必修2(立体几何初步、平面解析几何初步)
高中数理化课程框架有哪些主要的部分

高中数学课程分必修和选修。
必修课程由5个模块组成;选修课程有4个系列,其中系列1、系列2由若干模块组成,系列3、系列4由若干专题组成;每个模快2学分(36学时),每个专题1学分(18学时),每2个专题可组成1个模块。
一、必修课程必修课程是每个学生都必须学习的数学内容,包括5个模块。
数学1:集合,函数概念与基本初等函数I(指数函数、对数函数、幂函数)。
数学2:立体几何初步,平面解析几何初步。
数学3:算法初步,统计,概率。
数学4:基本初等函数II(三角函数)、平面上的向量,三角恒等变换。
数学5:解三角形,数列,不等式。
二、选修课程对于选修课程,学生可以根据自己的兴趣和对未来发展的愿望进行选择。
选修课程由系列1,系列2,系列3,系列4等组成。
1、系列1:由2个模块组成。
选修1-1:常用逻辑用语、圆锥曲线与方程、导数及其初步应用。
选修1-2:统计案例、推理与证明、数系扩充及复数的引入、框图。
2、系列2:由3个模块组成。
选修2-1:常用逻辑用语、圆锥曲线与方程、空间中的向量与立体几何。
选修2-2:导数及其应用、推理与证明、数系的扩充与复数的引入。
选修2-3:计数原理、统计案例、概率。
3、系列3:由6个专题组成。
选修3-1:数学史选讲;选修3-2:信息安全与密码;选修3-3:球面上的几何;选修3-4:对称与群;选修3-5:欧拉公式与闭曲面分类;选修3-6:三等分角与数域扩充。
4、系列4:由10个专题组成。
选修4-1:几何证明选讲;选修4-2:矩阵与变换;选修4-3:数列与差分;选修4-4:坐标系与参数方程;选修4-5:不等式选讲;选修4-6:初等数论初步;选修4-7:优选法与试验设计初步;选修4-8:统筹法与图论初步;选修4-9:风险与决策;选修4-10:开关电路与布尔代数。
高中物理课程分必修和选修。
必修课程由2个模块组成,必修1和必修2,主要为力学;选修课程有3个系列,其中系列3-1、3-2为电磁学,系列3-3、3-4、3-5为分子物理、原子物理和气体方程等。
天津高中数学必修+选修全部知识点精华归纳总结

高三第一轮复习资料(个人汇编请注意保密)引言1.课程内容:必修课程由5个模块组成:必修1:集合、函数概念与基本初等函数(指、对、幂函数)必修2:立体几何初步、平面解析几何初步。
必修3:算法初步、统计、概率。
必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。
必修5:解三角形、数列、不等式。
以上是每一个高中学生所必须学习的。
上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。
不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。
此外,基础内容还增加了向量、算法、概率、统计等内容。
选修课程有4个系列:系列1:由2个模块组成。
选修1—1:常用逻辑用语、圆锥曲线与方程、导数及其应用。
选修1—2:统计案例、推理与证明、数系的扩充与复数、框图系列2:由3个模块组成。
选修2—1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。
选修2—2:导数及其应用,推理与证明、数系的扩充与复数选修2—3:计数原理、随机变量及其分布列,统计案例。
系列3:由6个专题组成。
选修3—1:数学史选讲。
选修3—2:信息安全与密码。
选修3—3:球面上的几何。
选修3—4:对称与群。
选修3—5:欧拉公式与闭曲面分类。
选修3—6:三等分角与数域扩充。
系列4:由10个专题组成。
选修4—1:几何证明选讲。
选修4—2:矩阵与变换。
选修4—3:数列与差分。
选修4—4:坐标系与参数方程。
选修4—5:不等式选讲。
选修4—6:初等数论初步。
选修4—7:优选法与试验设计初步。
选修4—8:统筹法与图论初步。
选修4—9:风险与决策。
选修4—10:开关电路与布尔代数。
2.重难点及考点:重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数难点:函数、圆锥曲线高考相关考点:⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用⑼直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布⑿导数:导数的概念、求导、导数的应用⒀复数:复数的概念与运算必修1数学知识点第一章:集合与函数概念§1.1.1、集合1、把研究的对象统称为元素,把一些元素组成的总体叫做集合。
2020人教版高一数学必修2(B版)电子课本课件【全册】

1.1.4 投影与直观图
1.1.6 棱柱、棱锥、棱台和球的表面积
实习作业
1.2.2 空间中的平行关系
本章小结
第二章 平面解析几何初步
2.1.2 平面直角坐标系中的基本公式
2.2.2 直线方程的几种形式
2.2.4 点到直线的距离
2.3.2 圆的一般方程
2.3.4 圆与圆的位置关系
2.4.2 空间两点的距离公式
2020人教版高一数学必修2(B版)电 子课本课件【全册】
1.1.3 圆柱、圆锥、圆台和球
2020人教版高一数学必修2(B版)电 子课本课件【全册】
1.1.4 投影与直观图
阅读与欣赏
笛卡儿
后记
第一章 立体几何初步
2020人教版高一数学必修2(B版)电 子课本课件【全册】
1.1 空间几何体
1.1.1
构成空间几何体的基本元素
2020人教版高一数学必修2(B版)电 子课本课件【全册】
1.1.2 棱柱、棱锥和棱台的结 构特征
2020人教版高一数学必修2(B版)电 子课本课件【全册】
2020人教版高一数学必修2(B版) 电子课本课件【全册】目录
0002页 0075页 0147页 0181页 0218页 0305页 0357613页 0719页 0765页
第一章 立体几何初步
1.1.2 棱柱、棱锥和棱台的结构特征
高考数学全国卷(一)考纲分析

• 我想它应缺少“决策的能力”,思维引领方法,方法制定策略,学生作为 “决策者”,如何统筹,才能最优化解题,可能正是所缺少的东西。 • 以后是圆锥曲线与导数的一些专题复习资料,不足之处请多指正;
LOREM IPSUM DOLOR
• Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
1
2 3 4 5
选修2-1:常用逻辑用语;圆锥曲线与方程;空间向量与立体几何.
选修2-2:导数及其应用;推理与证明 ;数系的扩充与复数的引入.
选修2-3:计数原理;统计与概率 选修4-1:几何证明选讲 ; 选修4-4:坐标系与参数方程;
6
选修4-5:不等式选讲。
二.知识要求的三个层面:
1 2
3
了解,理解,掌握.它是由高到低的三个层次, 知道(了解,模仿)
理解(独立操作)
掌握(运用,迁移)
三.能力要求方面:
5种能力,2种意识,这与2015年安徽考纲的要求是一样 的。 “抽象概括能力”、“推理论证能力”、“运算求解能 力”、“数据处理能力”、“应用意识”、“创新意识”
四.个性品质方面:
• 体现学生个性品质,对考生的数学素养的提高,体会数学的美的 意义,以及考生的遇到问题,克服心态,利用自己的意志,去解 决问题,都有着重要的意义。
高中数学必修+选修知识点归纳大全

高中数学必修+选修知识点归纳大全引言1.课程内容:必修课程由5个模块组成:必修1:集合、函数概念与基本初等函数(指、对、幂函数)必修2:立体几何初步、平面解析几何初步。
必修3:算法初步、统计、概率。
必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。
必修5:解三角形、数列、不等式。
以上是每一个高中学生所必须学习的。
上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。
不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。
此外,基础内容还增加了向量、算法、概率、统计等内容。
选修课程有4个系列:系列1:由2个模块组成。
选修1—1:常用逻辑用语、圆锥曲线与方程、导数及其应用。
选修1—2:统计案例、推理与证明、数系的扩充与复数、框图系列2:由3个模块组成。
选修2—1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。
选修2—2:导数及其应用,推理与证明、数系的扩充与复数选修2—3:计数原理、随机变量及其分布列,统计案例。
系列3:由6个专题组成。
选修3—1:数学史选讲。
选修3—2:信息安全与密码。
选修3—3:球面上的几何。
选修3—4:对称与群。
选修3—5:欧拉公式与闭曲面分类。
选修3—6:三等分角与数域扩充。
系列4:由10个专题组成。
选修4—1:几何证明选讲。
选修4—2:矩阵与变换。
选修4—3:数列与差分。
选修4—4:坐标系与参数方程。
选修4—5:不等式选讲。
选修4—6:初等数论初步。
选修4—7:优选法与试验设计初步。
选修4—8:统筹法与图论初步。
选修4—9:风险与决策。
选修4—10:开关电路与布尔代数。
2.重难点及考点:重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数难点:函数、圆锥曲线高考相关考点:⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用 ⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用⑼直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布⑿导数:导数的概念、求导、导数的应用⒀复数:复数的概念与运算必修1数学知识点第一章:集合与函数概念§1.1.1、集合1、把研究的对象统称为元素,把一些元素组成的总体叫做集合。
人教版高一数学必修2(B版)全册完整课件

1.1.6 棱柱、棱锥、棱台和球的表面积
实习作业
1.2.2 空间中的平行关系
本章小结
ห้องสมุดไป่ตู้
第二章 平面解析几何初步
2.1.2 平面直角坐标系中的基本公式
2.2.2 直线方程的几种形式
2.2.4 点到直线的距离
2.3.2 圆的一般方程
2.3.4 圆与圆的位置关系
2.4.2 空间两点的距离公式
阅读与欣赏
笛卡儿
人教版高一数学必修2(B版)全册完 整课件
1.1.6 棱柱、棱锥、棱台和球 的表面积
人教版高一数学必修2(B版)全册完 整课件
1.1.7 柱、锥、台和球的体积
人教版高一数学必修2(B版)全册完 整课件
后记
第一章 立体几何初步
人教版高一数学必修2(B版)全册完 整课件
1.1 空间几何体
1.1.1
构成空间几何体的基本元素
人教版高一数学必修2(B版)全册完 整课件
1.1.2 棱柱、棱锥和棱台的结 构特征
人教版高一数学必修2(B版)全册完 整课件
人教版高一数学必修2(B版)全册 完整课件目录
0002页 0040页 0102页 0185页 0223页 0295页 0343页 0365页 0411页 0460页 0490页 0520页 0548页 0570页 0601页 0603页
第一章 立体几何初步
1.1.2 棱柱、棱锥和棱台的结构特征
1.1.4 投影与直观图
1.1.3 圆柱、圆锥、圆台和球
人教版高一数学必修2(B版)全册完 整课件
1.1.4 投影与直观图
人教版高一数学必修2(B版)全册完 整课件
1.1.5 三视图
高一数学必修2知识点梳理

高一数学必修2知识点梳理一、立体几何初步(一)空间几何体1. 棱柱- 定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的多面体。
- 分类:按底面多边形的边数分为三棱柱、四棱柱、五棱柱等。
- 性质:侧棱都平行且相等;侧面都是平行四边形。
2. 棱锥- 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形的多面体。
- 分类:按底面多边形的边数分为三棱锥(四面体)、四棱锥等。
- 性质:如果棱锥被平行于底面的平面所截,那么截面和底面相似,并且它们面积的比等于截得的棱锥的高与已知棱锥的高的平方比。
3. 棱台- 定义:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分。
- 分类:三棱台、四棱台等。
- 性质:棱台的各侧棱延长后交于一点。
4. 圆柱- 定义:以矩形的一边所在直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。
- 性质:圆柱的轴截面是矩形;圆柱的侧面展开图是矩形。
5. 圆锥- 定义:以直角三角形的一条直角边所在直线为轴旋转,其余两边旋转所成的曲面所围成的几何体。
- 性质:圆锥的轴截面是等腰三角形;圆锥的侧面展开图是扇形。
6. 圆台- 定义:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分。
- 性质:圆台的轴截面是等腰梯形;圆台的侧面展开图是扇环。
7. 球- 定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体。
- 性质:球的截面是圆;球心和截面圆心的连线垂直于截面。
(二)点、线、面之间的位置关系1. 平面的基本性质- 公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。
- 公理2:过不在一条直线上的三点,有且只有一个平面。
- 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
- 推论1:经过一条直线和这条直线外一点,有且只有一个平面。
- 推论2:经过两条相交直线,有且只有一个平面。
- 推论3:经过两条平行直线,有且只有一个平面。
必修2教学模块起始设计

高中数学必修模块(二)教学设计一.课程目标本模块的内容包括:立体几何初步、平面解析几何初步。
1.通过立体几何初步的教学,教学应达到的目标:①使学生经历直观感知、操作确认、思辨论证、度量计算等方法认识和探索几何图形及其性质的过程;②使学生直观认识和理解空间点、线、面的位置关系,能用数学语言表述有关平行、垂直的性质与判定,并对某些结论进行论证,了解一些简单几何体的表面积与体积的计算方法;③培养和发展学生的空间想像能力、推理论证能力、运用图形语言进行交流的能力以及几何直观能力;④使学生感受、体验从整体到局部、从具体到抽象,由浅入深、由表及里、由粗到细等认识事物的一般科学方法。
2.通过平面解析几何初步的教学,教学应达到的目标:①使学生经历在平面直角坐标系中建立直线和圆的方程的过程,学会运用代数方法研究它们的几何性质及其相互位置关系;②了解空间直角坐标系;③体会数形结合的思想,初步形成用代数方法解决几何问题的能力;④培养学生运动变化、相互联系、相互转化的辩证唯物主义观点。
二.教学要求1.立体几何初步(1)空间几何体①直观了解柱、锥、台、球及其简单组合体的结构特征,并能运用这些结构特征描述现实生活中简单物体的结构。
②能画出简单空间图形(棱柱、棱锥、圆柱、圆锥、球等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会使用纸板等材料制作简单空间图形(例如长方体、圆柱、圆锥等)的模型,会用斜二测法画出它们的直观图。
③了解空间图形的两种不同表示形式(三视图和直观图),了解三视图、直观图与它们所表示的立体模型之间的内在联系。
④会画某些简单实物的三视图与直观图(在不影响图形特征的基础上,直观图的尺寸、线条等不作严格要求)。
⑤了解球、棱柱、棱锥、台的表面积和体积的计算(不要求记忆公式)。
(2)点、线、面之间的位置关系①理解空间点、线、面的位置关系;②会用数学语言规范地表述空间点、线、面的位置关系;③了解如下可以作为推理依据的4条公理、3条推论和1条定理:◆公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
棱柱
棱柱的底面
棱柱的侧面
棱柱有什么特点
凌锥
凌锥的特点
棱台多面体
圆柱、圆锥、圆台以及它们的轴、底面、侧面、母线
球
球面
旋转面
旋转体
投影
中心投影
平行投影
斜投影
正投影
视图
主视图(正视图)
俯视图
左视图
三视图
画三视图时的注意点
斜二测画法的步骤(已棱长2cm的正方体为例)
1.2点、线、面之间的位置关系
直线和圆的方程组的解、圆心到直线的距离、直线和圆的位置三者之间的关系
圆和圆的方程组的解、两圆心之间的距离、圆和圆的位置三者之间的关系
建立一个空间直角坐标系,并作出点P(5,4,6)。
空间两点间的距离公式
点到平面的距离
直线和平面垂直的判定定理
直线和平面垂直的性质定理
直线和平面的距离
直线和平面所成的角、斜线、斜足、斜线段
两个平面平行
两个平面有哪几种位置关系
两个平面平行的判定定理
两个平面平行的性质定理
两个平行平面的公垂线、公垂线段、两个平行平面的距离
半平面
二面角
二面角的棱、面、平面角
直二面角
两个平面相互垂直
平面的基本性质:
公理1:
公理2:
公理3:
推论1:
推论2:
推论3:
空间两条直线的位置关系:
公理4:
两角相等判定定理:
异面直线的判定:
异面直线所成的角:
一条直线和一个平面的位置关系有哪几种:
直线和平面平行的判定定理:
直线和平面平行的性质定理:
直线和平面垂直的定义:
垂线、垂面、垂足的概念
过一点与已知平面垂直,过一点与已知直线垂直。
球的体积公式
球的面积公式
什么叫球的大圆
2、平面解析几何初步
直线的斜率
直线的倾斜角
直线的倾斜角的取值范围
直线的方程:点斜式、斜截式、两点式、截距式、一般式
截距
两条直线的平行和垂直与斜率的关系
两条直线的交点和两条直线的方程组之间的关系
平面上两点间距离公式
平面上两点连线中点坐标公式
点到直线的距离公式
圆的标准方程和一般式方程
平面和平面垂直的判定定理
平面和平面垂直的性质定理
1.3空间几何体的表面积和体积
平面展开图
直棱柱
正棱柱
正棱锥
正棱台
正棱柱的侧面积公式
正棱台的侧面积公式
正棱柱、正棱台、正棱锥的侧面积公式之间的关系
圆柱、圆台、圆锥的侧面积公式以及它们之间的关系
棱柱、圆柱、圆锥、棱台、圆台的体积公式
柱体、锥体、台体的体积公式之间的关系