求任意五个数字所组成的不同两位数和三位数,使得乘积最大或最小的解决方法
学而思五年级秋季超2班学案-第11讲_数字迷综合

二、例题精讲
例1. 在一个带有余数的除法算式中,商比除数大 2,在被除数、除数、商和余数中,最大数与最小数之 差是 1023.请问:此算式中的 4 个数之和最大可能是多少? 【解析】一个除法算式中,如果商比除数大,那么被除数、除数、商和余数中最小的肯定是余数。 那么 1023 是被除数与余数的差。 那么 1023 应该刚好是除数与商的乘积。 1023 3 11 31 31 33 , 所以,除数是 31,商是 33. 要使被除数、 除数、 商和余数的和最大, 那么要使余数最大, 余数最大是 30, 那么, 四数和最大为:
-1-
第 9 级下·超常—超常 123
学理科到学而思 例3.
第十一讲 数字谜综合
试将 1、2、3、4、5、6、7 分别填入下面的方框中,每个数字只用一次:□□□(三位数) ,□□ □(三位数) ,□(一位数) ,使得这三个数中任意两个都互质。已知其中一个三位数已填好,它是 714,求另外两个数。 【解析】 714 2 3 7 17 ,现在可以选的数字有:2,3,5,6。先考虑一位数。由于三个数两两 互质,那么一位数只能是 5。剩下 2,3,6 组成一个三位数,那么个位只能是 3。 623 7 89 ,是 7 的倍数,因此三位数只能是 263. 因此,另两个数是 263,5。
a 0.3 A 3 B 。请问: a 是多少? 222
3 A3B 3 a 3 A3B 3 45a 。 9990 222
当 a 为偶数时, B 3 45 | 3 A30 A=3 ,此时 a 74 。此时
74 不是最简分数,与题意不符。 222
当 a 为奇数时, B 8 45 | 3 A35 A=7 ,此时 a 83 ,符合题意。 因此 a 83 。
小学奥数数论与材料阅读

一、数论基础知识一、因数与倍数1、因数与倍数(1)定义:定义1:若整数a能够被b整除,a叫做b的倍数,b就叫做a的因数。
定义2:如果非零自然数a、b、c之间存在a×b=c,或者c÷a=b,那么称a、b是c的因数,c是a、b的倍数。
注意:倍数与因数是相互依存关系,缺一不可。
(a、b是因数,c是倍数)一个数的因数个数是有限的,最小的因数是1,最大的因数是它本身。
一个数的倍数个数是无限的,最小的倍数是它本身,没有最大的倍数。
(2)一个数的因数的特点:①最小的因数是1,第二小的因数一定是质数;②最大的因数是它本身,第二大的因数是:原数÷第二小的因数(3)完全平方数的因数特征:①完全平方数的因数个数是奇数个,有奇数个因数的数是完全平方数。
②完全平方数的质因数出现次数都是偶数次;③1000以内的完全平方数的个数是31个,2000以内的完全平方数的个数是44个,3000以内的完全平方数的个数是54个。
(312=961,442=1936,542=2916)2、数的整除(数的倍数)(1)定义:定义1:一般地,三个整数a、b、c,且b≠0,如有a÷b=c,则我们就说,a能被b整除,或b能整除a,或a能整除以b。
定义2:如果一个整数a,除以一个整数b(b≠0),得到一个整数商c,而且没有余数,那么叫做a能被b整除或b能整除a,记作b|a。
(a≥b)(2)整除的性质:如果a、b能被c整除,那么(a+b)与(a-b)也能被c整除。
如果a能被b整除,c是整数,那么a×c也能被b整除。
如果a能被b整除,b又能被c整除,那么a也能被c整除。
如果a能被b、c整除,那么a也能被b和c的最小公倍数整除。
(3)一些常见数的整除特征(倍数特征):①末位判别法2、5的倍数特征:末位上的数字是2、5的倍数。
4、25的倍数特征:末两位上的数字是4、25的倍数。
8、125的倍数特征:末三位上的数字是8、125的倍数。
第一讲 小数巧算二

contents 目录第一讲 小数巧算二 01页第二讲 生活中的小数 07页第三讲 除法我最快 13页第四讲 因数与倍数 21页第五讲 质数与合数 29页第六讲 加乘原理进阶 37页第七讲 期中复习第八讲 多边形的面积三 45页第九讲 公因数与公倍数 53页第十讲 分数比较大小 63页第十一讲 乔治的火车 71页第十二讲 割补法巧算面积一79页第十三讲 割补法巧算面积二87页第十四讲 鲨鱼的牙齿 93页第十五讲 期末复习第一讲 小数巧算二1、乘法分配律2、提取公因数知识精讲小数的四则混合运算和整数四则混合运算的顺序是相同的,计算时要注意先算乘除法,后算加减法,有括号的要先算括号内的,在小数的四则混合运算中,乘法分配律是常见的一种巧算方法.例如:()2.540.4 2.54 2.50.410111⨯+=⨯+⨯=+=.例1 计算:(1)1.25×8.88; (2)2.5×4.4.练1 计算:(1)2.5×4.88; (2)12.5×0.82.例2 计算:(1)7.6×10.1; (2)4.75×9.9.练2 计算:(1)2.5×1.02; (2)12.5×9.8.知识精讲当算式中含有共同的因数时,可以逆用乘法分配律,把公因数提取出来,这就是提取公因数.在小数计算中,同样也可以通过提取公因数来简化计算.例如:2.7×4.6+2.7×5.4=2.7×(4.6+5.4)=2.7×10=27.例3 计算:2.4×6.5+2.4×4.3+7.6×10.8.练3 计算:2.2×3.5+2.2×2.1+5.6×7.8.例4 计算:(1)3.6×9.9+0.36; (2)0.47×0.46-4.7×0.045.练4 计算:(1)8.4×10.1-0.84; (2)20.18×5.7+201.8×0.43.挑战极限计算:19.94×20.17-19.93×20.18.第二讲生活中的小数错中求解知识精讲错中求解的这类题型一般是采用倒推的方法,从错误的结果入手分析造成错误的主要原因. 在加减法中,利用和与差的变化规律反求加数或者被减数、减数;在乘除法中,利用积与商的变化规律反求出因数或者被除数、除数.例1 小高在计算一道小数加法计算题时,把一个加数的十分位上的6看成了9,另一个加数百分位上的9看成了6,那么错误的答案和正确的答案之间相差多少?练1 萱萱在计算一道小数加法计算题时,把一个加数的百分位上的2看成了5,另一个加数十分位上的1看成了7,那么错误的答案和正确的答案之间相差多少?例2 亮亮在计算一道小数减法计算题的时候,把被减数的十分位上的3看成了5,把减数百分位上的1看成7,那么错误的答案和正确的答案之间相差多少?练2 佳佳在计算一道小数减法计算题的时候,把被减数百分位上的9看成了6,把减数十分位的0看成8,那么错误的答案和正确的答案之间相差多少?例3 墨莫在计算小数乘法算式的时候,把其中的一个因数1.7看成是17,计算的结果比实际的结果大19.89,那么正确的乘积应该是多少?练3 萌萌在计算一道小数乘法算式的时候,把其中的一个因数2.3看成是23,计算的结果比实际的结果大31.05,那么正确的乘积应该是多少?例4 阿呆在写一个两位小数时,不小心把小数点漏了,结果得到的数比原数大72.27,那么这个两位小数是多少?练4 阿瓜读一个一位小数时,不小心漏读了小数点,结果比原来多6.3,那么原来的小数是多少?挑战极限买3支铅笔和2支钢笔共用11.45元,如果买2支铅笔和3支钢笔则共用16.8元,那么买1支铅笔和1支钢笔各用多少元?第三讲除法我最快1、整除的概念和特殊数的整除特性2、数字求和法3、多个数的整除问题知识精讲如果整数a除以整数b(0b ),除得的商是整数且没有余数,我们就说a能被b整除,也可以说b能整除a,记作b a.如果除得的结果有余数,我们就说a不能被b整除,也可以说6不能整除a.如果自然数a和b都能被自然数c整除,那么,它们的和“a+b”或差“a- b”也能被c 整除. 例如:60能被5整除,40能被5整除,它们的和60+40=100及差60-40=20也能被5整除.知识精讲(1)能被2,5整除的数的特性:个位数字能被2或5整除;(2)能被4,25整除的数的特性:末两位能被4或25整除;(3)能被8,125整除的数的特性:末三位能被8或125整除.例1 (1)判断下面6个数的整除性:23480,34375,97500,5880,7538,6512,哪些数能被4整除?哪些数能被125整除?(2)爸爸买了一张写字桌,发票上破了一个洞,上面只剩下“148”,其中方框表示破了的洞. 爸爸记得这张写字桌的价格是整数元,并且是8的倍数,请问:这张写字桌的价格可能是多少元呢?练1 (1)判断下面6个数的整除性:3415,7560,3400,45235,5886,7300,哪些数能被8整除?哪些数能被25整除?(2)在370的方框内填入数字,使它能被125整除,那么方框内可以填入的数字是多少? 知识精讲能被3,9整除的数的特性:各位数字之和能被3或9整除.以一个三位数为例说明一下:一个三位数ABC ,可以拆成()10010999ABC A B C A B A B C =++=++++,因为“999A B +”是3的倍数,所以只要让“()A B C ++”是3的倍数就可以,故得出结论:如果一个数的各位数字之和能被3或9整除,那么这个数就能被3或9整除.对于一个数位特别多的数来说,用数字求和法比较麻烦,可以直接用“弃三法”或“弃九法”来计算,即可以先抛弃数字3或9的倍数,然后再把剩余的数字求和.例2 (1)判断下面6个数的整除性:87563,31209,64653,403659,198954,1112884,些数能被3整除?哪些数能被9整除?(2)173是一个四位数,张老师说:“我在方框内填入1个数字,使得这个四位数能被9整除.”请问:张老师在方框中填入的数字可能是多少?练2 (1)判断下面6个数的整除性:3124,31206,382113,527689101,55554444,12030456,哪些数能被3整除?哪些数能被9整除?(2)在52后面添上一个一位数,使得组成的三位数是3的倍数. 请问:添上的这个一位数可能是多少?知识精讲我们已经学习了如何利用“整除特征”解决单个数的整除问题. 如果涉及多个数的整除问题,我们应该先单独考虑,再找到能同时满足题意的答案,例如:一个数既能被5整除,又能被3整除,可先看满足被5整除的数的特性,确定尾数,再看能被3整除的数的特性.若一个数能被45整除,由45=5×9,能被45整除的数,也能被5和9整除,那么只需考虑5和9的整除特征即可.注意虽然45=3×15,但是在考虑能否被45整除时,不能只考虑被3和15整除,因为15同时满足既是5的倍数,又是3的倍数,但是15不是45的倍数,所以把一个大数分拆成两个数时,这两个数一定要互质.例3 一个六位数134ABC 能同时被2、3、5整除. 请问:这个六位数最大是多少? 练3 一个五位数55ABC 能同时被2、3、5整除. 请问:这个五位数最大是多少?例4 王厂长给72名工人发完工资后,将总钱数记在一张纸上. 但是记账的那张纸破了两个洞,上面只剩下“345”,其中方框表示破了的洞. 王厂长记得每名工人的工资都一样,并且都是整数元. 请问:这72名工人的总工资有可能是多少元呢?练4 五位数397能被15整除,请问:这个五位数最大是多少?挑战极限判断1234567891011……484950这个多位数能否被9整除?第四讲因数与倍数1、因数与倍数的定义2、因数个数定理知识精讲一、因数与倍数的定义b b≠,如果a b,我们就称a是b的因数,b是a的因数和倍数的定义:对整数a和()0倍数.在算式24=4×6中,24是4和6的倍数,4和6是24的因数,根据定义,我们很容易找到一个数的所有因数,例如对12:因为12=1×12=2×6=3×4,可知12可以被1、2、3、4、6、12整除,那么它的因数有1、2、3、4、6、12,共6个.找一个数的因数的方法,可以列乘法算式,从1开始一对一对地找. 一个数的因数个数是有限个,最小的因数是1,最大的因数是这个数本身.找一个数的倍数的方法,用这个数和任意一个自然数(不为0)相乘,所得的乘积就是这个数的倍数. 一个数的倍数个数是无限个,最小的倍数就是这个数本身.从上面“12”的分拆可以看出,因数具有“成对出现....”的特征,也就是:最大因数对应最小因数、第二大因数对应第二小因数等. 所以在写一个数的所有因数时,可以逐对写出. 另外如果计算较大因数不太方便,可以转而计算与其成对的较小因数.例1 松鼠妈妈摘了36颗松子,现在要把这些松子平均分堆(至少分成2堆),要求每堆不能少于4颗. 请问:共有多少种不同的分法?练1 李师傅要把一根长40米的木材平均锯成小段(至少据成2段),要求每段至少长3米.请问:共有多少种不同的锯法?例2 334455的第二大因数是多少?第三大因数是多少?练2 345678的第二大因数是多少?第三大因数是多少?知识精讲二、找因数个数通过枚举的方法可以逐对写出一个数的所有因数,从而算出它的因数个数. 但是对很大的数,例如20120000,用枚举来计算个数便很麻烦,所以我们要采用新的方法计算.以72为例,首先采用校举可知72共12个因数,分别为1,72;2、36;3、24;4、18;6、12;8、9. 因为72的因数能整除72,而72的所有质因数也都能整除72,所以对72进行质因数分解,有:32=⨯,那么72的所有因数应当由若干个2与若干个3构成. 显7223然,2有0个到3个共4种选择;3有0个到2个共3种选择,根据乘法原理,72的因数共4×3=12个,见下表(注意00、):2131==从72的这个例子,我们可以总结出计算因数个数的一个简单做法:因数个数:等于质因数的指数加1再相乘.例:2357a b c M =⨯⨯⨯,M 的因数个数为:(1)(1)(1)(11)a b c +⨯+⨯+⨯+.若一个数是质数,那么它只有两个因数,就是1与自身.一个数的因数具有“可配对”的特点,在练习时大家可以发现,平方数在进行配对时会出现两个重复的数,所以平方数有奇数个因数,根据上面关于因数个数的知识我们可以知道,有奇数个因数的数一定是平方数,有偶数个因数的数一定不是平方数............................... 例3 下列各数分别有多少个因数?(1)23; (2)64; (3)75; (4)225.练3 下列各数分别有多少个因数?(1)18; (2)47; (3)243; (4)196.例4 在不超过800的正整数中,有多少个数有奇数个因数?有多少个数有偶数个因数? 练4 在不超过400的正整数中,有多少个数有奇数个因数?有多少个数有偶数个因数? 挑战极限3600共有多少个因数?其中有多少个是3的倍数?有多少个是4的倍数?有多少个不是6的倍数?第五讲 质数与合数1、质数与合数的定义2、分解质因数知识精讲一、质数与合数的定义什么是质数?每一个数都能写成若干个数相乘的形式,考虑到任何一个数都能写成若干个1乘它本身的形式,所以不考虑1作为乘数的情况:6=2×3,8=2×4=2×2×2,12=2×6=3×4=2×2×3……这些数都能拆成若干个不为1的数相乘的形式,我们把这样的数称为合数,而像2,3,7……这些不能拆成若干个不为1的数相乘的形式的数,我们称之为质数. 如果说得形象一点,质数就是“拆不开”的数,合数就是拆得开的数.严格说来,质数就是只能被1和自身整除的数;合数是除了1和它本身之外,还能被其它数整除的数. 注意,1既不是质数也不是合数.例1 (1)自然数N 是一个两位数,它是一个质数,而且N 的个位数字与十位数字相差2,这样的自然数有哪些?(请全部写出)(2)自然数N 是一个两位数,它是一个质数,而且N 的个位数字与十位数字都是质数,这样的自然数有哪些?(请全部写出)练1 (1)有这样的两位质数,个位和十位交换之后还是质数,这样的质数有哪些?(请全部写出)(2)用数字2、3和5,可以得到不同的一位数、两位数和三位数,这些数中质数有哪些?(请全部写出)例2 (1)两个不同的质数的和是21,那么这两个质数可能是多少?(请全部写出)(2)三个互不相同的质数的和是22,那么这三个质数的乘积可能是多少?(请全部写出) 练2 (1)两个不同的质数的和是28,那么这两个质数的乘积可能是多少?(请全部写出)(2)三个互不相同的质数的和是24,那么这三个质数的乘积可能是多少?(请全部写出) 知识精讲二、分解质因数我们知道了质数与合数的概念,每个合数都可以写成几个质数相乘的形式,比如30=2×3×5. 其中质数2、3、5,我们称之为30的质因数,那么这个分拆的过程就叫做分解质因数. 同学们请注意:分解式应该把质因数按从小到大的顺序写好,每个数分解质因数的形式是唯一的.我们一般使用短除法来分解质因数. 如下图所示,我们将30分解质因数,在计算的过程中要善用各种特殊数的整除特性.100在分解质因数时可以写成:22=⨯;280在分解质因数时可以写成100253=⨯⨯. 这种写法更简洁更方便,其中位于质因数右上角,表示质因数个数的数叫作280257指数,如:这里280的分解式中5和7的指数都是1,写的时候可以省略.例3 请把下面的数分解质因数:(1)100;(2)88;(3)75;(4)360.练3 请把下面的数分解质因数:(1)40;(2)63;(3)175;(4)150.例4 甲、乙、丙三人的年龄乘积为84,其中甲、乙的年龄和正好等于丙的年龄,且甲比乙大. 请问:这三人的年龄分别是多少岁?练4 大毛、二毛、三毛这三人去图书馆买书,已知他们买书的本数刚好是3个相邻自然数,且乘积是210. 请问:三人共买了多少本书?挑战极限甲、乙两人的年龄和为一个两位质数,这个数的个位数字与十位数字的和是13,甲比乙大13岁,那么乙今年多大?第六讲加乘原理进阶1、标数法2、染色法知识精讲如果完成一件事有几类方式,在每一类方式中又有不同的方法,那么把每类的方法数相加就得到所有的方法数,这就是加法原理. 如果完成一件事分为几个步骤,在每一个步骤中又有不同的方法,那么把每步的方法数相乘就得到所有的方法数,这就是乘法原理.对于加乘原理,要深刻理解它的基本思想和基本原则.加法原理又叫分类计数原理,在分类时要注意不重不漏. 可以用树形图来帮助理解加法原理,树形图的每一次分叉,就是在分类,要计算总的方法数,就是把每一个分枝下的方法数加起来,这便是加法原理;树形图虽然有助于我们解决加法原理问题,但是有时候树形图过于复杂,可操作性差,此时,我们就把树形图加以简化,保留其加法原理核心,用数字来表示其各个分支,我们称之为标数法,标数法是加法原理的重要运用,有利于帮助我们解决较为复杂的加法原理问题.例1 如图所示,鑫鑫想从A地去B地玩,那么有多少条最短路线?练1 如图所示,墨莫要从A地飞到B地,那么有多少条最短路线可以选择?例2 在如图的街道示意图中,只能沿着格线前进,C处因施工不能通行,那么从A到B的最短路线有多少条?练2 “五一”长假就要到了,小新和爸爸决定去动物园玩. 如果A点因为施工无法通行,那么聪明的小朋友,你能找出几条从家到动物园的最短路线呢?知识精讲乘法原理又叫分步计数原理,在分步时要注意“前不影响后”. 染色问题是应用乘法原理最常见的一类题型,染色的时候,要尽量避免“隔”着染,一定不要“跳”着染,而且,第一步要尽量去染“接触最多”的那一部分,这样,才能够使得后面的染色过程尽量避开“前影响后”.例3 如图,用四种颜色对四个部分进行染色,要求相邻部分不同色,那么有多少种不同的染色方法?练3 如果用四种颜色对如图所示的四个区域进行染色,要求相邻部分不同色,那么有多少种不同的染色方法?例4 如图,把A、B、C,D、E这五部分用4种不同的颜色染色,每部分只染一种颜色且相邻的部分不能使用同一种颜色. 请问:这幅图共有多少种不同的染色方法?练4 用3种颜色去涂如图所示的蝴蝶的5个区域,要求每相邻两个区域不同色,那么一共有多少种涂法?挑战极限用四种颜色对如图所示的区域进行染色,要求有线段连接的两个圆圈不同色,那么共有多少种不同的染法?第八讲多边形的面积三1、三角形反求底高问题2、梯形底高反求问题3、特殊图形的面积求法知识精讲回顾基本直线形的面积公式:正方形的面积=边长×边长;长方形的面积=长×宽;平行四边形的面积=底×高;三角形的面积=底×高÷2;梯形的面积=(上底+下底)×高÷2.在三角形中:(1)反求高:高=三角形面积×2÷底;(2)反求底:底=三角形面积×2÷高.这种反求的方法,在几何问题中是经常会遇到的.需要注意的是,反求三角形的底或高时,切记首先三角形面积要“×2”.例1 如图,在平行四边形ABCD中,三角形BEF的面积为44平方厘米,BF长为11厘米,FC长为3厘米. 请问:平行四边形ABCD的面积是多少平方厘米?练1 如图,直角梯形ABCD的上底是6厘米,下底是10厘米,三角形ACD的面积是21平方厘米. 请问:梯形ABCD的面积是多少平方厘米?知识精讲在梯形中:(1)反求高:高=梯形的面积×2÷(上底+下底);(2)反求上底:上底=梯形的面积×2÷高-下底;(3)反求下底:下底=梯形的面积×2÷高-上底.需要注意的是,反求梯形的底或高时,切记首先梯形面积要“×2..”.例2 如图,梯形ABCD的上底是3厘米,下底是13厘米,梯形ABCD的面积是48平方厘米. 请问:三角形ABE的面积是多少平方厘米?练2 如图,直角梯形ABCD的高是6厘米,下底是12厘米,梯形ABCD的面积是51平方厘米. 请问:三角形ABE的面积是多少平方厘米?知识精讲如果只知道正方形的对角线长,不知道边长,该如何求出正方形的面积呢?如下图,我们把正方形沿对角线剪成两个一样的等腰直角三角形,再拼接成一个大的等腰直角三角形,总面积没有发生改变,由此可以得出正方形面积公式:正方形面积=对角线的平方÷2.类似地,只知道等腰直角三角形的斜边长,不知道直角边长,也能求出等腰直角三角形的面积:等腰直角三角形的面积=斜边的平方÷4.从图中我们也可以看出,等腰直角三角形斜边上的高等于斜边的一半,而且斜边上的高还把等腰直角三角形分成了两个一模一样的小等腰直角三角形.例3 两个等腰直角三角形如图所示摆放,恰好拼成一个直角梯形,已知较小的等腰直角三角形斜边长为8厘米. 请问:这个直角梯形的面积是多少平方厘米?练3 如图所示是一个由正方形ABCD和等腰直角三角形BCE组成的梯形,BD长4厘米. 请问:这个梯形的面积是多少平方厘米?例4 四个等腰直角三角形拼成如图所示的平面图形,已知最小的等腰直角三角形斜边长为2厘米. 请问:该图形的面积是多少平方厘米?练4 三个等腰直角三角形拼成如图所示的平面图形,已知最小的等腰直角三角形斜边长为4厘米. 请问:该图形的面积是多少平方厘米?挑战极限如图,梯形ABCD 的上底AD 长5厘米,下底BC 长12厘米,腰CD 的长为8厘米. 过B 向CD 作出的垂线BE 的长为9厘米,那么梯形ABCD 的面积是多少平方厘米?第九讲 公因数与公倍数 1、短除法 2、分解质因数3、公因数与公倍数的应用 知识精讲一、短除法公因数就是几个数公共的因数,其中最大的一个称为最大公因数;公倍数就是几个数公共的倍数,其中最小的一个称为最小公倍数. 特别的,1为所有数的公因数.1、2、3和6都是24和30的公因数,6是最大公因数. 可以发现1、2、3和6都是6的因数.12和18的公倍数有36、72、108、……,36是最小公倍数. 可以发现36、72、108及其他公倍数都是36的倍数.通常,我们把两个数a ,b 的最大公因数记为(a ,b );a ,b 的最小公倍数记为[]a b ,.三个数a ,b ,c 的最大公因数记为(a ,b ,c );a ,b ,c 的最小公倍数记为[]a b c ,,. 如:14和21的最大公因数是7,记作:(14,21)= 7;14和21的最小公倍数是42,记作:[]142142=,. 15、10、21的最大公因数是1,记作:(15,10,21)=1;15、10、21的最小公倍数是210,记作:[]151021210=,,. 若两个数互质,那么它们的最大公因数就是1,最小公倍数就是它们的乘积;若两个数成倍数关系,那么它们的最大公因数就是较小的那个数,最小公倍数就是较大的那个数.在现实生活中我们常常关心几个数的最大公因数和最小公倍数,那么我们怎样来求几个数的最大公因数和最小公倍数呢?除了直接枚举之外,最常用的方法是“短除法".例1 填空:(1)16与24共有________个公因数; (2)(12,18)=________ ,[12,18] =________; (3)(15,30)=________,[15,30] =________; (4)(6,7,8)=________,[6,7,8] = ________. 练1 填空:(1)30与50共有________个公因数; (2)(6,9)=________,[6,9] =________; (3)(5,8)=________,[5,8] =________; (4)(4,5,6,7)=________,[4,5,6,7] =________. 知识精讲二、分解质因数法分解质因数法比较实用,也利于我们分析数的构成.例2 利用分解质因数法找出下列各组数的最大公因数和最小公倍数.(1)120和200(2)25、30和40练2 利用分解质因数法找出下列各组数的最大公因数和最小公倍数.(1)512和80(2)32、60、84和256知识精讲三、公因数与公倍数的应用学习了如何求公因数与公倍数,接下来看一下在实际生活中如何运用公因数与公倍数解决问题.例3 老师在班上发水果,一共有78个苹果,95个梨,平均分给班上的学生,最后剩下6个苹果,5个梨,请问:班里可能有多少名学生?练3 把一块长80厘米,宽64厘米的长方形铁板,剪成面积相等的小正方形而无剩余,小正方形的边长都是整厘米数. 请问:小正方形的边长可能是多少厘米?例4 小高每6天去一趟图书馆,豆豆每4天去一趟图书馆,已知6月1日两人在图书馆遇到了. 请问:下一次两人在图书馆遇到是6月几日?练4 有一个电子钟,每走8分钟亮一次灯,每到整点响一次铃,中午12点整,电子钟既响铃又亮灯. 请问:下一次既响铃又亮灯是几点钟?挑战极限两个自然数不成倍数关系,它们的最大公因数是18,最小公倍数是216,其中一个数是54.请问:另一个数是多少?第十讲分数比较大小1、通分比大小2、交叉相乘法3、分数比较大小的应用知识精讲一、通分子、通分母我们知道分数的意义是:把“1”平均分成若干份,表示这样的一份或几份的数. 易知:如果两个分数分母相同,分子越大分数越大.如果两个分数分子相同,分母越大分数越小.如果两个分数分子和分母都不同,我们应该怎么比较它们的大小呢?最常用的方法是利用分数的基本性质把它们化成分母相同或分子相同的分数.例1(1)把4个数713114110201560、、、,由小到大排列起来;(2)把4个数,510255013275177、、、由小到大排列起来.练1 (1)把4个数1331612315459030、、、由小到大的排列起来;(2)把4个数5631111352、、、由小到大的排列起来.例2 (1)在不等式1121243>>的方框中填入一个自然数,使得不等式成立;(2)在不等式3515529>>的方框中填入一个自然数,使得不等式成立.练2 (1)在不等式1151296>>的方框中填入一个自然数,使得不等式成立;(2)在不等式236513<<的方框中填入一个自然数,使得不等式成立.知识精讲二、交叉相乘法比较1316和2127的大小,可以先把它们通分,变成分母相同的分数:13271627⨯⨯和21162716⨯⨯,然后再比较分子的大小:13272116⨯>⨯,所以1321 1627>.因为最后比较的是两个乘积,因此这个方法也被称为“交叉相乘法”. 要比较两个分数,只需要将这两个分数的分子分别与另一个分数的分母相乘,比较两个乘积的大小,分子所在....的乘积大....,则分数就大...... 例如比较58和813的大小,因为51388⨯>⨯,58的分子所在的乘积大,所以58 813 >.例3 比较下列分数的大小:(1)817与1120;(2)1316与1922.练3 比较下列分数的大小:(1)1519与1317;(2)1621与1419.知识精讲三、分数比较大小的应用除了我们介绍的方法外,比较分数大小还有许多其它的巧妙方法,但这些巧妙方法都需要我们多观察,看出题目中分数的特点,针对分数的特点来使用.例4 (1)若甲的45等于乙的56,那么甲、乙谁比较大?(2)已知891091011a b c+=+=+,把a、b、c由小到大排列起来.(3)已知345276X Y Z⨯=⨯=⨯,把X、Y、Z由小到大排列起来.练4 (1)若甲的67等于乙的78,那么甲、乙谁比较大?(2)已知57117913a b c+=+=+,把a、b、c由小到大排列起来.(3)已知7107394X Y Z⨯=⨯=⨯,把X、Y、Z由小到大排列起来.挑战极限(1)把3个数9151971316、、由小到大排列起来.(2)把3个数191431117、、由小到大排列起来.第十一讲乔治的火车1、火车过桥2、火车与人的相遇和追及知识精讲我们之前已经学习了基本行程问题,明确了速度、时间和路程这三个量之间的关系:。
小学五年级 最大与最小

第一章最大与最小【专题导航】在日常生活中,人们常常会遇到“路程最近”、“费用最省”、“面积最大”、“损耗最少”等问题,这些寻求极端结果或讨论怎样实现这些极端情形的问题,最终都可以归结成为:在一定范围内求最大值或最小值的问题,我们称这些问题为“最大最小问题”。
解答最大最小问题通常要用下面的方法:1,枚举比较法。
当题中给定的范围较小时,我们可以将可能出现的情形一一举出再比较;2,着眼于极端情形,即充分运动已有知识和生活常识,一下子从“极端”情形入手,缩短解题过程。
在数学竞赛中经常出现最大与最小问题,这种问题是培养和锻炼学生利用学过的知识解决生活中实际问题的能力,激发学生学习数学的兴趣。
【例题精萃】【例1】用一段22厘米长的铁丝围成一个边长都是整数的长方形或正方形,怎样才能使它的面积最大?最大面积是多少平方厘米?思路分析:长方形或正方形面积的大小是由它的边长决定的,本题中可知它的长与宽的和是不变的。
长与宽的和为22÷2=11(厘米)。
依次列举可知:10×1=10;9×2=18;8×3=24;7×4=28;6×5=30。
只有当长和宽的差最小时面积最大。
具体列式:22÷2=11(厘米)(11+1)÷2=6(厘米)6-1=5(厘米)6×5=30(平方厘米)答:围成长是6厘米,宽为5厘米的长方形时面积最大,最大面积是30平方厘米。
方法点评:两个数的和不变,两数的差最小时,乘积最大。
【实践体验】(1)用一段20米长的篱笆围成一个边长都是整数的长方形或正方形鸡场围墙,怎样才能使它的面积最大?最大面积是多少平方米?(2)把34分成两个自然数的和,使得到的乘积尽可能大,这个最大的乘积是多少?(3)要砌一个面积是72平方米的长方形猪圈,长方形的边长都是自然数,这个猪圈的围墙总长最少是多少米?【例2】用1、2、3、4、5这五个数字,组成一个两位数和一个三位数,使两个数的乘积最大,这两个数乘积最大是多少?思路分析:首先组成两个两位数使乘积最大。
2021年-有答案-江苏省连云港市某校四年级(下)月考数学试卷(3月份)

2021学年江苏省连云港市某校四年级(下)月考数学试卷(3月份)一、认真读题,谨慎填写.(第3和10小每题2分,其余每空1分,共20分)1. 计量比较少的液体用________作单位,计量比较多的液体用________作单位。
2. 三角形的内角和是________度,一个三角形中最多有________个钝角。
________个锐角。
3. 在计算309乘26时,应先算________位上的________乘________,再算________位上的________乘________.4. 填上适当的容量单位。
一瓶眼药水8________;一袋牛奶有200________;一个太阳能热水器大约可以容水190________.5. 在横线里填“<”、“>”或“=”3升________3400毫升8000毫升________8升40升________4000毫升2升20毫升________2200毫升。
6. 在一个直角三角形中,一个锐角是75∘,另一个锐角是________.7. 一个三角形,已知两个内角的度数分别为30度和40度,那么另一个内角度数为________度,按角分,它是一个________三角形。
8. 把一根16厘米长的吸管剪成三段,用线串成一个三角形最长一段要小于________.9. 用2、3、4、5、6这五个数字组成一个三位数乘两位数,________与________的乘积最大,________与________的乘积最小。
二、选择正确答案的序号填入题中的括号里(每题1分,计6分)在一个三角形中,最小的一个内角是30∘,按角分类,这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定直角三角形中,两个锐角的和()第三个角。
A.大于B.小于C.等于两个小三角形拼成一个大三角形,这个大三角形的内角和是()498×41的积与()最接近。
A.12000B.15000C.20000一满杯牛奶有300毫升,小明喝了一半后又加满水,然后再把这一满杯全部喝完。
小六数学第21讲:数论综合(学生版)

第二十一讲数论综合数论是历年小升初的考试难点,各学校都把数论当压轴题处理。
由于行程题的类型较多,题型多样,变化众多,所以对学生来说处理起来很头疼。
数论内容包括:整数的整除性,同余,奇数与偶数,质数与合数,约数与倍数,整数的分解与分拆等。
作为一个理论性比较强的专题,数论在各种杯赛中都会占不小的比重,而且数论还和数字谜,不定方程等内容有着密切的联系,其重要性是不言而喻的。
基本公式1.已知b|c,a|c,则[a,b]|c,特别地,若(a,b)=1,则有ab|c。
2.已知c|ab,(b,c)=1,则c|a。
3.唯一分解定理:任何一个大于1的自然数n都可以写成质数的连乘积,即n= p11a× p22a×...×p k k a(#)其中p1<p2<...<p k为质数,a1,a2,....a k为自然数,并且这种表示是唯一的。
该式称为n的质因子分解式。
4.约数个数定理:设自然数n的质因子分解式如(#)那么n的约数个数为d(n)=(a1+1)(a2+1)....(a k+1)所有约数和:(1+P1+P12+…p11a)(1+P2+P22+…p22a)…(1+P k+P k2+…p k k a)5.用[a,b]表示a和b的最小公倍数,(a,b)表示a和b的最大公约数,那么有ab=[a,b]×(a,b)。
6.自然数是否能被3,4,25,8,125,5,7,9,11,13等数整除的判别方法。
7.平方数的总结:①平方差:A2-B2=(A+B)(A-B),其中我们还得注意A+B, A-B同奇偶性。
②约数:约数个数为奇数个的是完全平方数。
约数个数为3的是质数的平方。
③质因数分答案:把数字分答案,使他满足积是平方数。
④立方和:A3+B3=(A+B)(A2-AB+B2)。
8.十进制自然数表示法,十进制和二进制,八进制,五进制等的相互转化。
9.周期性数字:abab=ab×1011.全面掌握数论的几大知识点,能否在考试中取得高分,解出数论的压轴大题是关键。
小学数学不变与变、错中求解、数字问题

第一章变与不变一、和差不变【典型例题】例1、两个数相加,一个加数减少10,另一个加数增加10,和是否会起变化?例2、两个数相加,如果一个加数减少8,要使和增加8,另一个加数应有什么变化?例3、两数相减,如果被减数减少2,减数也减少2,差是否会起变化?例4、两数相减,被减数增加20,要使差减少16,减数应有什么变化?例5、被减数、减数、差相加得2076,差是减数的一半。
如果被减数不变,差增加42,减数应变为多少?【练习题】1、两个数相加,一个加数增加12,另一个加数减少2,和是否会起变化?2、两个数相加,一个加数增加15,另一个加数减少15,和是否会起变化?3、两个数相加,一个加数增加6,另一个加数也增加6,和起怎样的变化?4、两个数相加,如果一个加数减少16,要使和减少9,另一个加数应有什么变化?5、两个数相加,如果一个加数增加9,要使和增加17,另一个加数应有什么变化?6、两个数相加,如果一个加数减少16,要使和减少16,另一个加数会怎样变化?7、两数相减,如果被减数减少18,减数增加18,差起什么变化?8、两数相减,如果被减数增加23,减数减少23,差是否会起变化9、两数相减,被减数减少36,要使差减少40,减数应有什么变化?10、两个数相减,如果被减数减少12,要使差增加8,减数应有什么变化?11、两数相减,如果减数增加10,要使差减少15,被减数应有什么变化?12、在一个减法算式里,被减数、减数与差的和是180,而差比减数少8。
如果被减数不变,减数减少16,差应变为多少?13、在一个减法算式里,被减数、减数、差相加得90,而差是减数的2倍,如果被减数不变,差增加27,减数应变为多少?二、积商不变【典型例题】例1、两数相除,如果被除数缩小3倍,除数扩大2倍,商将怎么变化?例2、两数相乘,积是96.如果一个因数缩小4倍,另一个因数扩大3倍,那么积变成了多少?例3、两数相乘,一个因数扩大3倍,要使积扩大9倍,另一个因数应该怎样变化?例4、两数相除,商是4,余数是10.如果被除数和除数同时扩大50倍,商变成了多少?余数是多少?例5、两数相除,被除数扩大30倍,要使商扩大60倍,除数应该怎样变化?【练习题】1、两数相除,被除数扩大3倍,除数扩大15倍,商将怎样变化?2、两个数相除,如果被除数扩大3倍,除数扩大15倍,商将怎样变化?3、两数相乘,积是70。
小五数学培优第五章第2课:质数与合数(知识点、例题解析、针对训练题)

2、9个连续的自然数中,最多有多少个质数?
解:质数中除了2都是奇数.首先观察含有2的 情况,通过简单枚举不难发现,如果包括2, 连续9个自然数最多也只有4个质数:2,3,5,7.
如果连续9个自然数中没有2,则其中的 偶数都不是质数.连续9个自然数中最多有5个 奇数,而且它们的个位分别是1,3,5,7,9,其中 一定有一个是5的倍数.要让这5个数都是质数, 那么这5个连续的奇数中一定有5.不难发现包 括5的9个连续的自然数中一定有1或9,它们 都不是质数,那么不包括2的9个自然数中一 定不可能有5个质数. 综上所述,9个连续自然数中,最多只有4个质数.
5、请把下面的数分解质因数: (1)160;(2)598;(3)211.
解:(1)160=25×5; (2)598=2×13×23; (3)211是质数,不能分解.
典型问题
6、三个自然数的乘积为84,其中两个 数的和正好等于第三个数,请求出这 三个数. 解:84=2×2×3×7,稍加观察即得
2×2=4,而3+4=7,满足题意. 这三个数是3,4,7.
通过简单的枚举可得,只有7+31=38符合题 意,所以这三个质数分别是:2,7,31.
拓展练习
4、请把下面的数分解质因数: (1)360;(2)539;(3)373;(4)12660.
拓展练习
5、有一些最简真分数,它们的分子与分 母的乘积都等于140.把所有这样的分数从 小到大排列,其中第三个分数是多少?
解:100以内一共有25个质数,最大的 两个是89和97,两数之间均为合数. 这两个数之间一共有97-89+1=7个自然 数,正好符合题意,将它们全部列举 出来:90,91,92,93,94,95,96.这7个连续 整数都是合数.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求任意五个数字所组成的不同两位数和三位数,使得乘
积最大或最小的解决方法
方法1
摘要:我们在学习一组数字可组成多个不同的几位数的排列后,经常会遇到求这些组成的数中哪两个数的乘积最大或最小的问题,组成的数比较多,往往给我们带来一些困惑,感到无从下手,我经过计算,归纳总结出可参照两个数的和一定时,两个数的差越小,乘积越大;两个数的差越大,乘积越小的规律①来解决这类问题。
关键词:数字不同数乘积最大最小方法
苏教版小学四年级数学下册,出现了用1.2.3.4.5这五个数字组成一个两位数和一个三位数,要使乘积最大应该是哪两个数?换五个数再试一试的问题②。
我们知道任意五个不同的数字在不重复的情况下,组成的不同两位数有5ⅹ4=20个;在不重复使用的情况下,组成一个两位数剩下的三个数可组成3ⅹ2ⅹ1=6个三位数,要计算组成的两位数与三位数的乘积,也就是要计算20ⅹ6=120组成两位数与三位数的乘积,两位数、三位数的排列比较繁,计算量也较大,往往还会出错,有些困惑,难道真无从下手吗?答案当然是否定的。
我们知道:要使乘积最大,两个乘数的最高位应是最大数,最末数应是最小数,以上面提到的苏教版小学四年级数学下册上的题目为例,要使乘积最大
一、两个乘数最高位应分别是“5”或“4”,最末位一定是
“1”。
二、先不看最末位“1”就变成2.3.4.5这四个数字组成两个
两位数,这两个两位数高位应分别是“4”或是“5”,那么
组成的两位数应为“43,52”或“42,53”。
三、根据两个数之间越靠近乘积越大的规律③,53-42=11、
52-43=9,可以知道要使乘积最大应选择“52,43”这一组。
四、接下来我们来看最末位“1”,跟在哪个数后面,假设有
任意两个正整数A和B,其中A>B,现在要增加一个数字C,添
在A或B后,使新的两个数乘积最大,那么C应添在A还是B
的后面呢?比较一下
⑴添在A的后面,A变成10A+C,新的数与B的乘积
(10A+C)ⅹB=10AB+BC;
⑵添在B的后面,B变成10B+C,新的数与A的乘积
(10B+C)ⅹA=10AB+AC;
因为A>B,所以10AB+AC>10AB+BC,要使乘积大,C应添在较小的两位数之后,由此得出“1”应添在“43”后面构成“431”,因此“1.2.3.4.5”这5个数字构成的乘积最大的两位数和三位数应是“52”和“431”。
按照以上思路要使乘积最小:
一、两个乘数的最高位是“1”或“2”,最末位是“5”;
二、先不看最末位“5”,就变成“1.2.3.4”四个数字,最高位是
“1”或“2”时,那么组成的两位数一定是“13、24”或“14、23”,要想使乘积最小,那么这两个两位数应相差最大,
“24-13=11”、“23-14=9”应选择“24”、“13”。
三、接下来看,最末位“5”应跟在谁的后面,由上面知道跟在较
大的数后构成的数乘积较小,所以“5”应跟在“24”后面是
“245”,乘积最小的数应是“13”、“245”。
由此,我们可知,任意五个数字“A、B、C、D、E”其中“E>D>C>B>A”,组成的两位数和三位数虽然很多,但求它们的乘积最大或最小的数还是有规律的,乘积最大的是“DCA”与“EB”,乘积最小的是“BDE”与“AC”。
方法2
用1,3,5,7,9这5个数组成一个两位数和一个三位数,乘积最大是多少,最小呢?
ABC
* DE
----------
---对积的贡献大到小排序大概是(D A)(B E)C。
取大时:D>A>B>E>C,因为D多与C乘,所以D大;D大,所以让B》E,使D与大乘。
取小时:D<A<E<B<C,因为A多与C乘,所以D小;D小,所以让E《B,使D与大乘。
含有0时特殊处理。
所以最大是93*751
最小是379*15。