43.新人教版七年级数学上册2.2 第2课时 去括号1教案
新人教版七年级数学上册《去括号》教案

第2课时去括号【知识与技能】能运用运算律探究去括号法则,并且利用去括号法则将整式化简.【过程与方法】经过类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力.【情感态度】培养学生主动探究、合作交流的意识,严谨治学的学习态度.【教学重点】去括号法则,准确应用法则将整式化简.【教学难点】括号前面是“-”号去括号时,括号内各项变号容易产生错误.一、情境导入,初步认识利用合并同类项可以把一个多项式化简,在实际问题中,往往列出的式子含有括号,那么该怎样化简呢?现在我们来看本章引言中的问题(3):在格尔木到拉萨路段,如果列车通过冻土地段要uh,那么它通过非冻土地段的时间为(u-0.5)h,于是,冻土地段的路程为100ukm,非冻土地段的路程为120(u-0.5)km,因此,这段铁路全长(单位:km)是100u+120(u-0.5)①冻土地段与非冻土地段相差100u-120(u-0.5)②上面的式子①、②都带有括号,它们应如何化简?思路点拨:教师引导、启发学生类比数的运算,利用分配律.学生练习、交流后,教师归纳:利用分配律,可以去括号,合并同类项,得:100u+120(u-0.5)=100u+120u+120×(-0.5)=220u-60;100u-120(u-0.5)=100u-120u-120×(-0.5)=-20u+60.我们知道,化简带有括号的整式,首先应先去括号.上面两式去括号部分变形分别为:+120(u-0.5)=+120u-60 ③-120(u-0.5)=-120u+60 ④比较③、④两式,你能发现去括号时符号变化的规律吗?二、思考探究,获取新知【教学说明】上一栏目中问题,应鼓励学生通过观察,试用自己的语言叙述去括号法则,然后教师板书(或用屏幕)展示.【归纳结论】如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.特别地,+(x-3)与-(x-3)可以分别看作1与-1分别乘(x-3).利用分配律,可以将式子中的括号去掉,得:+(x-3)=x-3(括号没了,括号内的每一项都没有变号)-(x-3)=-x+3(括号没了,括号内的每一项都改变了符号)去括号规律要准确理解,去括号应对括号内的每一项的符号都予考虑,做到要变都变;要不变,则每一项都不变;另外,括号内原有几项去掉括号后仍有几项.三、典例精析,掌握新知例1 化简下列各式:(教材第66页例4)(1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).【教学说明】讲解时,先让学生判定是哪种类型的去括号,去括号后,要不要变号,括号内的每一项原来是什么符号?去括号时,要同时去掉括号前的符号.为了防止错误,题(2)中-3(a2-2b),先把3乘到括号内,然后再去括号.解答过程按课本,可由学生口述,教师板书.例2 两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50km/h,水流速度是akm/h.(教材第67页例5)(1)2h后两船相距多远?(2)2h后甲船比乙船多航行多少千米?【教学说明】教师操作投影仪,展示例2,学生思考、小组交流,寻求解答思路.根据船顺水航行的速度=船在静水中的速度+水流速度,船逆水航行速度=船在静水中的速度-水流速度.因此,甲船速度为(50+a )km/h ,乙船速度为(50-a )km/h ,2h 后,甲船行程为2(50+a )km ,乙船行程为2(50-a )km.两船从同一港口同时出发反向而行,所以两船相距等于甲、乙两船行程之和.去括号时强调:括号内每一项都要乘以2,括号前是负因数时,去掉括号后,括号内每一项都要变号.为了防止出错,可以先用分配律将数字2与括号内的各项相乘,然后再去括号,熟练后,再省去这一步,直接去括号.四、运用新知,深化理解1~2.教材第67页练习.3.一本书第一天看了x 页,第二天看的页数比第一天看的页数的2倍少25页,第三天看的比第一天看的一半多42页,已知三天刚好看完这本书.(1)用含x 的代数式表示这本书的页数;(2)当x=100,试计算这本书的页数.4.有这样一道计算题:计算(2x 3-3x 2y-2xy 2)-(x 3-2xy 2+y 3)+(-x 3+3x 2y-y 3)的值,其中x=2012,y=1.甲同学错把x=2012看成x=-2012,但计算结果仍正确,请你说说这是怎么一回事?【教学说明】本课时的内容是有关于去括号的问题,教师先让学生独立完成,向学生强调去括号时应注意符号的变化.【答案】1.(1)12x-6 (2)-5+x (3)-5a+5 (4)5y+12.解:顺风飞行4小时的行程为4(a+20)千米;逆风飞行3小时的行程为3(a-20)千米;两个行程相差4(a+20)-3(a-20)=4a+80-3a+60=(a+140)千米.3.(1)x+(2x-25)+(21x+42)=27x+17; (2)将x=100代入原式得27×100+17=367.因为化简结果与x的取值无关,所以x=2012与x=-2012对计算结果没有影响,从而结果仍正确.五、师生互动,课堂小结学生作总结后教师强调要求大家应熟记法则,并能根据法则进行去括号运算.法则顺口溜:去括号,看符号:是“+”号,不变号;是“―”号,全变号.1.布置作业:从教材习题2.2中选取.2.完成练习册中本课时的练习.去括号是代数式变形中的一种常用方法,去括号时,特别是括号前面是“-”号时,括号连同括号前面的“-”号去掉,括号里的各项都改变符号.去括号规律可以简单记为“-”变“+”不变,要变全都变.当括号前带有数字因数时,这个数字要乘以括号内的每一项,切勿漏乘某些项.本课时教学时教师要通过对这个法则的不断强化,使学生牢牢记住变形时的符号变化.作者留言:非常感谢!您浏览到此文档。
新人教版七年级数学上册 2.1《去括号》教学设计

新人教版七年级数学上册 2.1《去括号》教学设计一. 教材分析新人教版七年级数学上册2.1《去括号》是整式运算的一个基本内容。
学生在学习了整式的加减法、乘除法的基础上,进一步学习去括号运算。
本节内容主要让学生掌握去括号的方法和规律,理解去括号在整式运算中的重要性。
教材通过例题和练习,使学生熟练掌握去括号的方法,提高整式运算的能力。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于整式的加减法、乘除法有一定的了解。
但学生在去括号运算时,容易出错,对去括号的方法和规律掌握不扎实。
因此,在教学过程中,需要引导学生理解去括号的原则,让学生在实践中掌握去括号的方法。
三. 教学目标1.让学生掌握去括号的方法和规律。
2.提高学生整式运算的能力。
3.培养学生的逻辑思维和解决问题的能力。
四. 教学重难点1.去括号的方法和规律。
2.在实际运算中灵活运用去括号的方法。
五. 教学方法1.讲授法:讲解去括号的方法和规律。
2.案例分析法:分析典型例题,引导学生掌握去括号的方法。
3.练习法:让学生在实践中巩固去括号的方法。
4.小组讨论法:引导学生相互交流,共同解决问题。
六. 教学准备1.教材和教学参考书。
2.PPT课件。
3.练习题。
4.黑板和粉笔。
七. 教学过程1.导入(5分钟)利用PPT课件,展示一些实际问题,引导学生关注整式运算中的去括号问题。
例如,计算“(3x+2)-(2x-1)”,让学生观察并思考如何去掉括号。
2.呈现(10分钟)讲解去括号的方法和规律。
①当括号前面是正号时,去掉括号,括号里的各项都不改变符号;②当括号前面是负号时,去掉括号,括号里的各项都改变符号。
并通过例题进行讲解。
3.操练(10分钟)让学生独立完成一些去括号的练习题。
教师选取部分学生的作业进行点评,指出错误的原因,并给予正确的指导。
4.巩固(10分钟)让学生分组讨论,相互检查去括号的正确性。
教师巡回指导,解答学生的问题。
5.拓展(10分钟)引导学生思考:在实际运算中,如何灵活运用去括号的方法?举例说明。
人教版七年级数学 2.2 第2课时去括号

7
6.(8分)化简: (1)(4ab-b2)-2(a2+2ab-b2); 解:-2a2+b2
(2)-3(2x2-xy)+4(x2+xy-6). 解:-2x2+7xy-24
2019/9/11
8
7.(6分)先化简,后求值: (4a+3a2)-3-3a3-(-a+4a3),其中a=-2. 解:原式=-7a3+3a2+5a-3,当a=-2时,原式=55
2019/9/11
5
3.(3分)下列运算正确的是( D) A.-2(3x-1)=-6x-1
B.-2(3x-1)=-6x+1
C.-2(3x-1)=-6x-2
D.-2(3x-1)=-6x+2
4.(3分)下列各组式子中,互为相反数的有( B)
①a-b与-a-b;②a+b与-a-b;③a+1与1-a;④-a+b与a-b.
4
1.(3分)下列各式去括号后正确的是( B )
A.a-(b-c)=a+b-c
B.a-(b-c)=a-b+c
C.a-(b-c)=a-b-c
D.a+(b-c)=a+b+c
2.(3分)(汤阴月考)下列各式中,去括号后得x-y+z的是( C)
A.x-(y+z)
B.-(x-y)+z
C.x-(y-z)
D.-(x+y)+z
A.-2b
B.2a
C.2b
D.0
2019/9/11
14
14.去括号:6x3-[3x2-(x-1)]=___6_x_3_-_3_x_2_+__x_-__1__. 15.如果m,n互为倒数,则mn2-(n-1)的值为__1__. 16.如果x=1时,代数式2ax3+3bx+4的值是5, 那么x=-1时,代数式2ax3+3bx+4的值是__3__.
人教版七年级数学上册2.2整式的加减去括号教学设计

总而言之,本章节的教学设计旨在让学生在掌握整式的加减去括号知识的基础上,提高解决问题的能力,培养良好的学习习惯和团队合作精神,同时激发学生对数学的兴趣和热爱。在教学过程中,教师应关注学生的个体差异,因材施教,使每个学生都能在数学学习中获得成就感。
1.学生对整式概念的理解程度,注意引导学生从具体实例中抽象出整式的定义,使学生在理解的基础上进行学习。
2.学生在去括号和整式加减运算过程中可能出现的错误,如符号错误、运算顺序混乱等,教师应适时纠正,帮助学生巩固运算规则。
3.针对学生个体差异,设计不同难度的练习题,使每个学生都能在原有基础上得到提高,激发学生的学习兴趣和自信心。
学生在小组内部分工合作,共同探讨问题解决方法。讨论过程中,教师巡视各小组,给予提示和指导,鼓励学生积极参与,充分发表自己的见解。
(四)课堂练习
在课堂练习环节,教师针对整式的加减去括号知识点,设计不同难度的练习题。从基本的去括号题目开始,逐步增加难度,让学生在课堂上即时巩固所学知识。
教师选取部分学生的作业进行点评,及时纠正错误,强调运算规则和符号变化。同时,鼓励学生之间相互检查,提高学生发现和解决问题的能力。
(五)总结归纳
在总结归纳环节,教师引导学生回顾本节课所学的整式加减去括号知识。首先,让学生用自己的话总结整式的定义、性质以及加减去括号法则。接着,教师对学生的总结进行点评和补充,确保学生对知识点的全面掌握。
最后,教师强调整式的加减去括号在实际问题中的应用,如购物、行程安排等,让学生认识到数学与生活的紧密联系,激发学生学习数学的兴趣和积极性。同时,鼓励学生在课后继续探索整式的相关知识,为下一节课的学习打下基础。
统编教材人教版七年级数学上册2.2 第2课时 去括号 公开课教学课件

类型之三 利用去括号规律进行化简 某花店一枝黄色康乃馨的价格是 x 元,一枝红色玫瑰的价格是 y 元,
一枝白色百合的价格是 z 元,下面这三束鲜花的价格各是多少元?这三束鲜 花的总价是多少元?
第 1 束:3 枝康乃馨,2 枝玫瑰,1 枝百合; 第 2 束:2 枝康乃馨,2 枝玫瑰,3 枝百合; 第 3 束:4 枝康乃馨,3 枝玫瑰,2 枝百合.
【点悟】 去括号时,运用乘法分配律把括号前的数字与括号里各项相 乘,注意括号前是“+”时,去括号后,括号里的各项都不改变符号,括号 前是“-”时,去括号后,括号里的各项都要改变符号.
类型之二 先去括号,再合并同类项 计算:
(1)(3a2-2ab+6)-(5a2-6ab-7); (2)13a-212a-4b-3c+3(-2c+2b).
知识管理
去括号
规 律:如果括号外的因数是正数,去括号后原括号内各项的符号与 原来的符号 相同 ;
如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号 相反 .
类型之一 去括号 去括号:
(1)-(2m-3); (2)n-3(4-2m); (3)16a-8(3b+4c); (4)-12(x+y)+14(p+q); (5)-8(3a-2ab+4); (6)4(nr+p)-7(n-2q).
统编教材人教版七年级数学上册
第二章 整式的加减
2.2 第2课时 去括号
学习指南
教学目标 1.在具体情境中体会去括号的必要性,了解去括号法则的依据. 2.归纳去括号法则,能利用法则进行去括号运算.
情景问题引入 央视 2 套节目《是真的吗》曾经有这样一道有趣的题目:“当 a=0.25, b=-0.37 时,请算出式子 a2+a(a+b)-(2a2+ab)的值”.主持人信心满满, 扬言道:“我不用条件就可得出结果!”那么,请问大家,主持人的说法是 真的吗?
2.2.2整式的加减-去括号法则教学设计人教版数学七年级上册

整式的加减去括号法则教学设计一、案例背景七年级数学二章第二节第2课时“整式的加减去括号法则”二、教学设计(一)教学目标(基于学科核心素养的教学目标)1.知识与技能:能运用运算律探究去括号法则,并且利用去括号法则将整式化简.2.过程与方法:经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力3.情感态度与价值观:培养学生主动探究、由生活中的实例体会数学来源于生活又高于生活.(二)内容分析1.教材分析:本节课的教学内容《去括号》是中学数学部分的一个基础知识点,是在前面学习了有理数、单项式、多项式、同类项、合并同类项的基础上来学习的,它是整式的化简和整式的加减的基础,为进一步学习下一章一元一次方程等后续数学知识做好准备,同时也是是以后分解因式、解方程(组)与不等式(组)、函数等知识点当中的重要环节之一,对于七年级学生来说接受这个知识点存在一个思维上的转换过程,同时它也是一个难点,因此去括号在初中数学教材中有其特殊地位和重要作用。
2.学生分析:七年级的学生在前面已经学习了有理数的运算、单项式、多项式、整式、合并同类项,而且在小学就学习了乘法分配律并用其进行简便运算,已经积累了一定的学习经验,但是对于七年级的学生用字母表示数以及式的运算还不太熟悉,前面学生已经学习了“字母表示数”的问题,接下来要让学生理解字母可以像数一样进行计算,所以本节课类比数学习式,数的运算性质和运算律在式的运算中仍然成立,让学生通过类比学习充分体会“数式通性”,为学习整式的加减运算打好基础,从而实现数到式的飞跃。
3.教学重点、难点:教学重点:去括号法则,准确应用法则将整式化简.教学难点:括号前面是“-”号去括号时,括号内各项变号容易产生错误。
(三)教学策略设计1.教学方法设计:根据七年级学生的思维所呈现出的具体、直观、形象之特点,为突破本节课的难点,我选用“类比——探索——发现”的教学模式。
人教版数学七年级上册整式的加减——去括号教案

§2.2《整式的加减》——去括号一、教学目标1.知识技能:掌握去括号的方法,充分注意变号法则的应用。
2.数学思考:利用运算律探究去括号法则的过程,发展抽象思维能力;通过计算带有括号的有理数的运算,发现去括号时的符号变化的规律,发展学生归纳的数学思想方法。
3.解决问题:经历计算并视察带有括号的有理数的运算过程,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生视察、分析、归纳能力。
4. 情感态度:通过共同探究活动,培养学生主动计算,视察、分析和归纳的意识,严谨治学的学习态度。
二、教学重难点1.能运用运算律探究去括号法则.(重点)2.会利用去括号法则将整式化简.(难点)三、学法指点1.教法:发现尝试法,充分体现学生的主体作用。
2.思路:设置新旧知识冲突,提出问题——解决问题——形成技能3.学法:计算视察归纳——去括号法则——练习巩固。
引导学生由数到式,由特殊到一般,突破难点。
四、教学过程设计(一)引入(创设情境引发冲突)用PPT 演示:1.合并同类项的法则是什么?2.计算:3ab-a2-ab+2a2设计意图:回忆旧知,为学习新知做好准备,承上启下。
(二)探究新知你能利用乘法分配律把括号去掉吗?⎪⎭⎫ ⎝⎛+⨯326112 ⎪⎭⎫ ⎝⎛-⨯-314112 带号乘带号写同号得正异号得负请你类比上面的方法将下列各式的括号去掉:(1)2(x+8)=2x+16(2)-2(x+8)=-2x-16(3)2(x-8)=2x-16(4)-2(x-8)=-2x+16视察讨论:去括号前后,括号内各项的符号有什么变化?归纳并板书去括号法则:1.如果括号外的因数是正数,去括号后原括号内各项的符号与本来的符号相同;2.如果括号外的因数是负数,去括号后原括号内各项的符号与本来的符号相反.设计意图:引导学生视察四个式子的异同。
根据计算结果,引导学生视察分析,并总结得出结论,从而训练学生的视察思维能力和综合归纳能力。
人教版七年级数学上册2.2《去括号》说课稿

人教版七年级数学上册2.2《去括号》说课稿一. 教材分析人教版七年级数学上册2.2《去括号》这一节主要讲述了去括号的法则和操作方法。
通过这一节的学习,使学生掌握去括号的基本技巧,能够熟练地对含有括号的数学表达式进行简化。
教材通过具体的例子,引导学生理解并掌握去括号法则,并通过大量的练习题,帮助学生巩固所学知识。
二. 学情分析七年级的学生已经掌握了基本的代数知识,对数学表达式的构成有一定的了解。
但是,对于去括号这一概念,学生可能刚开始接触,理解起来可能会有一定的难度。
因此,在教学过程中,需要教师耐心引导,通过具体的例子,让学生理解去括号的意义和方法。
三. 说教学目标1.知识与技能目标:使学生掌握去括号的基本法则,能够对含有括号的数学表达式进行简化。
2.过程与方法目标:通过具体的例子,引导学生理解并掌握去括号的方法,培养学生的逻辑思维能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的耐心和细心。
四. 说教学重难点1.教学重点:去括号的法则和操作方法。
2.教学难点:如何引导学生理解并掌握去括号的方法。
五. 说教学方法与手段1.教学方法:采用讲解法、示例法、练习法等多种教学方法,引导学生理解和掌握去括号的方法。
2.教学手段:利用多媒体课件,展示去括号的过程,使学生更直观地理解去括号的操作。
六. 说教学过程1.导入新课:通过一个具体的例子,引出去括号的概念,激发学生的兴趣。
2.讲解去括号的法则:通过PPT展示去括号的法则,并用具体的例子进行解释。
3.学生练习:让学生独立完成一些去括号的题目,检验学生对去括号法则的理解和掌握。
4.总结提升:对学生的练习进行讲评,指出学生在去括号过程中常见的问题,并给出解决方法。
5.课堂小结:引导学生总结去括号的方法和注意事项。
七. 说板书设计板书设计要简洁明了,能够突出去括号的重点。
可以设计一个,列出去括号的法则,并在旁边用具体的例子进行解释。
八. 说教学评价教学评价可以从学生的课堂表现、练习完成情况和学生的反馈等方面进行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时 去括号
1.在具体情境中体会去括号的必要性,能运用运算律去括号;(重点)
2.掌握去括号的法则,并能利用法则解决简单的问题.(难点)
一、情境导入
还记得用火柴棒像如图那样搭x 个正方形时,怎样计算火柴的根数吗?
方法1:第一个正方形用四根,以后每增加一个正方形火柴棒就增加三根,那么搭x 个正方形需要火柴棒________根.
方法2:把每个正方形都看成是用四根火柴棒搭成的,然后再减多余的根数,那么搭x 个正方形需要火柴棒________根.
方法3:第一个正方形可以看成是一根火柴棒加3根火柴棒搭成的,此后每增加一个正方形就增加3根,搭x 个正方形共需____________根.
二、合作探究
探究点一:去括号
下列去括号正确吗?如有错误,请改正.
(1)+(-a -b )=a -b ;
(2)5x -(2x -1)-xy =5x -2x +1+xy ;
(3)3xy -2(xy -y )=3xy -2xy -2y ;
(4)(a +b )-3(2a -3b )=a +b -6a +3b .
解析:先判断括号外面的符号,再根据去括号法则选用适当的方法去括号.
解:(1)错误,括号外面是“+”号,括号内不变号,应该是:+(-a -b )=-a -b ;
(2)错误,-xy 没在括号内,不应变号,应该是:5x -(2x -1)-xy =5x -2x +1-xy ;
(3)错误,括号外是“-”号,括号内应该变号,应该是:3xy -2(xy -y )=3xy -2xy +2y ;
(4)错误,有乘法的分配律使用错误,应该是:(a +b )-3(2a -3b )=a +b -6a +9b . 方法总结:本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.
探究点二:去括号化简
【类型一】 去括号后进行整式的化简
先去括号,后合并同类项:
(1)x +[-x -2(x -2y )];
(2)12a -(a +23b 2)+3(-12a +13
b 2); (3)2a -(5a -3b )+3(2a -b );
(4)-3{-3[-3(2x +x 2)-3(x -x 2)-3]}.
解析:去括号时注意去括号后符号的变化,然后找出同类项,根据合并同类项的法则,
即系数相加作为系数,字母和字母的指数不变. 解:(1)x +[-x -2(x -2y )]=x -x -2x +4y =-2x +4y ;
(2)原式=12a -a -23b 2-32a +b 2=-2a +b 2
3
; (3)2a -(5a -3b )+3(2a -b )=2a -5a +3b +6a -3b =3a ;
(4)-3{-3[-3(2x +x 2)-3(x -x 2)-3]}=-3{9(2x +x 2)+9(x -x 2)+9}=-27(2x +
x 2)-27(x -x 2)-27=-54x -27x 2-27x +27x 2-27=-81x -27.
方法总结:解决本题是要注意去括号时符号的变化,并且不要漏乘.有多个括号时要注意去各个括号时的顺序.
【类型二】 与绝对值、数轴相结合,代数式去括号的化简
有理数a ,b ,c 在数轴上的位置如图所示,化简|a +c |+|a +b +c |-|a -b |+|b
+c |.
解析:根据数轴上的数,右边的数总是大于左边的数,即可确定a ,b ,c 的符号,进而确定式子中绝对值内的式子的符号,根据正数的绝对值是本身,负数的绝对值是它的相反数,即可去掉绝对值符号,对式子进行化简.
解:由图可知:a >0,b <0,c <0,|a |<|b |<|c |,∴a +c <0,a +b +c <0,a -b >0,b +c <0,∴原式=-(a +c )-(a +b +c )-(a -b )-(b +c )=-3a -b -3c .
方法总结:本题考查了利用数轴,比较数的大小关系,对于含有绝对值的式子的化简,要根据绝对值内的式子的符号,去掉绝对值符号.
探究点三:含括号的整式的化简求值
【类型一】 化简求值
先化简,再求值:已知x =-4,y =12
,求5xy 2-[3xy 2-(4xy 2-2x 2y )]+2x 2y -xy 2. 解析:原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.
解:原式=5xy 2-3xy 2+4xy 2-2x 2y +2x 2y -xy 2=5xy 2,当x =-4,y =12
时,原式=5×(-4)×(12
)2=-5. 方法总结:解决本题是要注意去括号,去括号要注意顺序,先去小括号,再去中括号,最后去大括号.负数代入求值时,要加上括号.
【类型二】 整体思想在整式求值中应用
已知式子x 2-4x +1的值是3,求式子3x 2-12x -1的值.
解析:若从已知条件出发先求出x 的值,再代入计算,目前来说是不可能的.因此可把x 2-4x 看作一个整体,采用整体代入法,则问题可迎刃而解.
解:因为x 2-4x +1=3,所以x 2-4x =2,所以3x 2-12x -1=3(x 2-4x )-1=3×2-1
=5.
方法总结:在整式的加减运算中,运用整体思想对某些问题进行整体处理,常常能化繁为简,解决一些目前无法解决的问题.
探究点四:含括号整式的化简应用
某商店有一种商品每件成本a 元,原来按成本增加b 元定出售价,售出40件后,由于库存积压,调整为按售价的80%出售,又销售了60件.
(1)销售100件这种商品的总售价为多少元?
(2)销售100件这种商品共盈利多少元?
解析:(1)求出40件的售价与60件的售价即可确定出总售价;
(2)由利润=售价-成本列出关系式即可得到结果.
解:(1)根据题意得40(a+b)+60(a+b)×80%=88a+88b(元),则销售100件这种商品的总售价为(88a+88b)元;
(2)根据题意得88a+88b-100a=-12a+88b(元),则销售100件这种商品共盈利(-12a+88b)元.
方法总结:解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则.
三、板书设计
去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.注意:①去括号法则是根据乘法分配律推出的;
②去括号时改变了式子的形式,但并没有改变式子的值.
去括号法则是本章的重点和难点.在这节课的准备上,选择了规律探究的“火柴棒”问题教学的引入,探索变化规律,这些规律的探索培养了学生归纳、概括的能力,使学生建立初步的符号感.运用法则去括号时,开始学生确实容易混淆,因为刚探索出来的东西毕竟是陌生事物,学生的认知水平不可能马上接受,所以必须经过练习,经过练习使学生牢固掌握法则.
初中数学公式大全
1 过两点有且只有一条直线
2 两点之间线段最短
3 同角或等角的补角相等
4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 平行公理经过直线外一点,有且只有一条直线与这条直线平行
8 如果两条直线都和第三条直线平行,这两条直线也互相平行
9 同位角相等,两直线平行
10 内错角相等,两直线平行
11 同旁内角互补,两直线平行
12 两直线平行,同位角相等
13 两直线平行,内错角相等
14 两直线平行,同旁内角互补
15 定理三角形两边的和大于第三边
16 推论三角形两边的差小于第三边
17 三角形内角和定理三角形三个内角的和等于180 °
18 推论1 直角三角形的两个锐角互余
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 平行四边形判定定理 1 两组对角分别相等的四边形是平行四边形
21 平行四边形判定定理 2 两组对边分别相等的四边形是平行四边形
22 平行四边形判定定理 3 对角线互相平分的四边形是平行四边形
23 平行四边形判定定理 4 一组对边平行相等的四边形是平行四边形
24 矩形性质定理 1 矩形的四个角都是直角
25 矩形性质定理 2 矩形的对角线相等
26 矩形判定定理 1 有三个角是直角的四边形是矩形
27 矩形判定定理 2 对角线相等的平行四边形是矩形
28 菱形性质定理 1 菱形的四条边都相等
29 菱形性质定理 2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
30 菱形面积= 对角线乘积的一半,即S= (a×b )÷2
31 菱形判定定理1 四边都相等的四边形是菱形
32 菱形判定定理2 对角线互相垂直的平行四边形是菱形
33 正方形性质定理1 正方形的四个角都是直角,四条边都相等
34 正方形性质定理 2 正方形的两条对角线相等,并且互相垂直平
分,每条对角线平分一组对角
35 定理1 关于中心对称的两个图形是全等的
36 定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
37 逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称
38 等腰梯形性质定理等腰梯形在同一底上的两个角相等。