六年级数学比和比例
六年级数学比和比例

六年级数学比和比例摘要:一、六年级数学比例的意义和基本性质1.比例的定义2.比例的基本性质二、比例的应用1.比例在实际生活中的应用2.比例在数学问题中的应用三、六年级数学比例的计算方法1.比例的简单计算2.比例的复杂计算四、解决比例问题的技巧和方法1.比例问题的分析方法2.比例问题的解决策略五、六年级数学比例的学习方法和实践1.比例的学习方法2.比例的实践应用正文:在六年级数学的学习中,比例是一个重要的知识点。
比例是用来表示两个量之间关系的数学工具,它在我们的日常生活中有着广泛的应用。
学习比例,不仅能够帮助我们更好地理解数学知识,还能提高我们的逻辑思维能力。
首先,我们要了解比例的意义和基本性质。
比例是指两个比相等的式子,它的基本性质包括比例的传递性、反比例和正比例等。
只有掌握了这些基本性质,我们才能更好地应用比例来解决问题。
其次,我们要了解比例的应用。
比例在实际生活和数学问题中都有着广泛的应用。
比如,我们在购物时,就需要用到比例来计算价格;在解决数学问题时,比例能够帮助我们更快速地找到问题的关键。
接着,我们要学习比例的计算方法。
比例的计算方法包括简单计算和复杂计算。
简单计算主要包括比例的基本运算,复杂计算则涉及到比例的深度理解和灵活运用。
在解决比例问题时,我们需要掌握一些技巧和方法。
比如,我们可以通过分析问题,找出问题的关键,然后根据比例的基本性质来解决问题。
同时,我们还需要掌握一些解决比例问题的策略,这样才能更有效地解决问题。
最后,我们要学会如何学习比例。
学习比例,我们需要多做练习,通过实践来理解和掌握比例的知识。
只有这样,我们才能真正掌握比例,并能有效地应用到实际问题中。
总的来说,比例是六年级数学中的一个重要知识点,它对我们的学习和生活都有着重要的影响。
六年级下册数学知识点解析:比和比例

次火车自北京西站开往安庆西站,行驶至全程的511再向前56千米处所用时间比提速前减少了60分钟,而到达安庆西站比提速前早了2小时.问北京西站、安庆西站两地相距多少千米两地相距多少千米? ?【分析与解】设北京西站、安庆西站相距多少千米?设北京西站、安庆西站相距多少千米?(511x+56)x+56)::x=60x=60::120120,即,即,即((511x+56)x+56)::x=1x=1::2,即x=1011x+112x+112,解得,解得x=1232x=1232.. 即北京西站、安庆西站两地相距即北京西站、安庆西站两地相距1232千米,千米,3.两座房屋A 和B 各被分成两个单元.若干只猫和狗住在其中.已知:各被分成两个单元.若干只猫和狗住在其中.已知:A A 房第一单元内猫的比率房第一单元内猫的比率((即住在该单元内猫的数目与住在该单元内猫狗总数之比在该单元内猫的数目与住在该单元内猫狗总数之比))大于B 房第一单元内猫的比率;并且A 房第二单元内猫的比率也大于B 房第二单元内猫的比率.试问是否整座房屋A 内猫的比率必定大于整座房屋B 内猫的比率的比率? ?【分析与解】 如下表给出的反例指出:如下表给出的反例指出:如下表给出的反例指出:对所提出问题的回答应该是否定的.对所提出问题的回答应该是否定的.对所提出问题的回答应该是否定的.表中具体写出了各个表中具体写出了各个单元及整座房屋中的宠物情况和猫占宠物总数的比率.单元及整座房屋中的宠物情况和猫占宠物总数的比率. 小升初数学知识点解析:比和比例两个数相除又叫做两个数的比.两个数相除又叫做两个数的比.一、比和比例的性质性质1:若a: b=c a: b=c::d ,则,则(a + c)(a + c)(a + c)::(b + d)= a (b + d)= a::b=c b=c::d ;性质2:若a: b=c a: b=c::d ,则,则(a - c)(a - c)(a - c)::(b - d)= a (b - d)= a::b=c b=c::d ;性质3:若a: b=c a: b=c::d ,则,则(a +x c)(a +x c)(a +x c)::(b +x d)=a (b +x d)=a::b=c b=c::d ;(x 为常数)性质4:若a: b=c a: b=c::d ,则a ×d ×d = = = b×b×b×c c ;(即外项积等于内项积即外项积等于内项积) )正比例:如果a ÷b=k(k 为常数为常数)),则称a 、b 成正比;成正比;反比例:如果a ×b=k(k 为常数为常数)),则称a 、b 成反比.成反比.二、比和比例在行程问题中的体现在行程问题中,因为有在行程问题中,因为有速度速度=路程时间,所以:,所以: 当一组物体行走速度相等,那么行走的路程比等于对应时间的反比;当一组物体行走速度相等,那么行走的路程比等于对应时间的反比;当一组物体行走路程相等,那么行走的速度比等于对应时间的反比;当一组物体行走路程相等,那么行走的速度比等于对应时间的反比;当一组物体行走时间相等,那么行走的速度比等于对应路程的正比.当一组物体行走时间相等,那么行走的速度比等于对应路程的正比.1.A 和B 两个数的比是8:5,每一数都减少34后,后,A A 是B 的2倍,试求这两个数.倍,试求这两个数.【分析与解】方法一:设A 为8x 8x,则,则B 为5x 5x,于是有,于是有,于是有(8x-34):(5x-34)=2(8x-34):(5x-34)=2(8x-34):(5x-34)=2::1,x=17x=17,所以,所以A 为136136,,B 为8585.. 方法二:因为减少的数相同,所以前后A A 、、B 的差不变,开始时差占3份,后来差占1份且与B 一样多,也就是说减少的3434,占开始的,占开始的3-1=2份,所以开始的1份为34÷2=17,所以A 为17×8=136,B 为17×5=85.17×5=85.2.近年来.近年来火车火车大提速,大提速,142714274.家禽场里鸡、鸭、鹅三种家禽中公篱与母篱数量之比是2:3,已知鸡、鸭、鹅数量之比是8:7:5,公鸡、母鸡数量之比是1:3,公鸭、母鸭数量之比是3:4.试求公鹅、母鹅的数量比..试求公鹅、母鹅的数量比.【分析与解】 公鸡占家禽场家禽总数的公鸡占家禽场家禽总数的公鸡占家禽场家禽总数的 =21124615:(3544)45:46:(3544)46:47.333345´´+´´=´´+´´=8118751310´=+++,母鸡占总数的310; 公鸭占总数的8338753420´=+++,母鸭占总数的420; 公鹅占总数的213332102020-+=+(),母鹅占总数的234232102020-+=+(),公鹅、母鹅数量之比【分析与解】70cm 的杆子产生影子的长度为175cm;所以影子的长度与杆子的长度比为:所以影子的长度与杆子的长度比为:175175175::70=2.5倍.为322020::3:2.5.在古巴比伦的在古巴比伦的金字塔金字塔旁,旁,其朝西下降的阶梯旁其朝西下降的阶梯旁6m 的地方树立有1根走子,其影子的其影子的前端前端正好到达阶梯的第3阶(箭头箭头)).另外,此时树立l 根长70cm 自杆子,其影子的长度为175cm 175cm,设阶梯各阶的高度,设阶梯各阶的高度与深度都是50cm 50cm,求柱子的高度为多少?,求柱子的高度为多少? 于是,影子的长度为6+1.5+1.6+1.5+1.5×25×25×2.5=11.25.5=11.25.5=11.25,所以杆子的长度为,所以杆子的长度为11.11.25÷225÷225÷2.5=4.5m .5=4.5m .5=4.5m..6.已知三种.已知三种混合物混合物由三种成分A 、B 、C 组成,第一种仅含成分A 和B ,重量比为3:5;第二种只含成分B 和C ,重量比为I :2;第三种只含成分A 和C ,重量之比为2:3.以什么.以什么比例比例取这些混合物,才能使所得的混合物中A ,B 和C ,这三种成分的重量比为3:5:2 ?【分析与解】注意到第一种混合物种A 、B 重量比与最终混合物的A 、B 重量比相同,均为3:5.5.所以,所以,k=65. 标准的时钟每隔56511分钟重合一次.分钟重合一次. 假设经历了假设经历了x 分钟.分钟. 于是,甲钟每隔于是,甲钟每隔52460651124605´´´-分钟重合一次,甲钟重合了246052460´-´×x 次;次; 同理,乙钟重合了同理,乙钟重合了246052460´+´×x 次;次; 于是,需要乙钟比甲钟多重合于是,需要乙钟比甲钟多重合于是,需要乙钟比甲钟多重合 246052460´+´×x-246052460´-´×x=102460´×x=10; 所以,所以,x=24x=24x=24×60;×60;×60; 所以要经历24×60×65511分钟,则为5246065 51165246011´´=´天.于是为65天510(24)10()1111´=天.后来,由一队工人23与二队工人13组成新一队,其余的工人组成新二队.其余的工人组成新二队.两支新队又同时分别接受两项工作量与条件完全相同的工程,两支新队又同时分别接受两项工作量与条件完全相同的工程,两支新队又同时分别接受两项工作量与条件完全相同的工程,结果新二队结果新二队先将第二种、第三种先将第二种、第三种混合物混合物的A 、B 重量比调整到重量比调整到 3 3 3::5,再将第二种、第三种混合物中A 、B 与第一种混合物中A 、B 视为单一物质视为单一物质. .第二种混合物不含第二种混合物不含A ,第三种混合物不含B ,所以1.5倍第三种混合物含A 为3,5倍第二种混合物含B 为5,即第二种、第三种混合物的重量比为5:1.51.5..于是此时含有于是此时含有C 为5×2+15×2+1..5×3=145×3=14.5.5.5,在最终混合物中,在最终混合物中C 的含量为3A 3A//5B 含量的2倍.有14.14.5÷25÷25÷2-1=6.25-1=6.25-1=6.25,所以含有第一种混合物,所以含有第一种混合物6.256.25..即第一、二、三这三种混合物的即第一、二、三这三种混合物的比例比例为6.256.25::5:1.5=251.5=25::2020::6.7.现有男、女职工共1100人,其中全体男工和全体女工可用同样人,其中全体男工和全体女工可用同样天数天数完成同样的工作;若将男工人数和女工人数对调一下,则全体男25天完成的工作,全体女工需36天才能完成,问:男、女工各多少人女工各多少人? ?【分析与解】 直接设出男、女工人数,然后在通过直接设出男、女工人数,然后在通过直接设出男、女工人数,然后在通过方程方程求解,过程会比较繁琐.求解,过程会比较繁琐.设开始男工为“1”,此时女工为“设开始男工为“1”,此时女工为“k k ”,有1名男工相当k 名女工.男工、女工人数对调以后,则男工为“男工为“k k ”,相当于女工“,相当于女工“k k 2”,女工为“I”.,女工为“I”.有k 2:1=361=36::2525,所以,所以于是,开始有男工数为11k+×1100=500人,女工600人.人.8.有甲乙两个钟,甲每天比.有甲乙两个钟,甲每天比标准时间标准时间慢5分钟,而乙每天比标准时间快5分钟,在3月15日的日的零点零点零分的时候两钟正好对准.若已知在某一时刻,乙钟和甲钟时针与分针都分别重合,且在从3月15日开始到这个时候,乙钟时针与分针重合的次数比甲钟多10次,那么这个时候的标准时间是多少次,那么这个时候的标准时间是多少? ?【分析与解】 小时106(60)541111´=分钟.分钟.9.一队和二队两个.一队和二队两个施工施工队的人数之比为3:4,每人工作效率之比为5:4,两队同时分别接受两项工作量与条件完全相同的工程,结果二队比一队早完工96÷147=282´´´´282×4645天.天.144:(282×:(282×4645)=(144×45):(282×46))=(144×45):(282×46)=540。
比和比例(课件)-六年级数学下册人教版

答:需要糖0.1千克,水1.9千克。
➢ 用正、反比例的知识解决问题
甲工程队铺一条路,前5天 乙工程队铺路,原计划每天
铺了16千米,照这样的速度, 铺3.2千米,15天铺完。实
铺完这条路用了15天。这条 际每天铺4千米,实际需要
路长多少千米? 正比例
多少天铺完? 反比例
在练习本上解 答这两题。
➢ 用正、反比例的知识解决问题 • 解题步骤 ✓ 分析数量关系,判断成什么比例关系。 ✓ 找等量关系。若成正比例,则按“等比”找等量关系式; 若成反比例,则按“等积”找等量关系式。 ✓ 列比例。设未知数x,并代入等量关系式。 ✓ 解比例。 ✓ 检验写答。
=
5 32
前比 后
比
项号 项
值
3∶ 2 = 6 ∶4
内项 外项
➢ 比和比例的区别
• 基本性质
化简比 的根据
比的基本性质:比的前项和后项同时乘或除以 解比例 相同的数(0除外),比值相等。
的根据
比例的基本性质:在比例里,两个外项的积等于
两个内项的积。
➢ 比和比例的联系 • 比是比例的基础,比例是比的扩展; • 两个相等的比可以组成比例。
➢ 判断正、反比例的方法
一找:分析数量关系,确定哪两种量是相关联的量 二看:分析这两种相关联的量,看它们之间的关系是
乘积一定还是比值一定 三判断:如果乘积一定,成反比例
如果比值一定,成正比例 如果乘积和比值都不一定,不成比例
用比和比例的知识解决问题
➢ 按一定的比分配问题
一种糖水是糖与水按1∶19的比例配制而成的。要配制 这种糖水2千克,需要糖和水各多少千克?
成整数比再化简。 把比的前、后项同时乘分母的最小公倍数,转化成整 分数比 数比再化简。
_比和比例—比例

强 调
(1)比例尺与一般的尺不同,它是项化简成“1”。
(4)无论是计算比例尺、计算实际距离,还是计 算图上距离,都要先把参加计算的数量统一成较小的 长度单位,然后再计算。这样方便一些。 (5)计算实际距离和计算图上距离时,数值比例 尺最好写成分数形式,这样可以把比例尺当作一个分 数来参加计算。
1、填空
(1)在a:7=9:b中,(7、9 )是内项,( a、b)是
外项,a×b=( 63 )。
(2)一个比例的两个内项分别是3和8,则两个外项的 积是(24 ),两个外项可能是( )和( )。 (3)在一个比例里,两个外项互为倒数,那么两个内 项的积是( 1 ),如果一个外项是 3 ,另一个 7 7 外项是( )。
1.5 6 解比例: = 2.5 解: 1.5
4
x
x = 6× 2.5 x
6 × 2.5 = 1.5
1
x=
10
比例尺:
一幅图的图上距离和实际距离的比,叫做 这幅图的比例尺。
图上距离 :实际距离 比例尺
或
图上距离 比例尺 实际距离
图上距离 比例尺 实际距离 实际距离 比例尺 图上距离
不能组成比例。
根据比例的意义判断:
根据比例的基本性质判断:
根据比例的基本性质我们知道,两个内项的积等 于两个外项的积。倒过来理解,乘积相等(并且不为0) 的两个乘法式子,也可以改写成比例。 例:已知3×40 = 20×6, 你能把上面的等式改写成比例吗? 20:3=40:6 6:3=40:20 6:40=3:20 3:20=6:40 40:20=6:3 40:6=20:3
1 3.2 5000000
3.2 5000000
16000000 (cm) 160(km)
小学数学六年级上册知识梳理比和比例

2.比值是一个数,可以是分数、小数或整数。
比例
1.比例的意义:表示两个比相等的式子叫做比例。
2:比例的各部分名称:组成比例的四个数叫做比例的项;两
端的两项叫做比例的外项;中间的两项叫做比例的内项。
3.比例的基本性质:在比例里,两个外项的积等于两个内项
的积。
4.解比例:根据比例的基本性质求比例中的未知项叫做解
小学数学新版六年级上册
比和比例
知识模块
具体内容
要点提示
比
1.两个数相除又叫做ຫໍສະໝຸດ 两个数的比。2.比的各部分名称。
3.比的基本性质:比的前项、后项同时乘或除以相同的数(0
除外),比值不变。
4.化简比:把两个数的比化成最简单的整数比。
5.化简比的方法:根据比的基本性质,把比的前项和后项都
乘或除以相同的数(0除外),使比的前项和后项是互质数。
找准数量所对应的份数是解决比例问题的关键。
比例。
比例是等式。
按比例分配
1.在工农业生产和日常生活中,常需要把一个数量按照一定的比进行分配,这种分配方法通常叫做按比例分配。
2.已知总数和各部分量的比,求各部分量。
(1)先求出份数,再求各部分量占总数的几分之几,用总数乘各部分量占总数的几分之几,求出各部分量。
(2)先求出每份是多少,再用每份数乘各部分量所占的份数,
求出各部分量。
3.已知各部分量的比和某个部分量,求其余部分量。
(1)设未知部分量为 ,根据各部分量的比值不变,列比例解答。
(2)先求出每份是多少,再用每份数量乘各部分量所占的份
数,求出各部分量。
(3)求出未知量是已知量的几分之几,用已知量乘未知量占
六年级数学比和比例

六年级数学比和比例
(实用版)
目录
1.比和比例的定义
2.比和比例的性质
3.比和比例的应用
4.提高比和比例的解题技巧
正文
1.比和比例的定义
比和比例是数学中常见的概念,比是指两个数相除的结果,比例则是指两个比相等的式子。
比如,如果我们说一个长度为 10 厘米的线段是另一个长度为 5 厘米的线段的两倍,我们就可以说这两个线段的比是 2:1,也可以说这两个线段的比例是 2/1。
2.比和比例的性质
比和比例有一些基本的性质。
比如,如果两个比的比值相等,那么这两个比就是相等的,也就是说,如果 a:b=c:d,那么 a/b=c/d。
另外,比例也有一个基本性质,那就是如果两个比例相等,那么它们的乘积也相等,也就是说,如果 a:b=c:d,那么 a*d=b*c。
3.比和比例的应用
比和比例在实际生活中应用广泛,比如在商业中,我们常常需要通过比例来计算成本和利润;在科学研究中,我们常常需要通过比来描述两个量的关系。
此外,比和比例也是解决许多数学问题的基础,比如在解方程时,我们常常需要通过比例来找到未知数的值。
4.提高比和比例的解题技巧
要提高比和比例的解题技巧,首先我们需要理解比和比例的概念,熟悉它们的基本性质。
其次,我们需要多做一些有关比和比例的练习题,这样可以帮助我们加深对比和比例的理解,提高我们的解题能力。
最后,我们需要学会灵活运用比和比例的知识,比如在解题时,我们可以通过比例来简化方程,这样更容易找到未知数的值。
总的来说,比和比例是数学中非常重要的概念,它们在实际生活中的应用也非常广泛。
比和比例知识点六年级

比和比例知识点六年级比和比例是数学中的重要概念,它们在我们生活和学习中都有广泛的应用。
下面我们就来详细了解一下比和比例的相关知识。
一、比的概念和性质在数学中,比是用来表示两个量之间的大小关系的一种方法。
比通常采用“:”、“/”或“÷”来表示。
例如,1:2、1/2或1÷2表示1和2之间的比。
在比中,1被称为第一个比例数,2被称为第二个比例数。
比具有以下几个性质:1.相等性:如果两个比的第一个比例数与第二个比例数相等,那么这两个比相等。
例如,1:2 = 2:4,表示1与2的比等于2与4的比。
2.倒数性:如果两个比的第一个比例数与第二个比例数的倒数存在比,那么这两个比互为倒数。
例如,3:4与4:3互为倒数。
3.加法性:如果两个比存在比,那么它们可以相加。
例如,1:2 + 2:3 = 3:5。
二、比例的概念和性质比例是由两个或多个比构成的等式关系,其中的比称为比例。
比例一般用等号“=”来表示。
例如,1:2 = 2:4表示1与2的比等于2与4的比。
比例具有以下几个性质:1.可扩性:如果一个比例的两个比例数同时乘(或除)一个相同的非零数,得到的新比例与原比例相等。
例如,1:2 = 2:4,将1:2的两个比例数同时乘以2得到2:4。
2.翻转性:一个比例的两个比例数互为倒数时,将其翻转得到的新比例与原比例相等。
例如,1:2与2:1互为倒数。
3.变比性:如果一个比例中的第一个比例数与第二个比例数的比等于另一个比例中的第一个比例数与第二个比例数的比,那么这两个比例互为变比。
例如,1:2 = 3:6,表示1与2的比等于3与6的比。
三、实际应用比和比例在我们的生活中有许多实际应用,下面列举几个常见的例子:1.时间比例:例如,一部电影长3个小时,而电影院播放时间是2小时,那么这两个时间的比是3:2。
2.长度比例:例如,一张A4纸的长宽比是1:√2。
这个比例是根据纸张的特定尺寸和长宽比定义的。
3.货币兑换比例:例如,人民币对美元的兑换比例是1:6.4。
小学六年级比和比例知识点

八.比和比例239.“比”和“比值”这两个概念有什么联系和区别?在除法中,两个数相除时,就叫做两个数的比。
一般分为两种情况:(1)比较同类量的倍数关系,表示其中一个数是另一个数的几倍或几分之几。
例如:红光小学有女教师40 人,男教师12人。
表示女教师与男教师人数的比是40∶12(或化简为10∶3),这也表示女教师人数是男教师人数资料个人收集整理,勿做商业用途(2)两个不同类量相比,是表示一个新的量。
例如:总价∶数量,表示单价。
路程∶时间,表示速度。
总产量∶亩数,表示亩产量。
“比”是由前项∶后项组成的,而“比值”是前项除以后项所得的商。
如:由此可以看出:“比”和“比值”这两个概念是有区别的。
但两者之间也是有联系的,因为没有前面的“比”,就不会有后面的“比值”。
就一般而言,“比”和“比值”都是一个完整比的组成部分。
资料个人收集整理,勿做商业用途除此之外,还要看到“比”和“比值”也有着一致性。
从广义上解释,两个数的比是两个数的商,这个商也是比值。
如:资料个人收集整理,勿做商业用途由于比中的比号相当于分数中的分数线,所以用比的形式表示,就是7∶240.比、除法、分数这三者之间,有什么联系和区别?在小学数学教材中,从除法到分数,又到比,这不仅是一个发展过程,三者之间也存在着内在的必然联系。
在比的教与学中,揭示它们之间的联系,是极其必要的。
资料个人收集整理,勿做商业用途比的前项相当于除法中的被除数,分数中的他子;后项相当于除法中的除数,分数中的分母;比号柑当于除法中的除号,分数中的分数线;比值相当于除法中的商,分数的分数值。
资料个人收集整理,勿做商业用途例如:在比中,前项÷后项=比值a ∶b=c在除法中,被除数÷除数=商a ÷ b=c如上所述,比、除法、分数三者之间有着如此密切的联系,目的在于:有关比的运算,可以转化为除法运算或分数形式,而又需要重新建立比的运算法则。
资料个人收集整理,勿做商业用途它们之间的区别,从意义上区分有:“比”是表示两个数的倍数;“除法”表示的是一种运算;“分数”则是一个数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一 比和比例的意义及性质
二 化简比、求比值、解比例
三 比和分数、除法的关系
四 正比例和反比例
五 比例尺
比
意 义
各 部 分 名 称
比例
两个数相除又叫做两 表示两个比相等的式子 个数的比. 叫做比例. 6 ∶ 2= 3 前项
外项3 ∶ 1
后项 比值 内项
3 内项 6 4
外项
=
30 ∶ 10 内项 2
一般方法 求比值 化简比
பைடு நூலகம்
结果
根据比的意义,用比 是一个商,可以是 整数、小数或分数。 的前项除以后项。 根据比的基本性质, 是一个比,它的前 把比的前项和后项同 项和后项都是整数 时乘或者除以一个相 (互质)。 同的数(零除外)。
把 1吨:250千克化成最简整数比是( 4:1 ), 它的比值是(4 ).
3 ∶1 5 4
分母最小公 倍数是20
5 ∶ 10 18 9
分母最小公 倍数是18
5 ∶ 10 12 9
分母最小公 倍数是36
2 4 ∶ 5 = (4 ×5)∶ ( 2 ×5) =20:2=10:1 5 求比值 2 2 4 ∶ 5 =4 ÷ 5 =10
1 ∶2 1 1 = 2 ÷2 = 4 2
求比值与化简比的区别
外项
基 本 性 质
比的前项和后项同时乘 在比例里,两个内项的 或者同时除以相同的数 积等于两个外项的积. (0除外),比值不变. 5∶6 = 20∶24 0.9 ∶0.6 =( 9)∶( 6 ) 应用比例的基本 应用比的基本性质可以把 ( 6 ) × ( ) = ( ) × ( ) 20 5 24 2 =( 3)∶( ) 性质可以解比例 比化成最简单的整数比
分子 分母
0
350 700千米
把线段比例尺改成数值比例尺。
0 350 700千米
1cm:350km =1cm:350 00000cm =1 ∶35000000 这个比例尺的含义是什么? 在这幅图上量得A、B两地的距离是2.5厘米, A、 B两地的实际距离是多少千米? 表示实际距离是图上距离的 35000000倍.
比 分数 除法 前项 比号 后项 比值
分子 被除数
分数线 除号
分母 除数
分数值 商
小结: 上表中相应名称只是相当于的关系,并非完 全相同。三者是有区别的 :“比”表示两个数
间的倍数关系,比号是一种“关系符号”;分数是
一个数;除法是一种运算,除号是一种“运算符号”
比和分数、除法的关系:
a a:b= a÷b= b (b≠0)
4) ( 8:10= =40÷(50 )=(0.8)(填小数) 5
回
正比例和反比例的相同点和不同点: 正比例 反比例
相 两种相关联的量,一种量变化,另一 同 种量也随着变化。 点 不 比值(商)一定 积一定 同 y x ×y=k(一定) (一定) 点 x k
判断下面各题中的两种量是不是成比例。 如果成比例,成什么比例. 1、全班人数一定,出勤人数和缺勤人数。 全班人数=出勤人数+缺勤人数。 不成比例 2、分数大小一定,它的分子和分母。 成正比例 =分数值(一定) 3、三角形的面积一定,它的底和高 S=ah÷2 成反比例 4、正方体一个面的面积和它的表面积。 s 成正比例 S=6a² 6= a² 回
3 :6的比值是(0.1 )。 5
如果前项乘3,要使比值不变,后项应( 也乘3 ) 如果前项和后项都除以2,比值是( 0.1 ) 如果A×3=B×5,那么A∶B=( 5 )∶( 3 )
如果a:4= 0.3:12,那么a=( 0.1) 12 ×a=4 ×0.3 12 a=1.2
例4:李阿姨是剪纸艺人。平时李阿姨每天工作6小时, 剪出72张纸,节日期间,李阿姨每天要工作8小时,能 剪出96张纸。 (1)写出李阿姨平时和节日期间剪纸张数及相应工作 时间的比 96∶8 =12 72 ∶6 =12 (2)上面两个比能组成比例吗?为什么? 能组成比例
(3)如果李阿姨要剪出120张剪纸,需要多少小时?
2、假设 72 ∶6x = 96 ∶8 内项积96×6和 解:设需要 小时。 外项积 72 ×8都等于 72 : 6=120 :x 57696 :8=120 :x 72x=120 ×6 72x=720 x=10
答:需要10小时。
回
★ 想一 想:★
比、分数与除法的关系
化简比
最简单 整数比) (化成最简单的整数比
78 =78 :26 =(78 ÷ 26) :(26 ÷ 26)=3:1 26 0.12 ∶56 =(0.12×100):(56×100) =12:5600 =(12 ÷4) :(5600 ÷4) =3:1400 5 ∶ 10 5 = ( ×18) ∶ ( 10×18) =15:20 6 9 6 9 =3:4
一条长480千米的高速公路,在这幅地图上是多少厘米?
学校操场长28米,宽20米,把它画在边长20 厘米的正方形纸上,选怎样的比例尺比较合适? 画好后的篮球场长和宽各是多少厘米?