特殊平行四边形性质和判定归纳表

合集下载

平行四边形等性质判定归纳表

平行四边形等性质判定归纳表
三角形中位线定理:三角形的中位线平行于三角形的第三边,并且等于第三边的一半。
直角三角形斜边上的中线等于斜边的一半。
平行四边形、菱形、矩形、正方形性质和判定归纳表
图形
性 质
判 定
平行四边形
1两组对边分别平行;
2两组对边分别相等;
3两组对角分别相等;邻角互补。
4两条对角线互相平分;
1两组对边分别平行的四边形是平行四边形;
2两组对边分别相等的四边形是平行四边形;
3一组对边平行且相等的四边形是平行四边形;
4两组对角分别相等的四边形是平行四边形;
5对角线互相平分的四边形是平行四边形。
菱形
1菱形的四条边都相等;
2菱形的对角线互相垂直;
3一条对角线平分一组对角。
4菱形面积=对角线乘积× =底×高
1一组邻边相等的平行四边形是菱形;
2对角线互相垂直的平行四边形是菱形;
3四边都相等的四边形是菱形;
矩形
1矩形的四个角都是直角;
2矩形的对角线相等。
1有一个角是直角的平行四边形是矩形;
2对角线相等的平行四边形是矩形;
3有三个角是直角的四边形是都相等;
3正方形的对角线相等,且互相垂直平分;
4对角线与边的夹角为45度。
1一组邻边相等的矩形是正方形;
2有一个角是直角的菱形是正方形;
3对角线相等的菱形是正方形。
4对角线互相垂直的矩形是正方形。

特殊平行四边形的性质和判定总结

特殊平行四边形的性质和判定总结
2.菱形(重点):
平行四边形有一组领边相等_菱形
性质:
判定
周长
面积
菱形具有平行四边形的所有性质

四条边相等的四边形是菱形
边长×4
对角线积的一半或底×高
菱形的四条边都相等
菱形的两条对角线互相垂直,并且每一条对角线平分一组对角
对角线
对角线互相垂直的平行四边形是菱形
对角线互相垂直且平分的四边形是菱形
3.正方形:
对角线互相垂直的矩形是正方形
对角线相等的菱形是正方形
对角线互相垂直且相等的平行四边形是正方形
对角线互相垂直平分且相等的四边形是正方形
一.平行四边形的性质及判定:
特殊的平行四边形:1.矩形:
平行四边形_有一个角是直角_矩形
性质:
判定
周长
面积
矩形具有平行四边形的所有性质

有一个角是直角的平行四边形是矩形
邻边之和的二倍
底×高
矩形的四个角都是直角
有三个角是直角的四边形是矩形
矩形的对角线相等
对角线
对角线相等的平行四边形是矩形
对角线互相平分且相等的四边形是矩形
性质:
判定:
周长
面积
平行四边形的对边平行且相等

两组对边分别平行的四边形是平行四边形
邻边之和的二倍
底×高
平行四边形的对角相等
两组对边分别相等
一组对边平行且相等的四边形是平行四边形
平行四边形的邻角互补

两组对角分别相等的四边形是平行四边形
对角线
对角线互相平分的四边形是平行四边形
平行四边形有一组邻边相等且有一个角是直角___正方形
性质:
判定:

平行四边形的定义及特殊四边形的性质及判定

平行四边形的定义及特殊四边形的性质及判定

平行四边形一、平行四边形1.平行四边形定义:两组对边分别平行的四边形是平行四边形。

2.平行四边形的判定定理:(1)判定定义:两组对边分别平行的四边形是平行四边形。

(2)判定定理1:一组对边平行且相等的四边形是平行四边形。

(3)判定定理2:两组对边分别相等的四边形是平行四边形。

(4)判定定理3:两组对角分别相等的四边形是平行四边形。

(5)判定定理4:对角线互相平分的四边形是平行四边形。

3.平行四边形的性质:(1)平行四边形的邻角互补,对角相等。

(2)平行四边形的对边平行且相等。

(3)夹在两条平行线间的平行线段相等。

(4)平行四边形的对角线互相平分。

(5)平行四边形是中心对称图形。

4.平行四边形的面积:面积=底边长×高= ah(a是平行四边形任何一边长,h必须是a边与其对边的距离。

)二、矩形1.矩形的定义:有一个角是直角的平行四边形是是矩形。

2.矩形的判定定理:(1)判定定义:有一个角是直角的平行四边形是是矩形。

(2)判定定理1:有三个角是直角的四边形是矩形。

(3)判定定理2:对角线相等的平行四边形是矩形。

3.矩形的性质:(1)具有平行四边形的一切性质。

(2)矩形的四个角都是直角。

(3)矩形的对角线相等。

(4)矩形既是轴对称图形又是中心对称图形。

4.矩形的面积:矩形的面积=长×宽三、菱形1.菱形的定义:有一组邻边相等的平行四边形是菱形。

2.菱形的判定定理:(1)判定定义:有一组邻边相等的平行四边形是菱形。

(2)判定定理(1):四边都相等的四边形是菱形。

(3)判定定理(2):对角线互相垂直的平行四边形是菱形。

3.菱形的性质:(1)具有平行四边形的一切性质。

(2)菱形的四条边都相等。

(3)菱形的对角线互相垂直,并且每一条对角线平分一组对角。

(4)菱形既是轴对称图形又是中心对称图形。

4.菱形的面积:菱形的面积=底×高=对角线乘积的一半四、正方形1.正方形的定义:四边都相等且有一个角是直角的四边形是正方形。

平行四边形的性质与判定

平行四边形的性质与判定

平行四边形的性质与判定平行四边形是几何学中常见的一个概念,具有一些特殊的性质和判定条件。

本文将介绍平行四边形的性质,并通过实例展示如何判定一组线段或角度是否构成平行四边形。

一、平行四边形的定义平行四边形是指具有两对对边分别平行的四边形。

根据定义,我们可以得出平行四边形的性质和判定条件。

二、平行四边形的性质1. 相对边相等:平行四边形的对边长度相等。

即AB=CD,AD=BC。

2. 相对角相等:平行四边形的对角角度相等。

即∠A=∠C,∠B=∠D。

3. 对角线互相平分:平行四边形的对角线互相平分。

即AC平分BD,BD平分AC。

4. 对角线相等:平行四边形的对角线相等。

即AC=BD。

5. 内角和为360度:平行四边形的内角和等于360度。

三、判定平行四边形的条件要判定一组线段或角度构成平行四边形,需要满足以下条件之一。

1. 对边相等:如果四边形的对边长度相等,即AB=CD,AD=BC,则这个四边形是平行四边形。

2. 对角线互相平分:如果四边形的对角线互相平分,即AC平分BD,BD平分AC,则这个四边形是平行四边形。

3. 相对角相等:如果四边形的相对角度相等,即∠A=∠C,∠B=∠D,则这个四边形是平行四边形。

在实际问题中,我们可以通过测量边长、角度或线段平分关系来判定是否为平行四边形。

下面举例说明。

例题一:已知线段AB与线段CD互相平分,且∠A=∠C,∠B=∠D,判断ABCD是否为平行四边形。

解析:根据给定条件得知,线段AB与线段CD互相平分,且相对角度相等。

根据判定平行四边形的条件,我们可以得出这个四边形是平行四边形。

例题二:在平面直角坐标系中,顶点坐标分别为A(2, 3),B(7, 3),C(9, -2),D(4, -2)的四边形ABCD,判断是否为平行四边形。

解析:根据给定坐标可以计算出AB的斜率为0,CD的斜率也为0。

根据斜率的性质,我们可以得出AB与CD是平行的。

另外,根据对边长度可以计算出AB=CD,AD=BC。

平行四边形知识点归纳和题型归类

平行四边形知识点归纳和题型归类

平行四边形知识点归纳和题型归类平行四边形知识点归纳和题型归类要点梳理】要点一、平行四边形1.定义:有两组对边分别平行的四边形叫做平行四边形。

2.性质:(1)对边相等;(2)同位角相等;(3)相邻角互补;(4)是中心对称图形。

3.面积:S = 底 ×高。

4.判定:边:(1)有两组对边分别平行的四边形是平行四边形;(2)对边相等的四边形是平行四边形;(3)对角线互相平分的四边形是平行四边形。

角:(4)有一组对边平行,且同位角相等的四边形是平行四边形。

对角线:有一组对边相等,且互相平分的四边形是平行四边形。

要点诠释:平行线的性质:(1)平行线间的距离相等;(2)等底等高的平行四边形面积相等。

要点二、矩形1.定义:有四个角都是直角的平行四边形叫做矩形。

2.性质:(1)对边相等;(2)相邻角互补;(3)对角线相等;(4)是中心对称图形,也是轴对称图形。

3.面积:S = 长 ×宽。

4.判定:有四个角都是直角的平行四边形是矩形。

要点诠释:由矩形得直角三角形的性质:(1)直角三角形斜边上的中线等于斜边的一半;(2)直角三角形中,30度角所对应的直角边等于斜边的一半。

要点三、菱形1.定义:有四个边都相等的平行四边形叫做菱形。

2.性质:(1)对边相等;(2)相邻角互补;(3)对角线相等;(4)是中心对称图形,也是轴对称图形。

3.面积:S = 对角线之积的一半。

4.判定:有一组对边平行且相等的四边形是菱形。

要点四、正方形1.定义:四条边都相等,四个角都是直角的平行四边形叫做正方形。

2.性质:(1)对边相等;(2)相邻角互补;(3)对角线相等;(4)是中心对称图形,也是轴对称图形;(5)两条对角线把正方形分成四个全等的等腰直角三角形。

3.面积:S = 边长的平方,也可以用对角线的平方的一半求解。

4.判定:(1)有一组对边平行且相等的菱形是正方形;(2)有四个角都是直角的矩形是正方形;(3)对角线互相垂直平分且相等的四边形是正方形;(4)四条边都相等,四个角都是直角的四边形是正方形。

(完整版)平行四边形性质及判定总结

(完整版)平行四边形性质及判定总结

平行四边形、菱形、矩形、正方形性质和判定归纳性质判定平行四边形平行四边形的①两组对边分别平行②两组对边分别相等③两组对角分别相等④两条对角线互相平分①两组对边分别平行的四边形是平行四边形。

(平行四边形的定义)②两组对边分别相等的四边形是平行四边形。

③一组对边平行且相等的四边形是平行四边形。

④两组对角分别相等的四边形是平行四边形。

⑤对角线互相平分的四边形是平行四边形。

菱形①具有平行四边形的一切性质。

菱形的②四条边都相等③对角线互相垂直,并且每一条对角线平分一组对角①有一组邻边相等的平行四边形是菱形。

(菱形的定义)②四条边都相等的四边形是菱形。

③对角线互相垂直的平行四边形是菱形。

矩形①具有平行四边形的一切性质。

矩形的②四个角都是直角③对角线相等①有一个角是直角的平行四边形是矩形。

(矩形的定义)②有三个角是直角的四边形是矩形。

③对角线相等的平行四边形是矩形。

正方形(1)具有平行四边形、矩形、菱形的一切性质,即:①正方形的四个角都是直角,四条边都相等;②正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角。

(2)对角线与边的夹角为45·①有一组邻边相等的矩形是正方形。

(正方形的定义)②有一个角是直角的菱形是正方形二、直角三角形的性质:(1)直角三角形的两个锐角互余。

(2)直角三角形两直角边的平方和等于斜边的平方。

(即勾股定理)(3)直角三角形斜边上的中线等于斜边的一半。

(4)直角三角形中30 角所对的直角边等于斜边的一半。

平行四边形的定义及特殊四边形的性质及判定

平行四边形的定义及特殊四边形的性质及判定

平行四边形的定义及特殊四边形的性质及判定平行四边形是指四边形的对边两两平行,同时对边长度相等的四边形。

平行四边形具有一些特殊的性质和判定条件,下面将对这些内容进行详细介绍。

一、平行四边形的定义平行四边形是指四边形的对边两两平行,且对边长度相等。

二、平行四边形的性质1. 对边性质:平行四边形的对边是平行的,即任意两条对边之间的夹角相等。

2. 对角性质:平行四边形的对角线相互平分,即任意一条对角线把平行四边形分成两个全等的三角形。

3. 同位角性质:平行四边形的同位角相等,即相对于平行四边形的两组对边所夹的角分别相等。

4. 邻补角性质:平行四边形的邻补角之和为180度,即相邻的内角互为补角。

三、特殊四边形的判定1. 矩形的判定:一个四边形如果同时满足对角线相等,内角为直角,则为矩形。

2. 正方形的判定:一个四边形如果同时满足对边相等,内角为直角,则为正方形。

3. 菱形的判定:一个四边形如果同时满足对边相等,对角线相等,则为菱形。

4. 长方形的判定:一个四边形如果同时满足对边相等,内角不是直角,则为长方形。

四、判定方法的应用案例例如,我们需要判断一个四边形ABCD是否是平行四边形。

首先,我们可以通过测量四边形的对边长度来判断,如果AB=CD,且AD=BC,则可以初步判定为平行四边形。

其次,我们可以判断四边形的内角,如果∠A = ∠C,且∠B = ∠D,则可以进一步确认为平行四边形。

如果我们需要判断一个四边形是否是矩形、正方形、菱形或长方形,具体的判定方法如下:1. 矩形的判定方法:a. 测量对边的长度,如果AB=CD且AD=BC,则为矩形。

b. 测量内角,如果∠A=∠B=∠C=∠D=90度,则为矩形。

2. 正方形的判定方法:a. 测量对边的长度,如果AB=BC=CD=AD,则为正方形。

b. 测量内角,如果∠A=∠B=∠C=∠D=90度,则为正方形。

3. 菱形的判定方法:a. 测量对边的长度,如果AB=BC=CD=AD,则为菱形。

平行四边形、菱形、矩形、正方形性质和判定归纳如表

平行四边形、菱形、矩形、正方形性质和判定归纳如表

平行四边形、菱形、矩形、正方形性质和判定归纳如表:
定义:两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条平行线的距离。

注意:平行线间的距离处处相等。

二、矩形的一条对角线把矩形分成两个直角三角形,与之相联系的还有以下性质:(1)直角三角形的两个锐角互余。

(2)直角三角形两直角边的平方和等于斜边的平方。

(即勾股定理)
(3)直角三角形斜边上的中线等于斜边的一半。

(4)直角三角形中30 角所对的直角边等于斜边的一半。

四种特殊四边形的性质
四种特殊四边形常用的判定方法:
一组邻
一组邻
边相等对角线相
对角线
垂直
对角线
相等
对角线垂
直。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行四边形、矩形、菱形、正方形性质和判定归纳如表:类

性质判定对称性
平行四边形①对边平行
②对边相等
③对角相等
④对角线互相平分
(⑤邻角互补)
①两组对边分别平行的四边形
②两组对边分别相等的四边形
③一组对边平行且相等的四边形
④两组对角分别相等的四边形
⑤对角线互相平分的四边形




矩形①具有平行四边形的
一切性质
②四个角都是直角
③对角线相等
①有一个角是直角的平行四边形
②有三个角是直角的四边形
③对角线相等的平行四边形
中轴
心对
对称

菱形①具有平行四边形的
一切性质
②四条边都相等
③对角线互相垂直
(平分每组对角)
①有一组邻边相等的平行四边形
②四条边都相等的四边形
③对角线互相垂直的平行四边形
(④对角线垂直且平分的四边形)
中轴
心对
对称

正方形①具有平行四边形、矩
形、菱形的一切性质
(②对角线与边的夹角
为450)
①有一个角是直角且有一组邻边
相等的平行四边形
②有一组邻边相等的矩形
③有一个角是直角的菱形
(④对角线垂直且相等的平行四
边形)
中轴
心对
对称

四种特殊四边形的性质
边角对角线对称性
平行
四边形
对边平行
且相等
对角相等互相平分中心对称
矩形对边平行
且相等
四个角
都是直角
互相平分
且相等
轴对称
中心对称
菱形对边平行
四条边相等
对角相等互相垂直平分(且
每条对角线平分一组对角)
轴对称
中心对称
正方形对边平行
四条边相等
四个角
都是直角
互相垂直平分且相等,(每
条对角线平分一组对角)
轴对称
中心对称
四种特殊四边形常用的判定方法:
平行
四边形
①两组对边分别平行的四边形
②两组对边分别相等的四边形
③一组对边平行且相等的四边形
④两组对角分别相等的四边形
⑤对角线互相平分的四边形
矩形
①有一个角是直角的平行四边形
②有三个角是直角的四边形
③对角线相等的平行四边形
菱形
①有一组邻边相等的平行四边形
②四条边都相等的四边形
③对角线互相垂直的平行四边形
④对角线垂直且平分的四边形
正方形
①有一个角是直角一组邻边相等的平行四边形
②一组邻边相等的矩形
③一个角是直角的菱形
④对角线垂直且相等的平行四边形。

相关文档
最新文档