要目标函数法、理想点法、 平方和加权法、子目标乘除法、功效系数法
将多目标优化问题转化为一系列单目标优化问题
分层序列法、宽容分层序列法
7.2 统一目标函数法(综合目标法)
一、基本思想 统一目标函数法就是设法将各分目标函数
f1(X),f2(X),…,fl(X)统一到一个新构成的总的目标函数 f(X), 这样就把原来的多目标问题转化为一个具有统— 目标函数的单目标问题来求解.
7.1 概述
一、多目标优化及数学模型 单目标最优化方法 多目标最优化方法
多目标优化的实例: 物美价廉
7.1 概述(续)
设计车床齿轮变速箱时,要求: 各齿轮体积总和 f1(X ) 尽可能小
降低成本
各传动轴间的中心距总和 f2 (X ) 尽可能小 使变速箱结构紧凑。
合理选用材料
使总成本 f3 (X ) 尽可能小。
hj ( X ) 0, ( j 1, 2,..., k)
向量形式的目标函数
设计变量应满足的所 有约束条件
7.1 概述(续)
二、几个基本概念
1、最优解 设 X* D (D为可行域), 若对于任意 X D ,恒使
fi ( X*) fi ( X )(i 1, 2,..., m)
成立,则称X*为多目标优 化问题的绝对最优解,简称最优解。
对于多目标优化问题,任何两个解不一定能比较其 优劣;
多目标优化问题得到的可能只是非劣解(有效解), 而非劣解往往不止一个,需要在多个非劣解中找出一个最 优解。
7.1 概述(续)
三、多目标优化问题的特点及解法(续) 2、解法:
直接法: 直接求出非劣解,然后再选择较好的解
将多目标优化问题转化为单目标优化问题
V带传动设计说明书

V带传动设计说明书V带传动设计说明书专业:化学⼯程与⼯艺设计者:张保贵1066115327王煜炎1066115406王贵发1066115337楼凯1066115338马艳芳1066155141 设计时间: 2012-11-3⽬录V带传动设计.............................................................................................. - 3 -⼀、带传动得设计准则 ............................................................................ - 3 -⼆、V带传动的设计内容......................................................................... - 3 -三、普通V带设计的⼀般步骤: ........................................................... - 3 -四、带传动设计计算 ................................................................................ - 3 -1.已知条件和设计内容 ....................................................................... - 3 -2.设计步骤和⽅法 ............................................................................... - 3 -2.1确定设计功率 .......................................................................... - 3 -2.2选择v带的带带型 .................................................................. - 5 -2.3 确定带轮直径及验算带速 ................................................ - 6 -2.4 计算中⼼距a及其变动范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1问题提出
设计带式输送机传动装置上的普通V带传动,已知电动机额定功率P=4Kw,转速 =1440r/min,传动比i=3,采用A型V带,每天工作不超过10小时,设计带根数尽量少,带轮直径和中心距尽量小的方案。
2 问题分析
一般优化问题只有一个目标函数,但在工程实际问题中往往期望几项设计指标都同时达到最优,如本例要求带根数尽量少,带轮直径和中心距尽量小这3项设计最优化。在一组约束下,多个不同的目标函数进行优化设计,即称为多目标优化设计。
1 1
5
xopt =
1.0e+003 *
0.1000
1.2269
fopt =
100.0000 281.5295 3.5957
5 结果优化处理
(1)带轮直径优化
图 A型V带轮的基准直径系列
由上文算得,小轮直径f(1)=100.0000mm,根据图 A型V带轮的基准直径系列所示,f(1)优化结果取值100mm。
0.03
因此,中心距优化结果取300mm。
(3)带根数优化
由上文算得,带根数初步f(3)=3.5957,优化结果取得4。
本人学习课程一个学期以来,获益匪浅,特别是matlAB的函数处理模块,这将对本人以后的读研生涯有着极大潜在的帮助。谢谢老师!
建议:
(1)选择一本更加经典的教材。教材的内容和深度应该有助于将来在相关领域学习可以有更大参考价值和留存价值,而这本教材相对简单,内容少,上课完毕后很多同学直接把书压箱底,根本没有翻过,没有研究的兴趣。
(4)可涉及仿真Simulink教学。90后学生学习软件,有一个共同点就是喜欢认识和探究软件的难点和高级的地方,喜欢自主操控软件、驾驭软件。老师可在这方面拓展一下,让学生认识一下matlAB软件的高级内容,吸引我们去探究。
(5)可结合最新相关知识和例子以使课堂气氛更加生动。老师可在教学过程结合最新科研成果、例子、新闻来触发90后学生的新鲜感。
x=fgoalattain(F,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon,options,P1,P2)
[x,fval]=fgoalattain(…)
[x,fval,attainfactor]=fgoalattain(…)
[x,fval,attainfactor,exitflag,output]=fgoalattain(…)
P=4;i=3;KA=1.1;
f(1)=x(1); %f1小带轮基准直径
a1=x(2)/4-pi*x(1)*(i+1)/8;
a2=x(1)^2*(i-1)^2/8;
a=a1+sqrt(a1^2-a2);
f(2)=a; %f2中心距
P0=0.02424*x(1)-1.112879; %单根带额定功率
DP0=0.17; %查表功率增量
function[g,ceq]=VDCD_3mb_YS(x)
i=3;n1=1440;
g(1)=100-x(1);%小带轮直径约束
g(2)=pi*x(1)*n1/6e4-25;%带速约束
a1=x(2)/4-pi*x(1)*(i+1)/8;
a2=x(1)^2*(i-1)^2/8;
a=a1+sqrt(a1^2-a2);
A x≤b
Aeq x=beq
lb≤x≤ub
其中,x,weight,goal,b,beq,lb和ub为向量,A和Aeq为矩阵,c(x),ceq(x)和
F(x)为函数,调用格式:
x=fgoalattain(F,x0,goal,weight)
x=fgoalattain(F,x0,goal,weight,A,b)
根据资料显示有如下几种求解方法:统一目标法、主目标法、分层序列法、极大—极小法。本文应用统一目标法中的线性加权法,其中统一目标法ቤተ መጻሕፍቲ ባይዱ把多目标问题转化为单目标问题求解。
线性加权法的基本思路是把多目标函数 依其量级和在设计中的重要程度分配其相应的加权因子 , 。且
然后将q个分目标函数统一成一个目标函数,即
[x,fval,attainfactor,exitflag,output,lambda]=fgoalattain(…)
说明:F为目标函数;x0为初值;goal为F达到的指定目标;weight为参数
指定权重;A、b为线性不等式约束的矩阵与向量;Aeq、beq为等式约束的矩阵与向量;lb、ub为变量x的上、下界向量;nonlcon为定义非线性不等式约束函数c(x)和等式约束函数ceq(x);options中设置优化参数。
(2)目标函数
依上述分析可知目标函数包括三个分目标:
a.小带轮直径 min (X)= =
b.中心距 min (X)=a= +
其中, = /4- (i+1) /8, =(i-1 /8,传动比i=3 。
c.带的根数 min (X)=z= P/( + )
其中,
令
经过查表,可知A型带对应的K1,K2,K3分别是0.449,19.62, 。
alpha=180-180*x(1)*(i-1)/pi/a; %小带轮包角
Kalp=alpha/(0.549636*alpha+80.396114); %包角系数
KL=0.20639*x(2)^0.211806; %长度系数
f(3)=KA*P/(P0+DP0)/Kalp/KL; %V带根数
4.3
%设置优化参数
附:
x=[1:28];
y1=[75 80 85 90 95 100 106 112 118 125 132 140 150 160 180 200 224 250280 315 355 400 450 500 560 630 710 800];
plot(x,y1,':ok')
title('A型V带轮的基准直径系列')
其中加权因子 的选取办法如下:如果目标函数值的变动范围为 (j=1,2,3,…,q) ,则 为各目标的容限,取加权因子为 。
故求得单目标函数
。
在Matlab的优化工具箱中,fgoalattain函数用于解决此类问题。
其数学模型形式为:
min γ
F(x)-weight ·γ≤goal
c(x) ≤0
ceq(x)=0
KA为工况系数。
(3)约束条件
根据机械设计手册中带轮设计计算办法,可列得如下:
小带轮直径不小于推荐的A型带轮最小直径 ,即 0 ;
带速不超过最大带速 ,即
小带轮包角大于 ,即
中心距大于 ,即
(4)确定分目标的权重
小带轮基准直径在80—100mm之间,中心距在320—400mm之间,带的根数为1—4。
goal=[75,280,2]; %分目标
w=[10^-2,40^-2,1.5^-2]; %分目标加权系数
[xopt,fopt]=fgoalattain(@VDCD_3mb_MB,x0,goal,w,[],[],[],[],lb,ub,@VDCD_3mb_YS)
4.2
function f=VDCD_3mb_MB(x)
g(3)=120-180*(1-x(1)*(i-1)/a/pi);%小带轮包角约束
g(4)=0.7*x(1)*(i+1)-a;%中心距约束
ceq=[];
4.4 运行结果
Active inequalities (to within options.TolCon = 1e-006):
lower upper ineqlin ineqnonlin
x=fgoalattain(F,x0,goal,weight,A,b,Aeq,beq)
x=fgoalattain(F,x0,goal,weight,A,b,Aeq,beq,lb,ub)
x=fgoalattain(F,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon)
x=fgoalattain(F,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon,options)
其数学模型的一般形式如下:(参考《机械零件与系统优化设计建模及应用》,周延美 蓝悦明编著,化学工业出版社)
s.t j=1,2,…,m
k=1,2,…,l
一般情况下,各目标函数 所表达的指标往往是相互矛盾的,在优化设计过程中相互影响,相互牵制。当目标函数处于冲突状态时,不存在最优解使所有目标函数同时达到最优,于是我们寻求有效解。
(2)基础知识部分可在1~6周教完。原因:据我观察,没有强制的课程作业,本班有99%的同学不会在课下时候练习操作matlAB,都是上课时候去听老师讲,同时老师讲的很详细但速度慢。因此可提快速度,相应布置课堂作业让我们课下练习以巩固知识,大可不必担心我们的学习能力。
(3)7~11周建议课程教学内容与本专业联系更加密切,实例教学。对于理工科的学生,学习matlAB是为后续课程搭建好学习和实验研究的平台,可在课程教学过程中多引入专业例子来训练,可加深我们对matlAB的认识度。
xlabel('序号')
ylabel('基准直径 ')
(2)中心距优化
由上文算得,中心距初步f(2)=281.5295mm。
首先计算带长
其中
算得 。根据《机械设计手册》优化带长基准长度为
1250mm
由于带轮的制造误差、带长误差、带的弹性以及因带的松弛而产生的补充张紧的需要常给出中心距的变动范围
0.015
4 MATLAB程序编制
4.1 主函数
% V带传动多目标优化设计
P=4;i=3;n1=1440;KA=1.1; %已知条件
x0=[100;1250]; %初始点(小带轮直径,V带基准长度)