(完整版)人教版六年级下册数学比和比例综合练习题及答案
人教版小学六年级数学下册第四单元《比例》测试卷及答案(含三套题)

密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版小学六年级数学下册第四单元《比例》测试卷及答案(满分:100分 时间: 60分钟)题号一 二 三 四 五 六 总分 得分一、填空。
(每空1分,共18分)1.5( )=20÷50=( ):100=( )(填小数)2.如果34a =45b (a ≠0,b ≠0),那么b :a =( )。
3.从30的因数中选4个数组成一个比例:( )。
4.一个比例中,两个外项的积是72,一个内项是12,另一个内项是( )。
5.走同一段路,甲用了2小时,乙用了3小时,甲、乙两人的速度比是( )。
6.在7:4=28:16中,内项增加4,要使比例成立,外项7应该乘( )。
7.已知m n=a (m ≠0,n ≠0),当m 一定时,n 和a 成( )比例关系;当n 一定时,m 和n 成( )比例关系;当a 一定时,m 和n 成( )比例关系。
8.—张图纸的比例尺是60:1。
如果在该图纸上量得一个零件的长度是72cm ,那么它的实际长度是( )cm 。
9.学校的操场是一个长250m 、宽100m 的长方形,小明按一定的比将操场画在一张图纸上,长画了10cm ,他所用的比例尺是( ),按此比例尺宽应画( )cm 。
而小亮选用的比例尺是,改写成数值比例尺是( )。
显然,( )画的操场大一些。
10.一个三角形的底是15cm ,高是9cm ,把它按1:3的比缩小,得到的图形面积是( )cm²。
11.根据4×7=2×14,在能组成的比例中,两个比的比值最大的一个比例是( )。
二、判断。
(每题2分,共10分) 1.互为倒数的两个数成反比例关系。
( ) 2.图上距离总是小于实际距离。
( )3.今年,爸爸的年龄÷小明的年龄=5,所以爸爸的年龄和小明的年龄成正比例。
( )4.把一个长方形的周长扩大为原来的4倍,就是把这个长方形按1:4的比放大。
六年级下册数学试题比和比例综合练习_人教新课标()(含答案)

比和比例(一)比的意义和性质1、将正确答案填在()里(1)把5.2:6.5化成最简单的整数比是(4):(5)(2)0.2吨:600千克的比值是(13 )(3)1.5小时:24分钟的最简整数比是(15:4),比值是(3.75)(4)3:(4)=18:(24)=0.75(5)():()=()()=4÷()=0.4 答案不唯一(6)把45 :0.25化成最简整数比是(16:5),比值是(315 )(7)小刚行走的路程比小丽多14 ,而小丽走路所用的时间比小刚多110 ,小刚和小丽的速度比是(11:8)(8)58 =(0.625)(用小数表示)=(5÷8)(用除式表示)=62.5%(用百分数表示)=5:8(用比表示)(9)10.08 这个比的比值是(12.5)(10)8:(40)=(4)20 =20%=1:(5)=6:(30)(11)一个正方形边长和周长的比是(1:4)(12)49 与它的倒数的比是(16:81)(13)甲数与艺术的比是9:4,甲数比乙数多(125)%(14)1:0.25化成最简单的整数比是(4):(1),比值是(4)(15)一个等腰三角形,一个地窖和定焦的i 是3:4,这个等腰三角形的顶角是(72)度。
(16)已知小圆半径是3厘米,大圆半径是4厘米,小圆和大圆的周长比是(3:4),面积比是(9:16)解法:根据圆周长公式,周长=半径×2×π。
把已知数据代入公式,小圆周长=3×2×π=6π。
大圆周长=4×2×π=8π。
小圆与大圆周长比为6π:8π,化简后为3:4。
根据圆面积公式,面积=半径×半径×π,把已知数据代入公式:小圆面积=3×3×π=9π;大圆面积=4×4×π=16π。
小圆与大圆面积比为9π:16π,化简后为9:16(17)参加学校课外小组的男生人数的319 正好与女生人数的322 相等,男生和女生人数的比是(19:22)(18)比的后项不能是(0)(19)大正方形与小正方形的边长的比是3:2,他们周长的比是(3;2),面积比是(9:4)(20)甲数是乙数的135 ,乙数与甲数的比是(5:8)(21)34 与它的倒数的最简单的整数比是(9:16)(22)差相当于被减数的37 ,差和减数的比是(3:4)(23)a 、b 都是不等于0的自热桉树,如果a ×7=b ×9,那么,a:b=(9:7)(24)20克盐甲200克水融成盐水,盐和盐水的比是(1:11),比值是(111 )(25)1千克的盐溶解在35千克的水中,盐水与盐最简单的整数比是(36:1)(26)一个比的比值是3,它的前项是2.25,后项是(0.75)(27)两个完全相等的正方形拼成一个长方形,这个长方形的长和它周长的比是(1:3) 解法:设这个正方形的边长为a ,那么,拼成后的长方形的长为2a ,拼成后的长方形的周长是a ×2+(2a )×2=2a+4a=6a 。
六年级下册数学试题-专题10比和比例 全国通用 有答案

10.比和比例知识要点梳理一、比的意义和性质1.比的意义两个数相除又叫做两个数的比。
比的写法和读法:表示数a与数b(b不能为零)的比,写作a:b,也可以写作。
“:”是比号,读作“比”,所以a:b读作a比b。
比的前项和后项:比号前面的数叫做比的前项,比号后面的数叫做比的后项。
前项除以后项所得的商是比的结果,叫做比值。
例如:4 : 5=4÷5=0.8↓↓↓↓前项比号后项比值2.比的基本性质比的前项和后项同时乘以或除以相同的数(0除外),比值不变。
二、比、分数和除法比与分数相比,比的前项相当于分子,比的后项相当于分母,比值相当于分数值,比号相当于分数线。
比可以写成分数形式,如7:4可读作:七比四。
比与除法比较,比的前项相当于除法中的被除数,比的后项相当于除法中的除数,比值相当于商,比号相当于除号。
比、分数和除法之间的联系与区别如下表所示:三、求比值与化简比1.求比值前项除以后项所得的商是比的结果,叫比值。
同类量的比,其比值没有单位名称;不同类量的比,其比值有单位名称。
例如:100千米:5时=20千米/时2.化简比比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。
把两个数的比化成最简整数比的,称为化简比或比的化简。
四、比例的意义和性质1.比例的意义表示两个比相等的式子叫做比例。
组成比便的四个数,叫做比例的项,两端的两项叫做比例配外项,中间的两项叫做比例的内项。
例如:2.比例的基本性质在比例单,两个外项的积等于两个内项的积,这叫做比例的基本性质。
例如:15:60=12:48可得:60×12=15×48如果把比例写成分数形式,等号两边的分子和分母分别交叉相乘,所得的积相等。
五、比和比例的区别六、解比例根据比例的基本性质,如果已经知道比例中的任何三项,就可求出这个比例中的另外一个未知项。
求比例中的未知项,叫做解比例。
解比例时,先根据比例的基本性质把原比例改写成两个外项乘积与两个内项乘积相等形式的方程,再用已知的两项的乘积除以另一个已知项求出未知项。
小升初真题特训:比和比例-小学数学六年级下册人教版(有答案 有解析)

小升初真题特训:比和比例-小学数学六年级下册人教版(有答案有解析)小升初真题特训:比和比例-小学数学六年级下册人教版学校:___________姓名:___________班级:___________考号:___________一、选择题1.(2023·江苏·小升初真题)学校田径队中有四名队员的身高在140厘米至150厘米.小明身高170厘米,如果他加入田径队后,这五名田径队员的平均身高( ).A.不会有变化B.增加12.5厘米C.最多增加4厘米D.增加4厘米至6厘米2.(2023·全国·小升初真题)两地间的实际距离是80千米,画在地图上是4厘米.这幅地图的比例尺是().A.1:20 B.1:20000 C.1:20000003.(2022·福建南平·统考小升初真题)如图,阴影部分的面积相当于甲圆面积的,相当于乙圆面积的,那么甲和乙两个圆的面积比是()。
A.6∶1 B.6∶5 C.5∶64.(2023·全国·小升初真题)甲数的等于乙数的,甲数和乙数的比是()A.7:4 B.4:7 C.:5.(2023·全国·小升初真题)图上距离1厘米,表示实际距离20米,那么比例尺是()A.1:20 B.1:200 C.1:20006.(2022·广东惠州·统考小升初真题)甲数的等于乙数的(甲数、乙数不为),那么甲数与乙数的比是()。
A.B.C.D.7.(2023春·全国·六年级小升初模拟)从圆中剪出一个最大的正方形,则正方形的面积与圆的面积之比为()。
A.π∶4 B.2∶π C.3∶π8.(2022·浙江宁波·统考小升初真题)下面各题中,成反比例关系的是()。
A.路程一定,速度和时间B.时间一定,路程和速度C.单价一定,总价和数量D.数量一定、总价和单价二、判断题9.(2023·全国·小升初真题)若2X=5Y,则X和Y一定成正比例关系.( ).10.(2022·湖南衡阳·统考小升初真题)某班男、女生人数的比是7∶8,男生占全班人数的。
人教版六年级下册数学《比例》试题及答案

人教版六年级下册数学《比例》试题及答案一.填一填1.【 】叫做比例。
2.在一个比例中,两个内项正好互为倒数,已知一个外项是52,则另一个外项是【 】。
3.北京到天津的实际距离是120千米,在比例尺是50000001的地图上,两地的图上距离是【】厘米。
4.如果2a=3b ,那么a:b=【 】:【 】。
5.用12的因数中的任意四个数组成一个比例是【 】。
6. 3:【 】=6:10=【 】:357.在总价.单价和数量三种量中,当【 】一定时,【 】与【 】成正比例当【 】一定时,【 】与【 】成正比例当【 】一定时,【 】与【 】成反比例8.配置一种淡盐水,盐占盐水的191,盐与水的比是【 】。
二.判断对错1.如果甲数是乙数的51【甲.乙均不为0】,甲与乙的比是1:5。
【 】。
2.用同样的方砖铺地,铺地面积与方砖块数成反比例。
【 】3.一项工程,甲独做要10小时,乙独做要8小时,甲.乙工作效率的之比是 5:4【 】4.圆的面积与它的半径成正比例关系。
【 】5.求比例中的未知项,叫做解比例。
【 】6.一幅地图的比例尺是1:500000m 。
【 】三.选一选,将正确答案的序号填在括号里。
1.一个加数一定,和与另一个加数【 】。
A.成正比例B.成反比例C.不成比例2.出粉率一定,面粉质量与小麦质量成【 】A.成正比例B.成反比例C.不成比例3.在一副平面图上,用图上距离2cm 表示实际距离200m,这幅图的比例尺是【 】A.1:100B. 1:1000C. 1:100004.按1:5将长方形缩小,就是将长方形的面积缩小到原来的【 】 A.51 B. 101 C.2515.用3.4.16.12四个数组成比例,正确的是【 】A.3:16=4:12B.3:4=12:16C.16:12=4:3四.算一算,解比例 x:10=41:31 0.4:x=1.2:2 4.212=x 3五.画一画,操作题。
学校要建一个长100m,宽60m 的长方形操场用1:1000的比例尺画出操场的平面图。
人教版六年级数学下册第四单元《比例》综合复习练习题(含答案)

人教版六年级数学下册第四单元《比例》综合复习练习题(含答案)考试时间:80分钟满分:100+10分一、填空题。
(每空1分,共18分)1.根据M:N=5:8这个等式,把下面的词语“送回家”。
比值最简整数比互质数比的基本性质比例的基本性质因为5和8是( ),所以M:N的( )是5:8,它们的( )是0.625,根据( )可以推出M:N=10:16,根据( )可以推出8M=5N。
2.在比例中,两个外项互为倒数,一个内项是0.5,另一个内项是( )。
3.笑笑为一家人调制了四杯蜂蜜水,蜂蜜与水的配比情况如表:第一杯第二杯第三杯第四杯蜂蜜/mL 12 12 10 16水/mL 60 48 80 80 其中最甜的一杯是第( )杯,有两杯是同样甜的,这两组数据可以组成一个比例式是( )。
4.若ab=,则a与b成( )比例;若x=y,则x与y成( )比例。
5.一个零件长8mm,工程师绘图时的长度是24cm,这幅图的比例尺是( )。
6.法国巴黎的埃菲尔铁塔高324m,北京“世界公园”里有一座埃菲尔铁塔模型,它的高度与原塔的高度比是1:10,这座模型高( )m。
7.一个长3cm、宽2cm的长方形,按3:1放大,得到的图形的面积是( )cm2,周长是( )cm。
8.在一幅比例尺为1:2000000的地图上,量得A地到B地的图上距离是6 cm,则 A地到B地的实际距离是( )km。
如果甲行完全程需要2小时,乙行完全程需要3小时,甲、乙两人同时从A、B两地相对出发,( )小时可以相遇。
9.爸爸驾驶轿车从A朝阳高速入口北上高速公路,需要经过如图的陡坡,当轿车行驶到日A点时,北斗卫星导航系统显示距80 m100 m离地面40 m,假如陡坡的坡度处处相同,轿车行驶到B点时,北斗卫星导航系统会示距离地面( )m。
(坡度指距离地面的高度与水平长度的比)10.爸爸的平均步长是0.75m,乐乐的平均步长是0.5m,从乐乐家到学校,爸爸走了1200步,乐乐要走( )步。
六年级数学比和比例试题答案及解析

六年级数学比和比例试题答案及解析1.甲、乙、丙三人分一箱苹果.若按3:2:5或1:2:3分配,两种分法()分得一样多.A.甲 B.乙 C.丙【答案】C【解析】根据两种分配方法,分别求出两种方案中甲、乙、丙各分得总数的几分之几,分数值相同的及时分得糖果相同的.解答:解:第一种:3+2+5=10甲占:乙占:=丙占:=第二种:1+2+3=6甲占:乙占:=丙占:=所以两次丙分得的一样多.故选:C.点评:本题的关键是求出两次甲、乙、丙各占总份数的几分之几.2.:==80%=÷40=折=小数.【答案】4,5,50,32,八,0.8【解析】分析:80%可以化成,根据分数的性质,的分子和分母同时乘10可化成;用的分子4做比的前项,分母5做比的后项也可转化成比为4:5;用的分子4做被除数,分母5做除数可转化成除法算式为4÷5,根据商不变的性质,把被除数和除数同时乘8可化成32÷40;80%也就是八折;把80%的百分号去掉,把小数点向左移动两位可化成0.8;由此进行转化并填空.解答:解:4:5==80%=32÷40=八折=0.8.故答案为:4,5,50,32,八,0.8.点评:此题考查小数、分数、比、除法和百分数之间的关系和转化,也考查了分数的性质和商不变性质的运用.3.用一根长120米的钢筋,围成一个长方体的房间框架,已知长、宽、高的比是3:2:1,房间的长宽高分别是多少?若粉刷屋顶和四面墙壁,除去门窗20平方米,粉刷的面积是多少平方米?【答案】房间的长是15米、宽是10米、高是5米,粉刷的面积是480平方米.【解析】用一根长120米的钢筋,围成一个长方体的房间框架,已知长、宽、高的比是3:2:1,首先求得一条长、宽、高的和:120÷4=30厘米,进而求出长、宽、高的总份数,再求得长、宽、高所占总数的几分之几,最后求得长方体的长、宽、高分别是多少,列式解答即可;粉刷的是四面墙壁和顶棚,根据长方体的表面积的计算方法,求出这5个面的总面积减去门窗和黑板面积即可.据此解答.解答:解:长:120÷4×=30×=15(米)宽:120÷4×=30×=10(米)高:120÷4×=30×=5(米)15×10+(15×5+10×5)×2﹣20=150+(75+50)×2﹣20=150+250﹣20=400﹣20=480(平方米)答:房间的长是15米、宽是10米、高是5米,粉刷的面积是480平方米.点评:此题解答的关键字在于求出长、宽、高的和,再运用按比例分配的方法解决,还要搞清粉刷的是哪几个面,然后根据长方体的表面积的计算方法进行解答.4. 4:3的后项加上12,要使比值不变,前项应加上.【答案】16.【解析】比的后项加上12,扩大了5倍,根据比的基本性质,要使比值不变,比的前项也应扩大5倍,即乘上5,据此解答即可.解答:解:3+12=15,15÷3=5比的后项变成15,扩大了5倍,要使比值不变,比的前项也应扩大5倍;即比的前项应乘上5,或加上4×5﹣4=16.故答案为:16.点评:此题主要考查了比的基本性质的灵活应用.5. 1.2:化成最简整数比是,比值是.【答案】2:1,2.【解析】化简比是根据比的基本性质(比的前项和后项同时乘上或除以一个相同的数(0除外),比值不变),把比的前项和后项同时乘上或除以一个相同的不为0的数,使比的前项和后项变成互质数.求比值是用比的前项除以后项,小数化成分数进行计算,结果最好用分数表示.解答:解:化成最简整数比是:1.2:=:=:=():()=6:3=(6÷3):(3÷3)=2:1比值是:1.2:=:===2.故填:2:1,2.点评:化简比是把一个比化成最简单的整数比(前项和后项是互质数)的形式,求比值是求出比的值的大小.6.画一个周长是24厘米,长与宽的比是3:1的长方形.【答案】24÷2=12(厘米)12×=9(厘米)12×=3(厘米)据此画图如下:【解析】解:24÷2=12(厘米)12×=9(厘米)12×=3(厘米)据此画图如下:【点评】依据长方形的周长公式,分别计算出长方形的长和宽的值,是解答本题的关键.7. 10克药溶解在100克水中,药和药水的比是()A.1:10 B.1:9 C.1:11【答案】C【解析】将10克药放入100克水中,即可配制成10+100=110克药水,那么药和药水的比是10:110,然后化简即可.解:10:(10+100)=10:110=1:11答:药和药水的比是1:11.故选:C.【点评】此题解题的关键是看所求的问题是谁与谁比,然后根据题意进行解答,继而得出结论.8.男生与女生的人数比是6:5,男生比女生多()A. B. C.【答案】C【解析】男生与女生人数的比是6:5,把男生人数看作6份,则女生人数就是5份,就是求男生比女生多的人数占女生人数的几分之几,用男生比女生多的人数除以女生人数即可解答.解:(6﹣5)÷5=1÷5=;故选:C.【点评】求一个数比另一个数多或少百分之几,用这两数之差除以另一个数.9.在一个比例中,两个外项的积是,一个内项是3,另一个内项是.【答案】.【解析】根据比例的性质“在比例里,两内项的积等于两外项的积”,先确定出两个內项的积也是,进而根据一个内项是3,用除法计算即可求得另一个內项的数值.解:在一个比例中,两个外项的积是根据比例的性质,可知两个内项的积也是,其中一个内项是3,则另一个内项为÷3=.故答案为:.【点评】此题考查比例性质的运用:在比例里,两内项的积等于两外项的积.10.a=b则a:b= :.【答案】16,15.【解析】逆用比例的基本性质:在比例里,内项的积等于外项的积.解:因为a=b,所以a:b=:==16:15;故答案为:16,15.【点评】本题主要是灵活利用比例的基本性质解决问题.11.先化简比,再求比值.:0.9:0.36吨:375千克.【解析】(1)根据比的基本性质,即比的前项和后项同时乘或除以一个相同的数(0除外)比值不变,进而把比化成最简比;(2)用最简比的前项除以后项即得比值.解:(1):=(×):(×)=9:2;:=÷=;(2)0.9:0.36=(0.9÷0.18):(0.36÷0.18)=5:2;0.9:0.36="0.9÷0.36"=2.5;(3)吨:375千克=(×1000千克):375千克=250千克:375千克=(250÷125):(375÷125)=2:3;吨:375千克=(×1000千克):375千克=250千克:375千克=250÷375=.【点评】此题考查化简比和求比值的方法,要注意区分:化简比的结果是一个比,它的前项和后项都是整数,并且是互质数;而求比值的结果是一个数,可以是整数、小数或分数.12.某繁华街道上,停着小轿车、小客车、公共汽车共200辆,这三种车的辆数比是2:3:5,每种车各有多少辆?【答案】小轿车有40辆,小客车有60辆,公共汽车有100辆.【解析】首先求得小轿车、小客车、公共汽车的总份数,再求得三种汽车占总数的几分之几,最后求得各自的辆数,列式解答即可.解:小轿车:200×=40(辆);小客车:200×=60(辆);公共汽车:200×=100(辆).答:小轿车有40辆,小客车有60辆,公共汽车有100辆.【点评】此题主要考查按比例分配应用题的特点:已知两个数的比(三个数的比),两个数的和(三个数的和),求这两个数(三个数),用按比例分配解答.13.学校合唱队人数在40至60人之间,男生与女生的人数比是7:6,合唱队共有人.【答案】52.【解析】由“男生与女生的人数比是7:6”可知,总人数相当于7+6=13份,也就是说总人数是13的倍数,那么在“40﹣60”之间只有52符合题意,由此可知总人数就是52.解:由男女生人数的比是7:6可知:总人数是7+6=13(份),即总人数是13的倍数;又因为合唱队人数在40至60人之间,那么合唱队的人数就应是52;故答案为:52.【点评】此题是考查比的应用,要把比理解为几份和几份的比.14.把下面各比化成最简整数比24:16=0.45:0.3=0.375:=:=【答案】3:2;3:2;3:1;1:5.【解析】根据比的基本性质,即比的前项和后项同时乘或除以一个相同的数(0除外)比值不变,进而把比化成最简比.解:24:16=(24÷8):(16÷8)=3:2;0.45:0.3=(0.45÷0.15):(0.3÷0.15)=3:2;0.375:=(0.375×8):(×8)=3:1;:=(×6):(×6)=1:5.故答案为:3:2;3:2;3:1;1:5.【点评】此题考查化简比的方法,注意化简比的结果仍是一个比,它的前项和后项都是整数,并且是互质数.15.﹦0.6﹦ ÷40﹦12:﹦:15.【答案】3,24,20,9.【解析】把0.6化成分数并化简是;根据分数与除法的关系=3÷5,再根据商不变的性质被除数、除数都乘8就是24÷40;根据比与分数的关系=3:5,再根据比的基本性质比的前、后项都乘3就是9:15;都乘4就是12:20.解:=0.6=24÷40=12:20=9:15.故答案为:3,24,20,9.【点评】此题主要是考查除法、小数、分数、比之间的关系及转化.利用它们之间的关系和性质进行转化即可.16. 3: =24 :8=0.5.【答案】,4.【解析】根据比值的含义:比的前项除以后项所得的商叫做比值;可知:比的后项=比的前项÷比值,比的前项=比的后项×比值;据此解答.解:①3÷24=,所以应填;②0.5×8=4,所以应填4;故答案为:,4.【点评】根据比的前项、后项和比值三者之间的关系进行解答.17.从学校走到电影院,小明用8分钟,小红用10分钟,小明和小红的速度之比是4:5 .(判断对错)【答案】×【解析】把从学校走到电影院的路程看作单位“1”,根据“路程÷时间=速度”分别求出小明和小红的速度,进而根据题意求比即可判断.解:(1÷8):(1÷10),=:,=(×40):(×40),=5:4;故答案为:×.【点评】解答此题用到的知识点:(1)比的意义;(2)路程、时间和速度三者之间的关系.18.把下面各比化成最简单的整数比.8:12=0.25:0.45==【答案】2:3,5:9,2:1.【解析】(1)根据比的性质:把8:12的前项和后项同时除以4即可化成最简整数比;(2)根据比的性质:把0.25:0.45的前项和后项同时乘20即可化成最简整数比;(3)根据比的性质:把:的前项和后项同时乘8即可化成最简整数比;据此进行化简并计算.解:(1)8:12=(8÷4):(12÷4)=2:3;(2)0.25:0.45=(0.25×20):(0.45×20)=5:9;(3):=(×8):(×8)=2:1.故答案为:2:3,5:9,2:1.【点评】此题考查化简比的方法,是根据比的基本性质进行化简的,最简比是指比的前项和后项是互质数的比;要注意区分:化简比的结果仍是一个比;求比值的结果是一个数,可以是小数、分数和整数.19.当0.3a=5b(a、b均不为0)时,则b:a= :.【答案】3、50.【解析】依据比例的基本性质,即两内项之积等于两外项之积,即可进行解答.解:因为0.3a=5b,则b:a=0.3:5=3:50;故答案为:3、50.【点评】此题主要考查比例的基本性质的灵活应用.20.=15÷20= :24== (填小数).【答案】3,18,36,0.75.【解析】解答此题的突破口是15÷20,根据分数与除法的有关系15÷20=,将分数化简是;根据分数的基本性质,分子、分母都乘9就是;根据比与分数的关系=3:4,再根据比的基本性质比的前、后项都乘6就是18:24;15÷20=0.75,解:=15÷20=18:24==0.75.故答案为:3,18,36,0.75.【点评】此题主要是考查除法、小数、分数、比之间的关系及转化.利用它们之间的关系和性质进行转化即可.21.一个最简整数比的比值是0.15,这个最简比是(:)【答案】3,20.【解析】根据比的意义和比值的意义:两个数相除又叫做两个数的比,比的前项除以后项所得的商,叫做比值;可得:假设比的后项是1,则比的前项为0.15×1=0.15,则比为0.15:1,化成最简整数比即可.解:0.15:1=(0.15×20):(1×20)=3:20;故答案为:3,20.【点评】此题应根据比的意义和比的性质进行解答.22. 3.2:0.24的最简整数比是,比值是.【答案】40:3,.【解析】(1)根据比的基本性质作答,即比的前项和后项同时乘一个数或除以一个数(0除外)比值不变;(2)用比的前项除以后项即可.解:(1)3.2:0.24,=(3.2×100):(0.24×100),=320:24,=(320÷8):(24÷8),=40:3;(2)3.2:0.24,=3.2÷0.24,=,故答案为:40:3,.【点评】此题主要考查了化简比和求比值的方法,另外还要注意化简比的结果是一个比,它的前项和后项都是整数,并且是互质数;而求比值的结果是一个商,可以是整数,小数或分数.23. 1.8:化成最简单的整数比是,比值是.【答案】6:1,6.【解析】(1)化简整数比时,应根据比的性质“比的前项和后项同时乘或除以相同的数(0除外),比值不变”,进行化简.(2)求比值时,应根据比的意义“两个数相除,叫做两个数的比”去算,用比的前项除以后项得出答案.解:1.8:=(1.8×10):(×10)=18:3=6:1;1.8:=1.8÷=1.8×=6;故答案为:6:1,6.【点评】化简整数比最后的答案是一个比,而求比值最后的答案是一个比值,它可以表示为一个整数、分数或小数.24.一条公路长120千米,其中上坡路、下坡路和平路的比是2:3:5,上坡路、下坡路和平路各是多少千米?【答案】上坡路是24千米,下坡路是36千米,平路是60千米.【解析】分别把上坡路、下坡路和平路的长度看作2份、3份和5份,则总份数为2+3+5=10份,利用按比例分配的方法,即可求解.解:120×=24(千米),120×=36(千米),120×=60(千米);答:上坡路是24千米,下坡路是36千米,平路是60千米.【点评】此题主要考查按比例分配的方法的灵活应用.25.男生人数的等于女生人数的,则男、女生人数的比是()A.4:5 B.5:4 C.:【答案】B【解析】由题意可知:男生人数×=女生人数×,于是即可逆运用比例的基本性质,即两内项之积等于两外项之积,即可求出它们的比.解:因为男生人数×=女生人数×,则男生人数:女生人数=:=5:4;故选:B.【点评】此题主要考查比例的基本性质的灵活应用.26.一个三角形的三个内角度数比是3:4:5,则此三角形是()A.锐角三角形 B.直角三角形 C.钝角三角形【答案】A【解析】根据三角形的内角和是180°,按照比例计算出角的度数,再判断.解:180°÷(3+4+5)=15°,则15°×3=45°;15°×4=60°;15°×5=75°;三个角都是锐角,所以这个三角形是锐角三角形.故选:A.【点评】解答此题应明确三角形的内角度数的和是180°,求出三个角的度数,然后根据三角形的分类判定类型.27.大小两个圆,大圆周长与直径的比,等于小圆周长与直径的比..【答案】对【解析】根据圆周率的含义可知:任何一个圆的周长和它的直径的比值都是一个常数,通常用π来表示.解:任何一个圆的周长和它的直径的比值都是一个常数,通常用π来表示,所以大小两个圆,大圆周长与直径的比,等于小圆周长与直径的比.答:大小两个圆,大圆周长与直径的比,等于小圆周长与直径的比.故填:对.【点评】此题主要考查的是圆周率含义的应用.28. 0.2:0.8化成最简整数比是,比值是.【答案】1:4,0.25【解析】(1)根据比的基本性质,即比的前项和后项同时乘或除以一个相同的数(0除外)比值不变,进而把比化成最简比;(2)用最简比的前项除以后项,即得比值.解:(1)0.2:0.8=(0.2×10):(0.8×10)=2:8=(2÷2):(8÷2)=1:4;(2)0.2:0.8=0.2÷0.8=2÷8=1÷4=0.25;故答案为:1:4,0.25.【点评】此题考查化简比和求比值的方法,要注意区分:化简比是根据比的基本性质进行化简的,结果仍是一个比;求比值是用比的前项除以后项所得的商,结果是一个数.29.解方程.x:1.2=3:4; 3.2x﹣4×3=52; x+x=.【答案】(1)0.9;(2)20;(3).【解析】(1)根据比例的基本性质,原式化成4x=1.2×3,再根据等式的性质,方程两边同时除以4求解;(2)先化简方程,再根据等式的性质,方程两边同时加上12,再两边同时除以3.2求解;(3)先化简方程,再根据等式的性质,方程两边同时除以求解.解:(1)x:1.2=3:44x=1.2×34x÷4=3.6÷4x=0.9;(2)3.2x﹣4×3=523.2x﹣12=523.2x﹣12+12=52+123.2x=643.2x÷3.2=64÷3.2x=20;(3)x+x=x=x=x=.【点评】解答方程的依据是等式的性质,同时应注意“=”号上下要对齐.30.甲、乙两地相距600千米,卡车和货车同时从两地相向开出。
六年级数学比和比例试题答案及解析

六年级数学比和比例试题答案及解析1. a、b是两种相关联的量,如果a、b成正比例,那么“?”处应该填();如果a、b成反比例,那么“?”处应该填()。
【答案】2.4【解析】如果ab成正比例,那么它们的比值就是一定的,即3:4=5:?,解比例得到?=。
如果a、b成反比例,那么它们的乘积就是一定的,即3×4=5×?,得到?=2.4。
2.比例尺是()。
A.一把尺B.一个比例C.一个比D.一个分数【答案】C【解析】根据概念可知:比例尺是图上距离和实际距离的比。
它是一个比,所以选C。
3.先化简比再求比值。
(1)1.8:1.2 (2)2:(3):(4)60厘米:2.4米【答案】(1)3:2,1.5;(2)6:1,6;(3)(4)【解析】(1)先根据比就基本性质,把比的前项和后项同时扩大10倍,变为整数比18:12,再把这个整数比化简后得到3:2。
3:2=1.5,所以比值的1.5。
(2)先根据比就基本性质把这个比化为整数比,可以让前项和后项同时乘3,这样就化为6:1,这个比是最简比,即为最后结果。
6÷1=6,所以比值是6。
(3)若化成整数比,需要让比的前项和后项同时乘两个分母的公因数20,(×20):(×20)=24:15,再把24:15化简后得到8:5.8÷5=1.6,所以比值是1.6。
(4)先统一单位名称,可以都化成以厘米作单位的数是60厘米:240厘米,化简后是1:4。
1÷4=。
比值为。
需注意:在化简前统一单位名称;无论是化简比还是求比值都不带单位名称。
4.有一块正方形铁片(如图),沿一边剪去底是6分米的一个三角形,剩下的铁片成了梯形(阴影部分),这个梯形的上底与下底的比是1:4,求梯形的面积。
【答案】9平方分米【解析】本题的关键是理解6分米对应的份数。
因为梯形的上底和下底的比是1:4,也就是说梯形的上底是1份,正方形的边长是4份,从而得到,空白三角形的底是3份。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级下册总复习比和比例练习题
一、 填空:
1. 甲乙两数的比是11:9,甲数占甲、乙两数和的)()(,乙数占甲、乙两数和的)
()(。
甲、乙两数的比是3:2,甲数是乙数的( )倍,乙数是甲数的
)()(。
2. 某班男生人数与女生人数的比是4
3,女生人数与男生人数的比是( ),男生人数和女生人数的比是( )。
女生人数是总人数的比是( )。
3. 一本书,小明计划每天看7
2,这本书计划( )天看完。
4. 一根绳长2米,把它平均剪成5段,每段长是)()(米,每段是这根绳子的)
()(。
5. 王老师用180张纸订5本本子,用纸的张数和所订的本子数的比是( )。
6. 89吨大豆可榨油3
1吨,1吨大豆可榨油( )吨,要榨1吨油需大豆( )吨。
7. 甲数的32等于乙数的5
2,甲数与乙数的比是( )。
8. 把甲数的7
1给乙,甲、乙两数相等,甲数是乙数的)()(,甲数比乙数多)()(。
9. 甲数比乙数多4
1,甲数与乙数比是( )。
乙数比甲数少)()(。
10. 在6 :5 = 1.2中,6是比的( ),5是比的( ),1.2是比的()。
在4 :
7 =48 :84中,4和84是比例的( ),7和48是比例的( )。
11. 4 :5 = 24÷( )= ( ) :15
12. 一种盐水是由盐和水按1 :30 的重量配制而成的。
其中,盐的重量占盐水的(—),
水的重量占盐水的(—)。
图上距离3厘米表示实际距离180千米,这幅图的比例尺是( )。
一幅地图的比例尺是图上6厘米表示实际距离( )千米。
实际距离150千米在图上要画()厘米。
13. 12的约数有( ),选择其中的四个约数,把它们组成一个比例是( )。
写出两个比值是8的比( )、( )。
二、 判断
1. 由两个比组成的式子叫做比例。
( )
2.正方形的面积一定,它的边长和边长不成比例。
( )
3.如果8A = 9B 那么B :A = 8 :9 ( ) 4.15 :16和6 :5能组成比例 ( )
三、 选择(将正确答案的序号填在括号里)
1. 小正方形和大正方形边长的比是2:7,小正方形和大正方形面积的比是( )
A 、2:7
B 、6:21
C 、4:14
2. 下面 ( )组的两个比不能组成比例。
A 、8:7和14:16
B 、0.6:0.2和3:1
C 、19: 110 和10:9
3. 与51:6
1能组成比例的是( )。
A 、61:51 B 、6
1:5 C 、 5:6 D 、6:5 4. 在盐水中,盐占盐水的10
1,盐和水的比是( )。
A 、1:8 B 、1:9 C 、 1:10 D 、1:11
5. 如果X =4
3Y ,那么Y :X =( )。
A 、1:43 B 、4
3:1 C 、3:4 D 、4:3 6. 把4.5、7.5、21 、 10
3这四个数组成比例,其内项的积是( )。
A 、1.35 B 、3.75 C 、33.75 D 、2.25
7. 一件工作,甲单独做12天完成,乙单独做18天完成。
甲乙效率的最简比是( )。
A 、 6:9
B 、 3:2
C 、 2:3
D 、 9:6
8. 一个三角形三个内角度数的比是6:2:1,这个三角形是( )。
A 、 直角三角形
B 、锐角三角形
C 、钝角三角形
D 、无法确定
9. 甲与乙的工作效率比是6:5,两人合做一批零件共计880个,乙比甲少做( )。
A 、 480个
B 、400个
C 、80个
D 、40个
四、计算
1、求比值。
1452:0.72 74:171 32
1:231
2、化简比。
751:0.24 12.6:0.4 201:15
1
五、 解比例
25:7=X:35 514: 35= 57:x 23:X= 12: 14
531:0.4=272:X 2.8:5
4=0.7:X 25.025.1=6.1X
六、 根据下面的条件列出比例,并且解比例
1. 96和X 的比等于16和5的比。
2. 45 和X 的比等于25和8的比
3. 两个外项是24和18,两个内项是X 和36。
七、 应用题
1. 建筑工人用水泥、沙子、石子按2:3:5配制成96吨的混凝土,需要水泥、沙子、
石子各多少吨?
2.一个县共有拖拉机550台,其中大型拖拉机台数和手扶拖拉机台数的比是3:8,这两种拖拉机各有多少台?
3.用84厘米长的铜丝围成一个三角形,这个三角形三条边长度的比是3:4:5。
这个三角形的三条边各是多少厘米?
4.甲、乙、丙三个数的平均数是84,甲、乙、丙三个数的比是3:4:5,甲、乙、丙三个数各是多少?
5.乙两个数的平均数是25,甲数与乙数的比是3:4,甲、乙两数各是多少?
6. 8.商店运来一批电冰箱,卖了18台,卖出的台数与剩下的台数比是3:2,求运来电冰箱多少台?
7.一种药水是用药物和水按3:400配制成的。
(1)要配制这种药水1612千克,需要药粉多少千克?
(2)用水60千克,需要药粉多少千克?
(3)用48千克药粉,可配制成多少千克的药水?。