人教版七年级上册数学知识点总结归纳
七年级上册人教版数学知识点

七年级上册人教版数学知识点七年级上册人教版数学知识点概述一、数与代数1. 有理数的运算- 正数和负数的概念- 有理数的加法、减法、乘法和除法规则- 有理数的比较大小- 绝对值的概念和性质- 有理数的近似和有效数字2. 整式的加减- 单项式和多项式的定义- 合并同类项- 去括号法则- 因式分解的初步概念3. 一元一次方程- 方程的概念和方程的解- 解一元一次方程的基本步骤- 应用题的解决方法二、几何1. 图形的初步认识- 点、线、面、体的概念- 直线、射线、线段的特点- 角的概念和分类(如:锐角、直角、钝角)2. 相交线与平行线- 相交线的性质- 平行线的定义和性质- 平行公理及其推论3. 平面图形的认识- 四边形的种类和特点(如:正方形、长方形、平行四边形)- 面积的计算方法(长方形、正方形、三角形)三、统计与概率1. 统计- 数据的收集和整理- 频数和频率的概念- 绘制和解读条形统计图和折线统计图2. 概率- 随机事件的概念- 可能性的初步认识- 简单事件发生的可能性计算四、解题方法和策略1. 逻辑思维的培养- 理解问题,分析条件- 明确目标,制定解题步骤- 检查和验证答案的正确性2. 题目类型的识别- 应用题、证明题、计算题的解题技巧- 常见题型的解题模板和方法以上是七年级上册人教版数学的主要知识点概述。
这些知识点构成了学生数学学习的基础,对于培养学生的逻辑思维能力、解决实际问题的能力以及为后续学习打下坚实的基础至关重要。
教师和家长应引导学生通过练习和实际应用来巩固和深化这些知识点,从而提高学生的数学素养。
完整版)人教版七年级数学上册知识点归纳

完整版)人教版七年级数学上册知识点归纳第一章有理数1.1 正数和负数正数是大于零的数,负数是小于零的数。
有些数既不是正数也不是负数,它们被称为零。
在同一个问题中,用正数和负数表示的量具有相反的意义。
需要注意的是,-a不一定是负数,+a也不一定是正数。
自然数指的是正整数和零的集合,也就是我们常说的自然数。
我们可以用a>0表示a是正数,a≥0表示a是正数或零,a<0表示a是负数,a≤0表示a是负数或零。
1.2 有理数有理数包括正整数、负整数、正分数和负分数,它们都可以写成分数的形式。
正整数和负整数统称为整数。
有理数可以分为六类:正整数、正分数、零、负分数、负整数和整数。
我们可以用数轴来表示有理数,数轴是一条直线,有原点、正方向和单位长度三个要素。
一般来说,当a是正数时,数轴上表示数a的点在原点的右边,距离原点a个单位长度;表示数-a的点在原点的左边,距离原点a个单位长度。
两个点关于原点对称,当a是正数时,在数轴上与原点的距离为a的点有两个,它们分别在原点的左右,表示-a和a,我们称这两个点关于原点对称。
相反数指的是只有符号不同的两个数,它们互为相反数。
a的相反数是-a,的相反数是0.在数轴上,表示相反数的两个点关于原点对称。
绝对值是数a到原点的距离,用|a|表示。
一个正数的绝对值是其本身,一个负数的绝对值是其相反数。
的绝对值是0.绝对值可以表示为a=|a|或a=-|a|。
如果a>0,则|a|=a,如果a<0,则|a|=-a。
有理数的比较可以在数轴上表示,从左到右的顺序就是从小到大的顺序。
需要注意的是,正数大于零,大于负数,正数大于负数;两个负数,其绝对值大的反而小。
1.3 有理数的加减法有理数的加减法可以用数轴来表示。
当加上一个正数时,表示数的点向右移动,当加上一个负数时,表示数的点向左移动。
同样地,当减去一个正数时,表示数的点向左移动,当减去一个负数时,表示数的点向右移动。
人教七年级数学上知识点

人教七年级数学上知识点
一、整数及其运算
整数的概念、数轴、绝对值、相反数、加法、减法、乘法、除法及运算法则。
二、平面图形
平面图形的基本概念、直线、线段、射线、角、三角形、四边形、圆等基本图形及其性质。
三、一次函数
一次函数的概念、函数的解析式、函数图象、函数的变化及其含义。
四、数据的收集、整理与分析
数据的调查与应用、频数表、频数直方图、统计量和样本。
五、解方程
一元一次方程的概念和性质,基本解法和应用。
六、数列
数列的概念,等差数列、等比数列,数列的通项公式和前n项和。
七、三角形
三角形的基本性质、三角形的元素、三角形的周长和面积、勾股定理、解决实际问题。
八、比例与相似
比例的概念、比例的性质、比例的应用、相似的概念、相似三角形的性质及其应用。
九、两点间的距离与中点
两点间距离公式、平面直角坐标系、中点公式。
十、几何变换
平移、旋转、翻折及其组合。
以上是人教七年级数学上的基本知识点,学生们在学习过程中需要深入掌握,从而能够进行更深入的应用和解决实际问题。
希望本文对广大师生有所帮助,祝大家学习进步!。
人教版七年级上册数学知识点总结

人教版七年级上册数学知识点总结一、数与代数1. 有理数- 有理数的定义:整数和分数统称为有理数。
- 有理数的分类:正整数、负整数、正分数、负分数和零。
- 有理数的运算:加法、减法、乘法、除法及混合运算。
2. 整式的加减- 单项式:数与字母的乘积。
- 多项式:几个单项式的和。
- 同类项:所含字母相同,且相同字母的指数也相同的项。
- 合并同类项:将同类项的系数相加,字母和指数不变。
3. 一元一次方程- 方程的定义:含有未知数的等式。
- 解方程:求出使方程成立的未知数的值。
- 一元一次方程的解法:移项、合并同类项、系数化为1。
4. 代数式的值- 代数式的计算:按照运算顺序求得代数式的数值。
- 代数式的简化:通过化简,使代数式尽可能简单。
二、图形与几何1. 线段、射线、直线- 线段:有限长度,有两个端点。
- 射线:有起点无终点,无限延伸。
- 直线:无起点无终点,无限延伸。
2. 角- 角的定义:两条射线的公共端点称为角的顶点。
- 角的分类:锐角、直角、钝角。
- 角的度量:使用度作为单位。
3. 几何图形的性质- 对称性:轴对称、中心对称。
- 相似性:形状相同,大小可能不同。
- 全等性:形状和大小完全相同。
4. 三角形- 三角形的定义:由三条线段围成的图形。
- 三角形的性质:内角和为180度。
- 等腰三角形:两条边相等的三角形。
- 等边三角形:三条边相等的三角形。
三、数据的收集、整理与描述1. 统计调查- 调查方法:全面调查和抽样调查。
- 调查步骤:明确调查目的、制定调查计划、收集数据、处理数据。
2. 频数与频率- 频数:某一数据出现的次数。
- 频率:某一数据出现的次数与总次数的比值。
3. 统计图表- 条形图:用条形的高度表示数据的大小。
- 折线图:用线段的起伏表示数据的变化趋势。
- 扇形图:用扇形的大小表示部分与整体的关系。
四、可能性1. 确定事件与随机事件- 确定事件:必然发生或不可能发生的事件。
- 随机事件:可能发生也可能不发生的事件。
(完整版)人教版七年级数学上册知识点归纳

第一章 有理数1.1 正数和负数(1)正数:大于0的数;负数:小于0的数;(2)0既不是正数,也不是负数;(3)在同一个问题中,分别用正数和负数表示的量具有相反的意义;(4)-a 不一定是负数,+a 也不一定是正数;(5)自然数:0和正整数统称为自然数;(6)a>0 ⇔ a 是正数; a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数;a <0 ⇔ a 是负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.1.2 有理数(1)正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数;(2)正整数、0、负整数统称为整数;(3)有理数的分类:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 (4)数轴:规定了原点、正方向、单位长度的一条直线;(即数轴的三要素)(5)一般地,当a 是正数时,则数轴上表示数a 的点在原点的右边,距离原点a 个单位长度;表示数-a 的点在原点的左边,距离原点a 个单位长度;(6)两点关于原点对称:一般地,设a 是正数,则在数轴上与原点的距离为a 的点有两个,它们分别在原点的左右,表示-a 和a ,我们称这两个点关于原点对称;(7)相反数:只有符号不同的两个数称为互为相反数;(8)一般地,a 的相反数是-a ;特别地,0的相反数是0;(9)相反数的几何意义:数轴上表示相反数的两个点关于原点对称;(10)a 、b 互为相反数⇔a+b=0 ;(即相反数之和为0)(11)a 、b 互为相反数⇔1-=b a 或1-=ab ;(即相反数之商为-1) (12)a 、b 互为相反数⇔|a|=|b|;(即相反数的绝对值相等)(13)绝对值:一般地,在数轴上表示数a 的点到原点的距离叫做a 的绝对值;(|a|≥0)(14)一个正数的绝对值是其本身;一个负数的绝对值是其相反数;0的绝对值是0;(15)绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a (16)0a 1a a>⇔= ; 0a 1a a <⇔-=;(17)有理数的比较:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序。
人教版七年级数学上册各章知识点总结

人教版七年级数学上册各章知识点总结第一章:有理数1. 有理数和整数的关系- 自然数是有理数,因为每个自然数都可以表示为分子为自然数、分母为1的有理数。
- 整数是有理数,因为每个整数都可以表示为分母为1的有理数。
- 分数是有理数,因为每个真分数都可以表示为分母不为0的有理数。
2. 有理数的加减法- 同号两数相加,取相同的符号,并将绝对值相加。
- 异号两数相加,取绝对值较大的符号,并将绝对值较大的数减去较小的数的绝对值。
3. 有理数的乘除法- 同号两数相乘,积为正数。
- 异号两数相乘,积为负数。
- 有理数相除,分子乘以倒数。
第二章:代数初步1. 代数式的基本概念- 代数式由变量、常数和运算符号组成。
- 代数式可以通过代入变量的具体数值来求得结果。
2. 代数式的计算- 同类项相加或相减,保持字母不变,系数相加或相减。
- 不同类项之间无法进行运算。
3. 代数式的应用- 通过列式子,可以将一个具体问题转化为代数式,从而解决问题。
第三章:小数1. 小数的定义和读法- 小数是有理数的一种表示形式,可以用分数的形式表示。
- 小数读法遵循读整数部分,读小数点,读小数部分的规则。
2. 小数的加减法- 小数相加减时,要保持小数点的位置对齐,然后按照整数加减法的规则进行运算。
3. 小数与分数的相互转化- 将小数转为分数,小数点后的位数作为分母,去掉小数点后的位数作为分子。
- 将分数转为小数,分子除以分母。
第四章:倍数和约数1. 倍数的概念- 如果一个数能被另一个数整除,则这个数是另一个数的倍数。
2. 倍数和公倍数- 两个数的公倍数是能同时整除这两个数的数。
- 两个数的最小公倍数是能整除这两个数的最小正整数。
3. 约数的概念- 如果一个数能整除另一个数,则这个数是另一个数的约数。
4. 因数和公因数- 两个数的公因数是能够同时整除这两个数的数。
- 两个数的最大公因数是能够整除这两个数的最大正整数。
第五章:比例1. 比例的基本概念- 比例是两个数之间的比较关系,可以用两个等比例的分数表示。
人教版七年级数学上册知识点大全(最新最全)

人教版七年级数学上册知识点大全(最新最全)1.有理数:1) 所有能写成 p/q 形式的数都是有理数,其中 p、q 为整数且p ≠ 0.整数和分数都属于有理数。
注意:有理数既不是正数也不是负数;-a 不一定是负数,+a 也不一定是正数;π 不是有理数。
分类:①有理数。
0,包括正整数和正分数。
②有理数 < 0,包括负整数和负分数。
③零是有理数。
注意:1、-1、0 是有理数中的特殊数,它们将数轴分成了四个区域,每个区域的数都有自己的特性。
2.数轴:数轴是一条直线,规定了原点、正方向和单位长度。
3.相反数:1) 只有符号不同的两个数互为相反数。
2) 注意:a-b+c 的相反数是 -a+b-c;a-b 的相反数是 b-a;a+b 的相反数是 -a-b。
3) 两个数的相反数之和为 0,即 a+b=0.4) 一个数的相反数是它的倒数的相反数。
5) 相反数的绝对值相等。
4.绝对值:1) 正数的绝对值等于它本身,负数的绝对值等于它的相反数。
绝对值表示数轴上某数的点离原点的距离。
2) 绝对值可以表示为 a = |a| 或 a = -|a|。
3) a。
0 时,a/|a| = 1;a < 0 时,a/|a| = -1.4) |a| 是一个非负数,即|a| ≥ 0.5.有理数大小比较:1) 正数大于负数。
2) 正数大于所有负数。
3) 两个负数比较,绝对值大的反而小。
4) 数轴上,右边的数比左边的数大。
5) -1、-2、+1、+4、-0.5 表示与标准质量的差,标准质量为 0.6.特殊的数:相反数等于本身的数:0相反数等于本身的数:1、-1倒数等于本身的数:1、-1绝对值等于本身的数:正数平方等于本身的数:0、1立方等于本身的数:-1、0、17.有理数加法法则:1) 同号两数相加,取相同的符号,并把绝对值相加。
2) 异号两数相加,取绝对值大的符号,并把绝对值相减。
3) 加数和被加数的顺序不影响和的结果。
4) 加数与和的差相等,即 a+b=b+c-a。
人教版七年级上册数学知识点总结

人教版七年级上册数学知识点总结一、有理数1. 有理数的概念有理数是指可以表示为分数的数,即整数、分数、有限小数和循环小数的总称。
有理数可以用分数形式表示,分子为整数,分母为自然数。
2. 有理数的大小比较有理数的大小比较可利用坐标轴表示。
在数轴上,数越往右,数值越大;数越往左,数值越小。
3. 有理数的加减法有理数的加减法规则与整数的运算一样。
同号两数相加、异号两数相减,要先取绝对值,再按两数同号加、异号减的原则进行加减法操作。
4. 有理数的乘除法有理数的乘法和除法规则与整数的运算法则一致,同号相乘得正数,异号相乘得负数;除数不等于零时,正数除以正数得正数,负数除以负数也得正数。
5. 有理数的混合运算将有理数的加减法、乘除法结合起来进行运算,按照运算的先乘除后加减的原则进行混合运算。
6. 有理数的应用有理数在生活中的应用非常广泛,如计量、比较、计算等方面。
二、代数1. 代数式、字母、代数式的值代数式是由数字、字母和运算符号组成的式子。
字母是未知数,代数式的值是指将字母用具体的数代入代数式中去求得的结果。
2. 代数表达式的加减法代数表达式的加减法要进行相同字母项合并,并按照合并的原则进行加减法操作。
3. 代数表达式的乘法代数表达式的乘法是指将代数式进行分配率展开,并用分配率原理进行乘法运算。
4. 代数表达式的除法代数表达式的除法是指先找出最高次项,再按照最高次项进行除法操作,得到商和余数。
5. 代数式的应用代数式在生活中的应用非常广泛,如方程、不等式、数列等方面。
三、方程1. 一元一次方程一元一次方程是指未知数的最高次项是一次的方程。
2. 解一元一次方程解一元一次方程的方法有两种,分别是移项法和等价变形法,可以通过逆运算的原理来解决方程。
3. 一元一次方程的应用一元一次方程在生活中的应用非常广泛,如比例问题、配比问题、运动问题等方面。
四、集合1. 集合的概念集合是包含一组确定对象的整体,其中的对象称为元素。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正数与负数⒈正数与负数的概念负数:比0小的数正数:比0大的数0既不就是正数,也不就是负数注意:①字母a可以表示任意数,当a表示正数时,-a就是负数;当a表示负数时,-a就是正数;当a表示0时,-a仍就是0。
(如果出判断题为:带正号的数就是正数,带负号的数就是负数,这种说法就是错误的,例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。
所以省略“+”的正数的符号就是正号。
2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3、0表示的意义⑴0表示“没有”,如教室里有0个人,就就是说教室里没有人;⑵0就是正数与负数的分界线,0既不就是正数,也不就是负数。
如:(3) 0表示一个确切的量。
如:0℃以及有些题目中的基准,比如以海平面为基准,则0米就表示海平面。
有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0与正整数统称为自然数)⑵正分数与负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才就是有理数。
①π就是无限不循环小数,不能写成分数形式,不就是有理数。
②有限小数与无限循环小数都可化成分数,都就是有理数。
3,整数也能化成分数,也就是有理数注意:引入负数以后,奇数与偶数的范围也扩大了,像-2,-4,-6,-8…也就是偶数,-1,-3,-5…也就是奇数。
2.有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数正整数整数0 正有理数负整数正分数有理数有理数0 (0不能忽视)正分数负整数分数负有理数负分数负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。
注意:⑴数轴就是一条向两端无限延伸的直线;⑵原点、正方向、单位长度就是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都就是根据实际需要规定的。
2、数轴上的点与有理数的关系⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。
⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就就是说,有理数与数轴上的点不就是一一对应关系。
(如,数轴上的点π不就是有理数)3、利用数轴表示两数大小⑴在数轴上数的大小比较,右边的数总比左边的数大;⑵正数都大于0,负数都小于0,正数大于负数;⑶两个负数比较,距离原点远的数比距离原点近的数小。
4、数轴上特殊的最大(小)数⑴最小的自然数就是0,无最大的自然数;⑵最小的正整数就是1,无最大的正整数;⑶最大的负整数就是-1,无最小的负整数5、a可以表示什么数⑴a>0表示a就是正数;反之,a就是正数,则a>0;⑵a<0表示a就是负数;反之,a就是负数,则a<0⑶a=0表示a就是0;反之,a就是0,,则a=0相反数⒈相反数只有符号不同的两个数叫做互为相反数,其中一个就是另一个的相反数,0的相反数就是0。
注意:⑴相反数就是成对出现的;⑵相反数只有符号不同,若一个为正,则另一个为负;⑶0的相反数就是它本身;相反数为本身的数就是0。
2、相反数的性质与判定⑴任何数都有相反数,且只有一个;⑵0的相反数就是0;⑶互为相反数的两数与为0,与为0的两数互为相反数,即a,b互为相反数,则a+b=03、相反数的几何意义在数轴上与原点距离相等的两点表示的两个数,就是互为相反数;互为相反数的两个数,在数轴上的对应点(0除外)在原点两旁,并且与原点的距离相等。
0的相反数对应原点;原点表示0的相反数。
说明:在数轴上,表示互为相反数的两个点关于原点对称。
4、相反数的求法⑴求一个数的相反数,只要在它的前面添上负号“-”即可求得(如:5的相反数就是-5);⑵求多个数的与或差的相反数时,要用括号括起来再添“-”,然后化简(如;5a+b的相反数就是-(5a+b)。
化简得-5a-b);⑶求前面带“-”的单个数,也应先用括号括起来再添“-”,然后化简(如:-5的相反数就是-(-5),化简得5)5、相反数的表示方法⑴一般地,数a 的相反数就是-a ,其中a就是任意有理数,可以就是正数、负数或0。
当a>0时,-a<0(正数的相反数就是负数)当a<0时,-a>0(负数的相反数就是正数)当a=0时,-a=0,(0的相反数就是0)绝对值⒈绝对值的几何定义一般地,数轴上表示数a的点与原点的距离叫做a的绝对值,记作|a|。
2、绝对值的代数定义⑴一个正数的绝对值就是它本身; ⑵一个负数的绝对值就是它的相反数; ⑶0的绝对值就是0、可用字母表示为:①如果a>0,那么|a|=a; ②如果a<0,那么|a|=-a; ③如果a=0,那么|a|=0。
可归纳为①:a≥0,<═> |a|=a (非负数的绝对值等于本身;绝对值等于本身的数就是非负数。
)②a≤0,<═> |a|=-a (非正数的绝对值等于其相反数;绝对值等于其相反数的数就是非正数。
)经典考题如数轴所示,化简下列各数|a|, |b| , |c| , |a-b|, |a-c| , |b+c|解:由题知道,因为a>0 ,b<0,c<0, a-b>0, a-c>0, b+c<0,所以|a|=a ,|b|=-b, |c|=-c ,|a-b|=a-b , |a-c|=a-c ,|b+c|=-(b+c)=-b-c3、绝对值的性质任何一个有理数的绝对值都就是非负数,也就就是说绝对值具有非负性。
所以,a取任何有理数,都有|a|≥0。
即⑴0的绝对值就是0;绝对值就是0的数就是0、即:a=0 <═> |a|=0;⑵一个数的绝对值就是非负数,绝对值最小的数就是0、即:|a|≥0;⑶任何数的绝对值都不小于原数。
即:|a|≥a;⑷绝对值就是相同正数的数有两个,它们互为相反数。
即:若|x|=a(a>0),则x=±a;⑸互为相反数的两数的绝对值相等。
即:|-a|=|a|或若a+b=0,则|a|=|b|;⑹绝对值相等的两数相等或互为相反数。
即:|a|=|b|,则a=b或a=-b;⑺若几个数的绝对值的与等于0,则这几个数就同时为0。
即|a|+|b|=0,则a=0且b=0。
(非负数的常用性质:若几个非负数的与为0,则有且只有这几个非负数同时为0)经典考题已知|a+3|+|2b-2|+|c-1|=0,求a+b+c的值解:因为|a+3|≥0,|2b-2|≥0,|c-1|≥0,且|a+3|+|2b-2|+|c-1|=0所以|a+3|=0 ,|2b-2|=0 ,|c-1|=0即a=-3 ,b=1 ,c=1所以a+b+c=-3+1+1=-14、有理数大小的比较⑴利用数轴比较两个数的大小:数轴上的两个数相比较,左边的总比右边的小;⑵利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小;异号两数比较大小,正数大于负数。
5、绝对值的化简①当a≥0时, |a|=a ; ②当a≤0时, |a|=-a6、已知一个数的绝对值,求这个数一个数a的绝对值就就是数轴上表示数a的点到原点的距离,一般地,绝对值为同一个正数的有理数有两个,它们互为相反数,绝对值为0的数就是0,没有绝对值为负数的数。
如:|a|=5,则a=土5有理数的加减法1、有理数的加法法则⑴同号两数相加,取相同的符号,并把绝对值相加;⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;⑶互为相反数的两数相加,与为零;⑷一个数与零相加,仍得这个数。
2、有理数加法的运算律⑴加法交换律:a+b=b+a⑵加法结合律:(a+b)+c=a+(b+c)在运用运算律时,一定要根据需要灵活运用,以达到化简的目的,通常有下列规律:①互为相反数的两个数先相加——“相反数结合法”;②符号相同的两个数先相加——“同号结合法”;③分母相同的数先相加——“同分母结合法”;④几个数相加得到整数,先相加——“凑整法”;⑤整数与整数、小数与小数相加——“同形结合法”。
3、加法性质一个数加正数后的与比原数大;加负数后的与比原数小;加0后的与等于原数。
即:⑴当b>0时,a+b>a ⑵当b<0时,a+b<a ⑶当b=0时,a+b=a4、有理数减法法则减去一个数,等于加上这个数的相反数。
用字母表示为:a-b=a+(-b)。
5、有理数加减法统一成加法的意义在有理数加减法混合运算中,根据有理数减法法则,可以将减法转化成加法后,再按照加法法则进行计算。
在与式里,通常把各个加数的括号与它前面的加号省略不写,写成省略加号的与的形式。
如:(-8)+(-7)+(-6)+(+5)=-8-7-6+5、与式的读法:①按这个式子表示的意义读作“负8、负7、负6、正5的与”②按运算意义读作“负8减7减6加5”6、有理数加减混合运算中运用结合律时的一些技巧:Ⅰ、把符号相同的加数相结合(同号结合法)(-33)-(-18)+(-15)-(+1)+(+23)原式=-33+(+18)+(-15)+(-1)+(+23) (将减法转换成加法)=-33+18-15-1+23 (省略加号与括号)=(-33-15-1)+(18+23) (把符号相同的加数相结合)=-49+41 (运用加法法则一进行运算)=-8 (运用加法法则二进行运算)Ⅱ、把与为整数的加数相结合 (凑整法)(+6、6)+(-5、2)-(-3、8)+(-2、6)-(+4、8)原式=(+6、6)+(-5、2)+(+3、8)+(-2、6)+(-4、8) (将减法转换成加法) =6、6-5、2+3、8-2、6-4、8 (省略加号与括号)=(6、6-2、6)+(-5、2-4、8)+3、8 (把与为整数的加数相结合)=4-10+3、8 (运用加法法则进行运算)=7、8-10 (把符号相同的加数相结合,并进行运算) =-2、2 (得出结论)Ⅲ、把分母相同或便于通分的加数相结合(同分母结合法)--+-+-原式=(--)+(-+)+(+-)=-1+0-=-1Ⅳ、既有小数又有分数的运算要统一后再结合(先统一后结合)(+0、125)-(-3)+(-3)-(-10)-(+1、25)原式=(+)+(+3)+(-3)+(+10)+(-1)=+3-3+10-1=(3-1)+(-3)+10=2-3+10=-3+13=10Ⅴ、把带分数拆分后再结合(先拆分后结合)-3+10-12+4原式=(-3+10-12+4)+(-+)+(-)=-1++=-1++-Ⅵ、分组结合2-3-4+5+6-7-8+9…+66-67-68+69原式=(2-3-4+5)+(6-7-8+9)+…+(66-67-68+69)=0Ⅶ、先拆项后结合(1+3+5+7...+99)-(2+4+6+8 (100)有理数的乘除法1、有理数的乘法法则法则一:两数相乘,同号得正,异号得负,并把绝对值相乘;(“同号得正,异号得负”专指“两数相乘”的情况,如果因数超过两个,就必须运用法则三)法则二:任何数同0相乘,都得0;法则三:几个不就是0的数相乘,负因数的个数就是偶数时,积就是正数;负因数的个数就是奇数时,积就是负数;法则四:几个数相乘,如果其中有因数为0,则积等于0、2、倒数乘积就是1的两个数互为倒数,其中一个数叫做另一个数的倒数,用式子表示为a·=1(a≠0),就就是说a与互为倒数,即a就是的倒数,就是a的倒数。