苏教必修2立体几何初步初步教案学案立体几何第11课时

合集下载

苏教版高中数学必修二—学同步教学案立体几何§空间几何体

苏教版高中数学必修二—学同步教学案立体几何§空间几何体

§1.1空间几何体1.1.1 棱柱、棱锥和棱台1.1.2 圆柱、圆锥、圆台和球【课时目标】认识柱、锥、台、球的结构特征,并能运用这些特征描述现实生活中简单物体的结构.1.一般地,由一个________________沿某一方向平移形成的空间几何体叫做棱柱.平移起止位置的两个面叫做棱柱的________,多边形的边平移所形成的面叫做棱柱的________,两侧面的公共边叫________.2.当棱柱的一个底面__________________时,得到的几何体叫做棱锥(如图所示).3.棱台是棱锥被平行于底面的一个平面所截后,______和________之间的部分.4.将________、________________、______________分别绕着它的________、______________、____________________所在的直线旋转一周,形成的几何体分别叫做圆柱、圆锥、圆台,这条直线叫做______,垂直于轴的边旋转而成的圆面叫做________,不垂直于轴的边旋转而成的曲面叫做________,无论旋转到什么位置,这条边都叫做________.5.________绕着它的______所在的直线旋转一周所形成的曲面叫做球面,球面围成的几何体叫做______,简称______.一、填空题1.将梯形沿某一方向平移形成的几何体是________.2.有下列命题:①棱柱的底面一定是多边形;②棱台的底面一定是梯形;③棱柱被平面截成的两部分可以都是棱柱;④棱锥被平面截成的两部分不可能都是棱锥.其中正确命题的序号是________.3.棱台具备的性质是________(填序号).①两底面相似;②侧面都是梯形;③侧棱都相等;④侧棱延长后都交于一点.4.下列命题中正确的是________(填序号).①有两个面平行,其余各面都是四边形的几何体叫棱柱;②有两个面平行,其余各面都是平行四边形的几何体叫棱柱;③有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱;④用一个平面去截棱锥,底面和截面之间的部分组成的几何体叫棱台.5.以任意方式截一个几何体,各个截面都是圆,则这个几何体一定是________.6.右图所示的几何体是由下列哪个平面图形通过旋转得到的________(填序号).7.下列叙述中错误的是________.(填序号)①以直角三角形的一边为轴旋转所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆;④用一个平面去截圆锥,得到一个圆锥和一个圆台.8.如图所示的几何体是由一个圆柱挖去一个以圆柱上底面为底面,下底面圆心为顶点的圆锥而得到的组合体,现用一个竖直的平面去截这个组合体,则截面图形可能是______(填序号).9.在下面的四个平面图形中,哪几个是侧棱都相等的四面体的展开图?其序号是______.二、解答题10.如图所示为长方体ABCD—A′B′C′D′,当用平面BCFE把这个长方体分成两部分后,各部分形成的多面体还是棱柱吗?如果不是,请说明理由;如果是,指出底面及侧棱.11.如图所示,已知△ABC,以AB为轴,将△ABC旋转360°.试指出这个旋转体是由怎样的简单几何体构成的?画出这个旋转体的直观图.能力提升12.一个三棱锥的各棱长均相等,其内部有一个内切球,即球与三棱锥的各面均相切(球在三棱锥的内部,且球与三棱锥的各面只有一个交点),过一条侧棱和对边的中点作三棱锥的截面,所得截面是下列______图形.(填序号)13.如图,在底面半径为1,高为2的圆柱上A点处有一只蚂蚁,它要围绕圆柱由A点爬到B点,问蚂蚁爬行的最短距离是多少?1.学习本节知识,要注意结合集合的观点来认识各种几何体的性质,还要注意结合动态直观图从运动变化的观点认识棱柱、棱锥和棱台的关系.2.在讨论旋转体的性质时轴截面具有极其重要的作用,它决定着旋转体的大小、形状,旋转体的有关元素之间的关系可以在轴截面上体现出来.轴截面是将旋转体问题转化为平面问题的关键.3.几何体表面距离最短问题需要把表面展开在同一平面上,然后利用两点间距离的最小值是连结两点的线段长求解.第1章立体几何初步§1.1空间几何体1.1.1棱柱、棱锥和棱台1.1.2圆柱、圆锥、圆台和球答案知识梳理1.平面多边形底面侧面侧棱2.收缩为一个点3.截面底面4.矩形直角三角形直角梯形一边一直角边垂直于底边的腰轴底面侧面母线5.半圆直径球体球作业设计1.四棱柱 2.①③3.①②④解析用棱台的定义去判断.4.③解析①、②的反例图形如图所示,④显然不正确.5.球体 6.①7.①②③④8.(1)(5)解析一个圆柱挖去一个圆锥后,剩下的几何体被一个竖直的平面所截后,圆柱的轮廓是矩形除去一条边,圆锥的轮廓是三角形除去一条边或抛物线的一部分.9.①②10.解截面BCFE右侧部分是棱柱,因为它满足棱柱的定义.它是三棱柱BEB′—CFC′,其中△BEB′和△CFC′是底面.EF,B′C′,BC是侧棱,截面BCFE左侧部分也是棱柱.它是四棱柱ABEA′—DCFD′.其中四边形ABEA′和四边形DCFD′是底面.A′D′,EF,BC,AD为侧棱.11.解这个旋转体可由一个大圆锥挖去一个同底面的小圆锥而得到,直观图如图所示.12.②13.解把圆柱的侧面沿AB剪开,然后展开成为平面图形——矩形,如图所示,连结AB′,则AB′即为蚂蚁爬行的最短距离.∵AB=A′B′=2,AA′为底面圆的周长,且AA′=2π×1=2π,∴AB′=A′B′2+AA′2=4+(2π)2=21+π2,即蚂蚁爬行的最短距离为21+π2.1.1.3中心投影和平行投影【课时目标】1.了解中心投影和平行投影.2.能画出简单空间图形(柱、锥、台、球及其组合体)的三视图.3.能识别三视图所表示的立体模型.1.平行投影与中心投影的不同之处在于:平行投影的投影线是________,而中心投影的投影线________.2.三视图包括__________、__________和__________,其中几何体的____________和__________高度一样,__________与____________长度一样,__________与__________宽度一样.一、选择题1.人在灯光下走动,当人逐渐远离灯光时,其影子的长度将________.2.两条相交直线的平行投影是________.3.如图所示,下列几何体各自的三视图中,有且仅有两个视图相同的是(填序号)________.4.一个长方体去掉一角的直观图如图所示,关于它的三视图,下列画法正确的是________(填序号).5.某几何体的三视图如图所示,那么这个几何体是________________________________.6.若一个三棱柱的三视图如图所示,则这个三棱柱的高(两底面之间的距离)和底面边长分别是________和________.7.用小正方体搭成一个几何体,如图是它的主视图和左视图,搭成这个几何体的小正方体的个数最多为________个.8.根据如图所示俯视图,找出对应的物体.(1)对应________;(2)对应________;(3)对应________;(4)对应________;(5)对应________.9.如图1所示,E,F分别为正方体的面AD1,BC1的中心,则四边形BFD1E在该正方体的面上的正投影可能是图2中的________.(填上可能的序号)二、解答题10.在下面图形中,图(b)是图(a)中实物画出的主视图和俯视图,你认为正确吗?如果不正确,请找出错误并改正,然后画出左视图(尺寸不作严格要求).11.如图是截去一角的长方体,画出它的三视图.能力提升12.如图,螺栓是棱柱和圆柱的组合体,画出它的三视图.13.用小立方体搭成一个几何体,使它的主视图和俯视图如图所示,搭建这样的几何体,最多要几个小立方体?最少要几个小立方体?在绘制三视图时,要注意以下三点:1.若两相邻物体的表面相交,表面的交线是它们的原分界线,在三视图中,分界线和可见轮廓都用实线画出,不可见轮廓用虚线画出.2.一个物体的三视图的排列规则是:俯视图放在主视图的下面,长度和主视图一样.左视图放在主视图的右面,高度和主视图一样,宽度和俯视图一样,简记为“长对正,高平齐,宽相等”.3.在画物体的三视图时应注意观察角度,角度不同,往往画出的三视图不同.1.1.3中心投影和平行投影答案知识梳理1.平行的交于一点2.主视图左视图俯视图左视图主视图俯视图主视图左视图俯视图作业设计1.变长解析中心投影的性质.2.两条相交直线或一条直线3.②④解析在各自的三视图中①正方体的三个视图都相同;②圆锥有两个视图相同;③三棱台的三个视图都不同;④正四棱锥有两个视图相同.4.① 5.四棱锥6.2 4解析三棱柱的高同左视图的高,左视图的宽度恰为底面正三角形的高,故底边长为4.7.78.(1)D(2)A(3)E(4)C(5)B9.②③解析图②为四边形BFD1E在正方体前后及上下面上的正投影,③为其在左右侧面上的正投影.10.解图(a)是由两个长方体组合而成的,主视图正确,俯视图错误,俯视图应该画出不可见轮廓线(用虚线表示),左视图轮廓是一个矩形,有一条可视的交线(用实线表示),正确画法如图所示.11.解该图形的三视图如图所示.12.解该物体是由一个正六棱柱和一个圆柱组合而成的,主视图反映正六棱柱的三个侧面和圆柱侧面,左视图反映正六棱柱的两个侧面和圆柱侧面,俯视图反映该物体投影后是一个正六边形和一个圆(中心重合).它的三视图如图所示.13.解由于主视图中每列的层数即是俯视图中该列的最大数字,因此,用的立方块数最多的情况是每个方框都用该列的最大数字,即如图①所示,此种情况共用小立方块17块.而搭建这样的几何体用方块数最少的情况是每列只要有一个最大的数字,其他方框内的数字可减少到最少的1,即如图②所示,这样的摆法只需小立方块11块.1.1.4直观图画法【课时目标】1.了解斜二测画法的概念.2.会用斜二测画法画出一些简单的平面图形和立体图形的直观图.用斜二测画法画水平放置的平面图形直观图的步骤:(1)在空间图形中取互相________的x轴和y轴,两轴交于O点,再取z轴,使∠xOz=________,且∠yOz=________.(2)画直观图时把它们画成对应的x′轴、y′轴和z′轴,它们相交于O′,并使∠x′O′y′=______(或______),∠x′O′z′=________,x′轴和y′轴所确定的平面表示水平面.(3)已知图形中平行于x轴、y轴或z轴的线段,在直观图中分别画成平行于x′轴、y′轴或z′轴的线段.(4)已知图形中平行于x轴或z轴的线段,在直观图中保持原长度________;平行于y轴的线段,长度为原来的________.一、填空题1.下列结论:①角的水平放置的直观图一定是角;②相等的角在直观图中仍然相等;③相等的线段在直观图中仍然相等;④两条平行线段在直观图中对应的两条线段仍然平行.其中正确的有__________(填序号).2.具有如图所示直观图的平面图形ABCD的形状是____________.3.如图,正方形O′A′B′C′的边长为1 cm,它是水平放置的一个平面图形的直观图,则原图的周长是________ cm.4.下面每个选项的2个边长为1的正△ABC的直观图不是全等三角形的一组是______(填序号).5.△ABC面积为10,以它的一边为x轴画出直观图,其直观图的面积为________.6.一个水平放置的平面图形的直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则该平面图形的面积等于__________.7.利用斜二测画法得到:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④菱形的直观图是菱形.以上结论,正确的是______________.8.水平放置的△ABC的斜二测直观图如图所示,已知A′C′=3,B′C′=2,则AB 边上的中线的实际长度为____________.9.如图所示,为一个水平放置的正方形ABCO,它在直角坐标系xOy中,点B的坐标为(2,2),则在用斜二测画法画出的正方形的直观图中,顶点B′到x′轴的距离为______.二、解答题10.如图所示,已知几何体的三视图,用斜二测画法画出它的直观图.11.如图所示,梯形ABCD中,AB∥CD,AB=4 cm,CD=2 cm,∠DAB=30°,AD=3 cm,试画出它的直观图.能力提升12.已知△ABC的平面直观图△A′B′C′是边长为a的正三角形,那么原△ABC的面积为________.13.在水平放置的平面α内有一个边长为1的正方形A′B′C′D′,如图,其中的对角线A′C′在水平位置,已知该正方形是某个四边形用斜二测画法画出的直观图,试画出该四边形的真实图形并求出其面积.直观图与原图形的关系1.斜二测画法是联系直观图和原图形的桥梁,可根据它们之间的可逆关系寻找它们的联系;在求直观图的面积时,可根据斜二测画法,画出直观图,从而确定其高和底边等;而求原图形的面积可把直观图还原为原图形;此类题易混淆原图形与直观图中的垂直关系而出错,在原图形中互相垂直的直线在直观图中不一定垂直,反之也是.所以在求面积时应按照斜二测画法的规则把原图形与直观图都画出来,找出改变量与不变量.用斜二测画法画出的水平放置的平面图形的直观图的面积是原图形面积的24倍.2.在用斜二测画法画直观图时,平行线段仍然平行,所画平行线段之比仍然等于它的真实长度之比,但所画夹角大小不一定是其真实夹角大小.1.1.4 直观图画法 答案知识梳理 (1)垂直 90° 90° (2)45° 135° 90° (4)不变 一半 作业设计 1.①②⑤解析 由斜二测画法的规则判断. 2.直角梯形 3.8 解析根据直观图的画法,原几何图形如图所示,四边形OABC 为平行四边形,OB =22,OA =1,AB =3,从而原图周长为8 cm .4.③ 5.522 解析 设△ABC 面积为S ,则直观图面积S ′=24S =522.6.2+ 2解析 如图1所示,等腰梯形A ′B ′C ′D ′为水平放置的原平面图形的直观图,作D ′E ′∥A ′B ′交B ′C ′于E ′,由斜二测直观图画法规则,直观图是等腰梯形A ′B ′C ′D ′的原平面图形为如图2所示的直角梯形ABCD ,且AB =2,BC =1+2,AD =1,所以S ABCD =2+2.图1 图27.①②解析 斜二测画法得到的图形与原图形中的线线相交、相对线线平行关系不会改变,因此三角形的直观图是三角形,平行四边形的直观图是平行四边形.8.2.5解析 由直观图知,原平面图形为直角三角形,且AC =A ′C ′=3,BC =2B ′C ′=4,计算得AB =5,所求中线长为2.5.9.22解析画出直观图,则B ′到x ′轴的距离为22·12OA =24OA =22. 10.解 (1)作出长方体的直观图ABCD -A 1B 1C 1D 1,如图a 所示;(2)再以上底面A 1B 1C 1D 1的对角线交点为原点建立x ′,y ′,z ′轴,如图b 所示,在z ′上取点V ′,使得V ′O ′的长度为棱锥的高,连结V ′A 1,V ′B 1,V ′C 1,V ′D 1,得到四棱锥的直观图,如图b ;(3)擦去辅助线和坐标轴,遮住部分用虚线表示,得到几何体的直观图,如图c .11.解 (1)如图a 所示,在梯形ABCD 中,以边AB 所在的直线为x 轴,点A 为原点,建立平面直角坐标系xOy .如图b 所示,画出对应的x ′轴,y ′轴,使∠x ′O ′y ′=45°.(2)在图a 中,过D 点作DE ⊥x 轴,垂足为E .在x ′轴上取A ′B ′=AB =4 cm ,A ′E ′=AE =323≈2.598 cm ;过点E ′作E ′D ′∥y ′轴,使E ′D ′=12ED ,再过点D ′作D ′C ′∥x ′轴,且使D ′C ′=DC =2 cm .(3)连结A ′D ′、B ′C ′,并擦去x ′轴与y ′轴及其他一些辅助线,如图c 所示,则四边形A ′B ′C ′D ′就是所求作的直观图.12.62a 2 解析 画△ABC 直观图如图(1)所示:则A′D′=32a,又∠x′O′y′=45°,∴A′O′=62a.画△ABC的实际图形,如图(2)所示,AO=2A′O′=6a,BC=B′C′=a,∴S△ABC=12BC·AO=62a2.13.解四边形ABCD的真实图形如图所示,∵A′C′在水平位置,A′B′C′D′为正方形,∴∠D′A′C′=∠A′C′B′=45°,∴在原四边形ABCD中,DA⊥AC,AC⊥BC,∵DA=2D′A′=2,AC=A′C′=2,∴S四边形ABCD=AC·AD=22.。

苏教版高中数学必修2教案立体几何全部教案

苏教版高中数学必修2教案立体几何全部教案

第一章:空间几何体1.1.1柱、锥、台、球的结构特征一、教学目标1.知识与技能(1)通过实物操作,增强学生的直观感知。

(2)能根据几何结构特征对空间物体进行分类。

(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

(4)会表示有关于几何体以及柱、锥、台的分类。

2.过程与方法(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。

(2)让学生观察、讨论、归纳、概括所学的知识。

3.情感态度与价值观(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。

(2)培养学生的空间想象能力和抽象括能力。

二、教学重点、难点重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。

难点:柱、锥、台、球的结构特征的概括。

三、教学用具(1)学法:观察、思考、交流、讨论、概括。

(2)实物模型、投影仪四、教学思路(一)创设情景,揭示课题1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。

教师对学生的活动及时给予评价。

2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。

根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。

(二)、研探新知1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。

2.观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么?3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果。

在此基础上得出棱柱的主要结构特征。

(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。

概括出棱柱的概念。

4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。

5.提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。

立体几何初步教案

立体几何初步教案

立体几何初步教案一、教学目标1. 使学生掌握集合的概念和性质,集合的元素特征,有关数的集合。

2. 培养学生的思维能力,提高学生理解掌握概念的能力。

3. 培养学生认识事物的能力,引导学生爱班、爱校、爱国。

二、教学重点集合的概念,集合元素的三个特征。

三、教学难点集合元素的三个特征,数集与数集关系。

四、教学方法尝试教学法、比较法、谈话法。

五、教学准备1. 制作多媒体课件,包括集合的概念、性质、元素特征等知识点。

2. 准备一些立体几何图形,如长方体、正方体等。

3. 准备一些实际生活中的例子,如班级学生、学校建筑物等。

六、教学过程1. 导入新课:通过展示一些立体几何图形,引导学生回忆初中所学过的平面几何知识,并思考如何将这些知识应用到立体几何中。

2. 学习新课:通过讲解、演示和比较的方法,引导学生掌握集合的概念和性质,以及集合元素的三个特征。

同时,通过例子和练习题加深学生对知识点的理解和掌握。

3. 巩固练习:通过举例和练习题,让学生自己动手解决问题,巩固所学知识。

同时,通过比较的方法,引导学生发现数集与数集之间的关系。

4. 归纳小结:通过总结本节课所学内容,引导学生发现自己的不足之处,并鼓励他们继续努力。

同时,通过布置作业和预告下一节课的内容,引导学生做好预习和复习工作。

七、教学评价1. 课堂练习:通过课堂练习题检查学生对集合概念和性质的掌握情况。

2. 课后作业:通过课后作业题加深学生对知识点的理解和掌握,同时也可以检查他们的学习效果。

3. 单元测试:通过单元测试题检查学生对本单元内容的掌握情况,发现学生的不足之处并指导他们进行改进。

江苏省丹阳高级中学高一数学苏教版必修2第1章《立体几何初步》教案:1.2.3 直线与平面的位置关系(1)

江苏省丹阳高级中学高一数学苏教版必修2第1章《立体几何初步》教案:1.2.3 直线与平面的位置关系(1)

第1章 立体几何初步 第九课时 1.2.3 直线与平面的位置关系(1)【教学目标】1.了解直线与平面的位置关系及图形语言和符号语言; 2.了解直线与平面平行的定义;3.理解和掌握直线与平面平行的判定定理和性质定理并初步用; 4.进一步培养学生的观察发现能力和空间想象能力。

【教学重点】直线与平面平行的判定定理,性质定理及应用。

【教学难点】直线与平面平行的性质定理的发现和理解。

【过程方法】1.通过师生之间、学生之间的互相交流,促使学生的共同学习;2.通过直观感知、操作演示归纳出直线和平面的三种位置关系的概念,明确数学概念的严谨性和科学性;3.通过两个定理解决有关问题,使学生感受到化归的数学思想,培养学生科学地分析问题、解决问题的能力。

【教学过程】 一、引入新课观察下图正方体1111D C B A ABCD ,回答下列问题: (1)棱11B A (或11D C )所在直线与平面AC 有几个公共点; (2)对角线C A 1(或棱1AA )所在直线与平面AC 有几个公共点;(3)棱AD 所在直线与平面AC 有几个公共点。

二、讲授新课1.直线与平面的位置关系如果一 条直线a 和一 个平面α没有公共点,则称直线a 与平面α平行。

如果一 条直线a 和一 个平面α有且只有一个公共点,则称直线a 与平面α相交。

A BC DA 1B 1D 1C 1如果一 条直线a 和一 个平面α有无数个公共点,则称直线a 在平面α内。

我们把直线与平面相交或平行的情况称为直线在平面外,用符号表示为α⊄a 。

2.直线与平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线与这个平面平行。

用符号表示: α⇒⎪⎭⎪⎬⎫α⊂α⊄//a b //a b a 。

三、例题选讲例1.如图,已知E ,F 分别是三棱锥A-BCD 的侧棱AB ,AD 的中点,求证:EF//平面BCD 。

3.直线与平面平行的性质定理如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。

高一数学苏教版必修2第1章《立体几何初步》教案:1.1.4 直观图画法

高一数学苏教版必修2第1章《立体几何初步》教案:1.1.4 直观图画法

1.1.4 直观图画法【教学目标】1. 了解中心投影的概念及物体的透视图;2. 理解平行投影(斜投影)在作物体直观图的实际意义及其应用; 3. 掌握斜二测画法的基本步骤及画法的基本特征。

【教学重点】斜二测画法的基本步骤。

【教学难点】用斜二测画法作空间物体的直观图。

【过程方法】通过组织学生画空间几何图形的直观图,进一步培养学生的空间想象能力和逻辑推理能力;通过师生之间、同学之间相互交流,培养学生合作学习的习惯。

【教学过程】1.中心投影、斜投影、直观图在中心投影(透视)中,水平线(或铅直线)仍保持水平(或铅直),但斜的平行线则会相交,交点称为消点。

用透视法所得的图形称为透视图。

中心投影(透视)虽然可以显示空间图形的直观形象,但作图方法复杂,又不易度量,因此在立体几何中通常采用斜投影来画空间图形的直观图。

2.斜二测画法规则①在空间图形中取互相垂直的x 轴和y 轴,两轴相交于O 点,再取z 轴,使090xOy =∠,且090yOz =∠;②画直观图时把它们画成对应的'x 轴、'y 轴和'z 轴,它们相交于'O ,并使045'y 'O 'x =∠(或0135),090'z 'O 'x =∠,'x 轴、'y 轴所确定的平面表示水平平面;③已知图形中平行于x 轴、y 轴或z 轴的线段,在直观图中分别画成平行于'x 轴、'y 轴和'z 轴的线段;④已知图形中平行于x 轴、z 轴的线段,在直观图中保持原长度不变;平行于y 轴的线段,其长度变为原来的一半。

例1. 作正方形和正方体的直观图。

例2.作圆、圆柱、圆锥和圆台的直观图。

【练习】作底面边长均为4cm,高为5cm4cm,宽为2cm,高为2cm面图形。

的直观图,试画出原平是水平放置的平面图形、如图,例'''4CBABˊ【课堂练习】课本P16 练习1、2、3; 【课后作业】1.如图的平面图形是 三角形。

苏教版高中数学必修二第课时立体几何初步教案(2)

苏教版高中数学必修二第课时立体几何初步教案(2)

第二课时圆柱、圆锥、圆台、球
掌握它们的生成
【精典范例】
例1:给出下列命题:
甲:圆柱两底面圆周上任意两点的连线是圆柱的母线
乙:圆台的任意两条母线必相交
丙:球面作为旋转面,只有一条旋转轴,没
有母线。

其中正确的命题的有(A)
A.0 B. 1 C. 2 D. 3
例2:如图,将直角梯形ABCD绕AB边所在的直线旋转一周,由此形成的几何体是由哪些简单几何体构成的?。

【解】见书9页例1
例3:指出图中的几何体是由哪些简单几何体构成的?。

甲乙
【解】见书9页例2
思维点拨:
如何解答一个复杂几何体的组成情况,主要是将原几何体分割成柱、锥、台和球后再解答。

如:以正六边行的一边所在直线为轴旋转一周,所得几何体由哪些简单几何体组成的?
解:是由一个圆柱,两个圆台挖去两个圆锥所得几何体。

A B
C
D
追踪训练
1. 指出下列几何体分别由哪些简单几何体构成?
听课随笔
答:略
2. 如图,将平行四边形ABCD绕AB旋转一周,由此形成的几何体是由哪些简单几何体构成的?
D C
答:圆锥和圆柱
3.充满气的车轮内胎可以通过什么图形旋转生成?
答:圆
【师生互动】
学生质疑
教师释疑。

高中数学 第一章《立体几何初步》1-2课时教学案 苏教版必修2

高中数学 第一章《立体几何初步》1-2课时教学案 苏教版必修2

1。

1.1 第1课时棱柱、棱锥、棱台学习目标:1。

认识棱柱、棱锥和棱台的结构特征,并能运用这些特征描述现实生活中简单物体的结构;2。

了解棱柱、棱锥和棱台的概念;3。

初步培养学生的空间想象能力和抽象括能力.学习重点:让学生感受大量空间实物及模型、概括出棱柱、棱锥和棱台的结构特征.学习难点:棱柱、棱锥和棱台的结构特征的概括.学习过程:一、课前准备:自学课本P4~71.基本概念:①棱柱:由的空间几何体叫做棱柱.叫做棱柱的底面,叫做棱柱的侧面.棱柱的特点:两个底面是,且 ,侧面都是.②棱锥:当时,得到的几何体叫做棱锥.棱锥的特点:底面是,侧面是.③棱台:用,另一个叫做棱台.即.棱台的特点:两个底面是,侧面是,侧棱.④多面体:由的几何体叫做多面体.2.由平面六边形沿某一方向平移形成的空间几何体是.3。

下列说法中,正确的有.①棱柱的侧面可以是三角形②正方体的各条棱都相等③棱柱的各条侧棱都相等④正方体和长方体都是特殊的四棱柱⑤用一个平面去截一个长方体,截面一定是长方形4。

已知一长方体,根据图中三种状态所显示的数字,可推出“?”处的数字是.5.有两个面互相平行,其余各面都是梯形的多面体是.①棱柱②棱锥③棱台④可能是棱台, 一定不是棱柱或棱锥6.构成多面体的面最少是个,该多面体称为或.二、合作探究:例1。

棱柱的特点是:⑴两个底面是全等的多边形,⑵多边形的对应边互相平行,⑶棱柱的侧面都是平行四边形.反过来,若一个几何体具备上述三点,能构成棱柱吗?或者说,上面三点能作为棱柱的定义吗?例2。

三棱柱有个面,个顶点,条棱,可以称为五面体;还有其他五面体吗? 试举一些六面体.例3.仿照教材讲解,画一个三棱柱、四棱台和五棱锥,并归纳作图方法、步骤.例4.如图,长方体ABCD—A1B1C1D1的长、宽、高分别是5cm、4cm、3cm,一只蚂蚁从A到C1点,沿着表面爬行的最短距离是多少?变式训练:四面体P—ABC中,PA=PB=PC=2,∠APB=∠BPC=∠APC=30°,一只蚂蚁从A点出发沿四面体的表面绕一周,再回到A点,蚂蚁经过的最短路程是多少?三、课堂练习:课本第8页练习第1、2、3题.四、回顾小结:1。

金版学案高中数学第1章立体几何初步1.11.1.1棱柱棱锥和棱台课件苏教版必修2

金版学案高中数学第1章立体几何初步1.11.1.1棱柱棱锥和棱台课件苏教版必修2

在正方形 A′B′C′D′中,B′C′=4 cm,则 O′B′=2 2 cm,O′E′=2 cm . 在直角梯形 O′OBB′中, BB′= OO′2+(OB-O′B′)2
= 172+(8 2-2 2)2 =19 (cm) .
在直角梯形 O′OEE′中, EE′= OO′2+(OE-O′E′)2
= 172+(8-2)2 =5 13 (cm). 即这个棱台的侧棱长为 19 cm,斜高为 5 13 cm .
规律总结 正棱台中两底面中心连线、相应的边心距和斜高组成 一个直角梯形;两底面中心连线、侧棱和两底面相应的对 角线的一半组成一个直角梯形;斜高、侧棱和两底面边长 的一半组成一个直角梯形.正棱台的计算问题,实际上就 是这几个直角梯形中的计算问题.
答案:北
题型 3 多面体的相关量的计算 [典例 3] 如图所示,正四棱台的高是 17 cm,两底面的边长分别是 4 cm 和 16 cm, 求这个棱台的侧棱长和斜高. 分析:由于棱台是由棱锥平行于底面的平面截得的, 因此正棱锥中的有关直角三角形对应到正棱台中将转化为 直角梯形,只要找出包含侧棱和斜高的直角梯形即可求解.
题型 1 对多面体概念的理解与应用
[典例 1] 根据下列关于几何体的描述,说出几何体 的名称:
(1)由五个面围成,其中一个面是四边形,其余各面都是有一个公共顶点的三角形;
(2)由八个面围成,其中两个面互相平行且全等的正 六边形,其余各面都是平行四边形;
(3)由五个面围成,其中上下两个面都是相似三角形, 其余各面都是梯形,并且这些梯形的腰延长后交于一点.
1.一般地,我们把由若干个平面多边形围成的几何 体叫作多面体.
2.由一个平面多边形沿某一方向平移形成的空间几 何体叫作棱柱,平移起止位置的两个面叫作底面,简称 底;其余各面叫作棱柱的侧面;相邻两个侧面的公共边 叫作棱柱的侧棱;侧面与底面的公共顶点叫作棱柱的顶 点.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第11课时直线与平面垂直听课随笔
、【学习导航】
学习要求
1•掌握直线与平面的位置关系•
2 .掌握直线和平面平行的判定与性质定
理.
.3.应用直线和平面平行的判定和性质定理证明两条直线平行等有关问题.
自学评价
1. 直线和平面垂直的定义:______________
符号表示:______________________________ 垂线:___________________________________ 垂面:___________________________________ 垂足:___________________________________ 思考:在平面中,过一点有且仅有一条直线与已知直线垂直,那么在空间。

(1) 过一点有几条直线与已知平面垂直?
答:
(2) 过一点有几条平面与已知直线垂直?
答:
2.定理:过一点有且只有一条直线与已知平面垂直,过一点有且只有一个平面与已知直线垂直
3.点到平面的距离:____________________
4.直线与平面垂直的判定定理:已知:
求证:
证明:
6 .直线和平面的距离:
【精典范例】
例1:.求证:如果两条平行直线中的一条垂直于一个平面,那么另一条直线也垂直于这个平面.
思维点拔:
要证线面垂直,只要证明直线与平面内的两条相交直线垂直,或利用定义进行证明。

Rt△ ABC所在平面外一点S,且SA=SB=SC
(1)求证:点S在斜边中点D的连线SD丄面ABC
⑵若直角边BA=BC,求证:BD丄面SAC
符号表示_________________________________
5 .直线和平面垂直的性质定理: 追踪训练1
1、如图,已知PA 丄a , PB ±3 ,垂足分别为 A 、B,且 aA3 = l ,求证:AB 丄 I . 1. 已知直线l,m, n 与平面a,指出下列命 题是
否正确,并说明理由:
⑴若I 丄a ,则I 与a 相交;
(2)若 mi a ,n 1 a ,I 丄 m,I 丄 n ,贝 u I 丄
a ;
⑶若l//m,m 丄a ,n 丄a ,则l//m
2. 某空间图形的三视图如图所示,试画出 它的
直观图,并指出其中的线面垂直关 系.
例2.已知直线I 〃平面a ,求证:直线I 各 点到平面a 的距离相等.
3. 在^ABC 中,90°, SAL 面 ABC AML SC AN! SB
垂足分别为 N 、M ,
求证:AN! BC, MNL SC
例3.已知正方体 ABCD-ABQD .
(1) 求证:A I C ± B 1D 1 ;
(2) 若M 、N 分别为B 1D 1与C 1D 上的点, 且
MN 丄 B 1D 1 , MN 丄 C 1D ,求证:MN//A 1C .
学生质疑
点评:要证线线平行均可利用线面垂 直的性质。

追踪训练2
教师释疑
听课随笔。

相关文档
最新文档