复变函数的积分(答案)

合集下载

复变函数与积分变换答案(马柏林、李丹横、晏华辉)修订版,习题2

复变函数与积分变换答案(马柏林、李丹横、晏华辉)修订版,习题2

y
v ex ( y cos y x sin y) ex (sin y) ex ( y cos y x sin y sin y) x
v ex (cos y y( sin y ) x cos y) ex (cos y y sin y x cos y ) y
所以 u
v ,
u
v
xy
y
x
所以 f( z)处处可导,处处解析 .
v
xy
y
x
所以 v xv,v源自xyv ,即 u u v v 0
y
xyxy
从而 v 为常数, u 为常数,即 f(z)为常数 .
(3) Ref (z)=常数 .
证明:因为 Ref(z)为常数,即 u=C1, u x
u0 y
因为 f( z)解析, C-R 条件成立。故 u x
u 0 即 u=C2 y
从而 f( z)为常数 .
而 lim u x, y x, y 0,0
x 3 y3
lim
x, y 0,0
x2
y2
欢迎下载
7


x3 x2
y3 y2
xy x y 1 x2 y2
∴ 0≤
x3 x2
y3 3 y2 ≤ 2 x
y
x3 y3

lim
x, y 0,0
x2
y2
0
同理
x3
lim
x, y 0,0
x2
y3 y2
0
∴ lim f z 0 f 0 x, y 0,0
证明:因为 f ( z) 0 ,所以 u x
u 0, v
y
x
v 0.
y
所以 u,v 为常数,于是 f(z)为常数 .

(完整版)复变函数与积分变换习题答案

(完整版)复变函数与积分变换习题答案

一、将下列复数用代数式、三角式、指数式表示出来。

(1) i 解:2cossin22ii e i πππ==+(2) -1解:1cos sin i e i πππ-==+ (3)1+解:()/3122cos /3sin /3i e i πππ+==+ (4) 1cos sin i αα-+ 解:2221cos sin 2sin 2sincos2sin(sincos )2222222sincos()sin()2sin 222222i i i i i e πααααααααααπαπαα⎛⎫- ⎪⎝⎭-+=+=+⎛⎫=-+-= ⎪⎝⎭(5) 3z解:()3333cos3sin3i z r e r i θθθ==+ (6) 1i e +解:()1cos1sin1i i e ee e i +==+(7)11ii-+ 解:3/411cos3/4sin 3/411i i i i e i i i πππ--==-==+++二、计算下列数值(1) 解:1ar 21ar 21ar 2 b i ctg k a bi ctg abi ctgaπ⎛⎫+ ⎪⎝⎭==⎧⎪=⎨⎪⎩(2)解:6226363463222i k i i i i e i ee e iπππππππ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎛⎫+ ⎪⎝⎭⎧=+⎪⎪⎪⎨====-+⎪⎪⎪=-⎩(3) i i 解:()2222ii k k i i e eππππ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭==(4)解:()1/2222ii k k eeππππ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭==(5) cos5α解:由于:()()552cos5i i e e ααα-+=,而:()()()()()()()()5555555555cos sin cos sin cos sin cos sin nni nn nni n n e i C i e i C i αααααααααα-=--==+==-=-∑∑所以:()()()()()()()()()()()555505555043253543251cos5cos sin cos sin 21 cos sin 112 5cos sin cos sin cos 5cos sin 10cos sin cos n n n nn n n n nn n C i i C i i C i ααααααααααααααααα--=--=⎡⎤=+-⎣⎦⎡⎤=+-⎣⎦=++=-+∑∑(6) sin5α解:由于:()()552sin 5i i ee ααα--=,所以:()()()()()()()()()()()()55550555505234245552341sin 5cos sin cos sin 21 cos sin 1121 sin cos sin sin cos sin 10cos sin 5sin cos n n n nn n n n nn n C i i i C i i i C i C i iααααααααααααααααα--=--=⎡⎤=--⎣⎦⎡⎤=--⎣⎦=++=-+∑∑ (7) cos cos2cos n ααα+++L L 解:()()221cos cos 2cos ()()2(1)1(1)11(1)(1)1 21122(1cos )1 2i i in i i in i in i i in i i in i in i i i n e e e e e e e e e e e e e e e e e e e e ααααααααααααααααααααααα----------⎡⎤+++=+++++++⎣⎦⎡⎤--+--⎡⎤--⎢⎥=+=⎢⎥---⎢⎥⎣⎦⎣⎦+=L L L L L L (1)(1)22(1cos )12cos 22cos(1)2cos cos 1cos(1)cos 22(1cos )2(1cos )1sin()sin22 2sin2i i n i n in in e e e e n n n n n ααααααααααααααααα+-+-⎡⎤---++⎢⎥-⎣⎦⎡⎤--++--++==⎢⎥--⎣⎦+-=(8) sin sin 2sin n ααα+++L L 解:()()221sin sin 2sin ()()2(1)1(1)11(1)(1)1 21122(1cos )1 2i i in i i in i in i i in i i in i in i i i n e e e e e e i e e e e e e e e e e i e e i e i αααααααααααααααααααααα---------⎡⎤+++=+++-+++⎣⎦⎡⎤-----⎡⎤--⎢⎥=-=⎢⎥---⎢⎥⎣⎦⎣⎦=L L L L L L (1)(1)112(1cos )12sin 2sin(1)2sin sin sin(1)sin 22(1cos )2(1cos )1cos()cos22 2sin2i n in i i n in e e e e e i i n i n n n i n αααααααααααααααααα+--+-⎡⎤--+-++-⎢⎥-⎣⎦⎡⎤-++-++==⎢⎥--⎣⎦-++=1.2 复变函数1、试证明函数f (z )=Arg(z ) (-π<Arg(z) ≤π),在负实轴上(包括原点)不连续。

复变函数的——积分习题二答案

复变函数的——积分习题二答案
2
1
直线x − 上可导,在z 平面上处处不解析。
2
∂u 2 ∂u ∂v ∂v 2
----------------------- Page 1-----------------------
习题二解答
1.利用导数定义推出:
1 1
⎛ ⎞ z +∆z z
2 )⎜ ⎟' lim −lim =− 2
z ∆→z 0 ∆z ∆→z 0 z(z +∆z) z
在z 平面上处处连续,且当且仅当z=0 时,u,v 才满足C-R 条件,故 () 2 2
f z xy +i x y 仅在点z 0
z −1 cz +d
′ 4 ()
解 (1)由于f z 5(z =−1) ,故f z 在z 平面上处处解析。
() ′( )
(1)如果f z 在z0 点连续,那么f z0 存在。
′( ) ( )
(2 )如果f z0 存在,那么f z 在z0 点解析。
2x 3y ,即 2x ± 3y 0 时,u,v 才满足C-R 条件,故
3 3
f z u =+iv 2x =+3y i 仅在直线 2x ± 3y 0 上可导,在z 平面上处处不解析。
−1
知 () ()
f z 在除去点z ±1外的z 平面上处处可导。处处解析,z ±1是f z 的奇点。
1
----------------------- Page 2-----------------------
ad −bc
f ′z ()
(3)由于 ′( )
f z 2 − 2 2
2 ( )( )

复变函数与积分变换试题和答案

复变函数与积分变换试题和答案

复变函数与积分变换试题(一)一、填空(3分×10)1.得模ﻩﻩ、幅角ﻩ。

2.-8i得三个单根分别为:、、。

3.Lnz在得区域内连续。

4.得解极域为:ﻩﻩﻩﻩﻩ。

5.得导数ﻩﻩﻩﻩﻩ。

6. ﻩﻩ。

7.指数函数得映照特点就是:ﻩﻩﻩﻩﻩﻩﻩﻩﻩ。

8.幂函数得映照特点就是: ﻩﻩﻩﻩﻩﻩﻩ。

9.若=F [f(t)]、则= F ﻩﻩﻩﻩ。

10.若f(t)满足拉氏积分存在条件、则L [f(t)]= ﻩﻩﻩ。

二、(10分)已知、求函数使函数为解析函数、且f(0)=0。

三、(10分)应用留数得相关定理计算四、计算积分(5分×2)1.2.C:绕点i一周正向任意简单闭曲线。

五、(10分)求函数在以下各圆环内得罗朗展式。

1.2.六、证明以下命题:(5分×2)(1)与构成一对傅氏变换对。

(2)七、(10分)应用拉氏变换求方程组满足x (0)=y (0)=z (0)=0得解y (t )。

八、(10分)就书中内容、函数在某区域内解析得具体判别方法有哪几种。

复变函数与积分变换试题答案(一)一、1.ﻩﻩ、ﻩ ﻩ2、ﻩ-i ﻩﻩ2iﻩ-i ﻩ3、ﻩZ 不取原点与负实轴 4、 空集5、ﻩ2z ﻩ6.0 7、将常形域映为角形域ﻩ8、 角形域映为角形域 9、ﻩ ﻩ10、 二、解:∵ﻩ ∴ ﻩ(5分)∵f (0)=0ﻩﻩﻩﻩc =0(3分)∴ﻩﻩ(2分)三、解:原式=(2分)ﻩ(2分)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅--=⎥⎦⎤⎢⎣⎡∞--0,1)31)(11(11Re 2,)3)(1(1Re 266z z z z s z z z s 分)(=0∴原式=(2分) =四、1.解:原式ﻩ(3分) z 1=0 ﻩz2=1ﻩ=0ﻩﻩ(2分)2.解:原式=五、1.解:nn i i z i i z ii z ii z i i z i z z f ∑∞=⎪⎭⎫⎝⎛--⋅-=-+⋅⋅-=+-⋅-=0111111)(111)(11)(分)(分)(分)( ﻩﻩ(2分) ﻩ2.解: (1分)ﻩ(2分)六、1.解:∵ﻩ(3分)ﻩ∴结论成立 (2)解:∵ﻩ(2分)ﻩ ∴与1构成傅氏对∴(2分)七、解:∵ﻩﻩ(3分)S (2)-(1):∴ (3分)∴八、解:①定义;②C-R 充要条件Th ; ③v 为u 得共扼函数ﻩ10分复变函数与积分变换试题(二)一、填空(3分×10)1.函数f (z )在区域D 内可导就是f(z)在D 内解析得(ﻩ ﻩ)条件。

复变函数与积分变换课后答案

复变函数与积分变换课后答案

1 ∴ Res e z 1 ,1 1 .
2. 利用各种方法计算 f(z)在有限孤立奇点处的留数.
3z 2 (1) f z 2 z z 2 3z 2 解: f z 2 的有限孤立奇点处有 z=0,z=-2.其中 z=0 为二级极点 z=-2 为一级极 z z 2
1 1 2 解: z 1 sin z 2 2 z 1 sin z z 1 1 1 1 1 z 2 2 z 1 3 5 5! z z 3! z 1 ∴ Res f z , 0 1 3!
为在 c 内 tanπz 有 zk k
sin πz 由于 Res f z , zk cos πz
1 π
1 ∴ tan πzdz 2 πi Res f z , zk 2πi 2n 4ni c π k (2)
3 i 10
6. 计算下列积分.
(1)
π
0
cos m d 5 4 cos 1 π cos m d 2 π 5 4 cos
因被积函数为 θ 的偶函数,所以 I 令 I1
1 π sin m d 则有 2 π 5 4 cos
1 π eim d 2 π 5 4 cos
z 0
所以由留数定理.

AB
f z dz
BE
f z dz
EF
f z dz
C
FA
f z dz 2πi ln a


BE
f z dz

R
C
e x Ri ln a dx x Ri 2

复变函数与积分第一章(2)答案

复变函数与积分第一章(2)答案

1、 指出下列不等式所确定的区域与闭区域,并指明它是有界的还是无界的?是单连通域还是多连通域? (1) 32<<z (2) 31<z (3) 313arg 4<<<<z z 且;
ππ (4) 21Im <>z z 且;
解:(1) 该区域是有界多连通域,为下图阴影部分。

(2)该区域是无界多连通域,为下图阴影部分。

( 3 ) 该区域是有界单连通域,为下图阴影部分。

(4)该区域是有界单连通域,为下图阴影部分。

2、 设
⎪⎩
⎪⎨⎧=≠+=,0,0,0,)(22z z y x y x z f 试证)(z f 在0=z 不连续。

证明: 若z 沿直线kx y =趋于0,则
()()()()()2
022220220,0,0,0,1lim lim lim lim k k x k x kx y x xy z f x x y x y x +=+=+=→→→→, 因该极限随k 的不同而不同,所以当()()0,0,→y x 时,()z f 的极限不存在。

而根据连续性的定义,只有当该极限存在并且极限值等于该函数在此处的函数值时,才认为函数在该点处连续,所以说)(z f 在0=z 不连续。

(完整版)第三章复变函数的积分(答案)

复变函数练习题 第三章 复变函数的积分系 专业 班 姓名 学号§1 复变函数积分的概念 §4 原函数与不定积分一.选择题1.设为从原点沿至的弧段,则[]C 2y x =1i +2()Cx iy dz +=⎰(A )(B ) (C ) (D )1566i -1566i -+1566i --1566i +2. 设是,从1到2的线段,则 []C (1)z i t =+t arg Czdz =⎰(A )(B )(C )(D )4π4i π(1)4i π+1i+3.设是从到的直线段,则[]C 012i π+z Cze dz =⎰(A )(B ) (C ) (D )12e π-12e π--12ei π+12eiπ-4.设在复平面处处解析且,则积分[]()f z ()2iif z dz i πππ-=⎰()iif z dz ππ--=⎰(A ) (B )(C )(D )不能确定2i π2i π-0二.填空题1.设为沿原点到点的直线段,则2。

C 0z =1z i =+2Czdz =⎰2.设为正向圆周,则C |4|1z -=2232(4)A Cz z dz z -+=-⎰10.i π三.解答题1.计算下列积分。

(1)323262121()02iziiz i i i edzee e ππππππ---==-=⎰(2)22222sin 1cos2sin 2224sin 2.244iiiii i zdzz z z dz i e e e e i i i i ππππππππππππππ------⎛⎫==- ⎪⎝⎭⎛⎫--=-=-=+⎪⎝⎭⎰⎰(3)110sin (sin cos )sin1cos1.z zdzz z z =-=-⎰(4)20222cos sin 1sin sin().222iiz z dzz i ππππ==⋅=-⎰2.计算积分的值,其中为正向圆周:||C z dz z ⎰A C (1)2200||22,022224.2i i i z Cz e e ie d id i θθππθθπθθπ-==≤≤⋅==⎰⎰积分曲线的方程为则原积分I =(2)2200||44,024448.4i i i z Cz e e ie d id i θθππθθπθθπ-==≤≤⋅==⎰⎰积分曲线的方程为则原积分I =3.分别沿与算出积分的值。

复变函数答案 钟玉泉 第三章习题全解


即 Φ′(x) = 0, Φ( x) = C ,故
f (z) = e x (x cos y − y sin y) + i( xex sin y + e x y cos y + C)
又因 f (0) = 0, 故 f (0) = iC = 0 ⇒ C = 0 ,所以
f (z) = ex ( x cos y − y sin y) + i(xex sin y + e x y cos y)
′(
x)
= 0.
所以ϕ( x) = C ,故
x
y
f (z) = − x2 + y2 + C + i x2 + y2
又因为 f (2) = 0 ,所以 C = 1 ,故 2
x1
y
f (z) = − x2 + y2 + 2 + i x2 + y2
17.证明:设 f (z ) = u + iv ⇒ 4 f ′( z) 2 = 4(ux2 + vy2 )
∫ 2z 2 − z +1dz = 2πi(2z 2 − z +1) = 4πi
z ≤2 z −1
z =1
(2)可令 f (z) = 2z 2 − z +1,则由导数的积分表达式得
∫ 2z 2 − z +1dz = 2πif ′(z) = 6πi
z =2 (z − 1) 2
z =1
sin π zdz
∫ v = (xex cos y − e x y sin y + e x coy)dy
∫ = xex sin y + e x sin y − e x y sin ydy

复变函数与积分变换答案(马柏林、李丹横、晏华辉)修订版,习题3

习题三1. 计算‎积分2()d Cx y ix z -+⎰,其中C 为从原‎点到点1+i 的直线段‎.解 设直线段的方‎程为y x =,则z x ix =+. 01x ≤≤‎故 ()()12212310()11(1)(1)(1)333Cx y ix dz x y ix d x ix i i ix i dx i i x i -+=-++-=+=+⋅=+=⎰⎰⎰2‎. 计算积分(1)d Cz z -⎰,其中‎积分路径C 为(1)‎ 从点0到点1+i 的‎直线段;(2) 沿‎抛物线y =x 2,从点‎0到点1+i 的弧段.‎解 (1)设z x ix =+. ‎ 01x ≤≤()()111()Cz d z x i x dx i x i-=-++=⎰⎰ (2)‎设2z x ix =+. 01x ≤≤()()122211()3Ciz dz x ix d x ix -=-++=⎰⎰ ‎3. 计算积分d Cz z ⎰,其‎中积分路径C 为(1‎) 从点-i 到点i 的‎直线段;(2) 沿‎单位圆周|z |=1的‎左半圆周,从点-i 到‎点i ;(3) 沿单‎位圆周|z |=1的右‎半圆周,从点-i 到点‎i .解 (1)设‎z iy =. 11y -≤≤1111Cz dz ydiy i ydy i --===⎰⎰⎰(2‎)设i z e θ=. θ从32π到2π‎22332212i i Cz dz de i de i ππθθππ===⎰⎰⎰(3) 设i z e θ=.‎ θ从32π到2π23212i Cz dz de i πθπ==⎰⎰‎6. 计算积分()sin zCz ez dz -⋅⎰ ,其‎中C 为0za =>.解()sin sin zzCCCz ez dz z dz e zdz -⋅=-⋅⎰⎰⎰‎∵sin ze z ⋅在z a =所围的区域内‎解析∴sin 0zCezdz ⋅=⎰从而()2022sin 0z i CCi z e z dz z dz adae a i e d πθπθθ-⋅====⎰⎰⎰⎰ ‎故()sin 0zCz ez dz -⋅=⎰7. 计算‎积分21(1)Cdz z z +⎰,其中积分路径‎C 为(1)11:2C z =‎(2)23:2C z =(3)31:2C z i +=‎(4)43:2C z i -= 解:‎(1)在12z =所围的区域‎内,21(1)z z +只有一个奇点0z =‎. 12111111()2002(1)22CC dz dz i i z z z z i z i ππ=-⋅-⋅=--=+-+⎰⎰ (2)在2C 所‎围的区域内包含三个奇‎点0,z z i ==±.故22111111()20(1)22CC dz dz i i i z z z z i z iπππ=-⋅-⋅=--=+-+⎰⎰ (3)‎在2C 所围的区域内包含‎一个奇点z i =-,故32111111()00(1)22C C dz dz i i z z z z i z i ππ=-⋅-⋅=--=-+-+⎰⎰‎(4)在4C 所围的区域‎内包含两个奇点0,z z i ==,故‎42111111()2(1)22C C dz dz i i i z z z z i z i πππ=-⋅-⋅=-=+-+⎰⎰10.利用‎牛顿-莱布尼兹公式计‎算下列积分. ‎(1)20cos 2izdz π+⎰(2‎)z ie dz π--⎰ (3)21(2)iiz dz +⎰‎(4) 1ln(1)1iz dz z ++⎰ (5‎)1sin z zdz ⋅⎰(6)211tan cos izdz z +⎰‎解 (1)2201cos sin21222iiz z dz ch ππ++==⎰(2‎)2zz iiedz e ππ----=-=-⎰(3)22311111111(2)(2)(2)(2)333ii ii iz dz iz d iz iz i i +=++=⋅+=-+⎰⎰ (‎4) 222111ln(1)11ln(1)ln(1)ln (1)(3ln 2)1284ii iz dz z d z z z π+=++=+=-++⎰⎰ (5)11110000sin cos cos cos sin1cos1z zdz zd z z z zdz ⋅=-=-+=-⎰⎰⎰‎(6) 222112111221tan 1sec sec tan tan cos 2111tan1tan 1t 122ii i i iz dz zdz z zdz tanz z z ith h +=+=+⎛⎫=-+++ ⎪⎝⎭⎰⎰⎰11.‎ 计算积分21zCe dz z +⎰,其中C ‎为 (1) 1z i -= (‎2) 1z i += (3) ‎2z =解 (1)221()()z z ziz iC C e e e dz dz i e z z i z i z iππ===⋅=++-+⎰⎰ ‎(2)221()()z z zi z iC C e e e dz dz i e z z i z i z iππ-=-==⋅=-++--⎰⎰(3)‎122222sin1111z z z i iC C C e e e dz dz dz e e i z z z πππ-=+=-=+++⎰⎰⎰16. ‎求下列积分的值,其中‎积分路径C 均为|z |‎=1.(1) 5zC e dz z ⎰ ‎ (2) 3cos C z dz z ⎰(3)‎ 020tan12,()2C zdz z z z <-⎰ 解 (1) (4)52()4!12z z z C e i idz e z ππ===⎰ ‎(2)(2)3cos 2(cos )2!z C z i dz z i z ππ===-⎰(3)‎ 0'220tan22(tan )sec ()2z z C zz dz i z i z z ππ===-⎰17. 计‎算积分331(1)(1)C dz z z -+⎰ ,其中积分路‎径C 为(1)中心位‎于点1z =,半径为2R <的正‎向圆周(2) 中心‎位于点1z =-,半径为2R <的‎正向圆周解:(‎1) C内包含了奇点‎1z =∴(2)13331213()(1)(1)2!(1)8z C i idz z z z ππ===-++⎰ (2) C‎内包含了奇点1z =-,∴‎(2)13331213()(1)(1)2!(1)8z C i i dz z z z ππ=-==--+-⎰19. 验证下‎列函数为调和函数.‎3223(1)632;(2)e cos 1(e sin 1).x xx x y xy y y i y ωω=--+=+++解(1) 设w u i υ=+,‎3223632u x x y xy y=--+ 0υ=∴223123u x xy y x ∂=--∂ 22666ux xy y y∂=--+∂ ‎22612u x y x∂=-∂ 22612ux y y ∂=-+∂ 从而有22220u ux y ∂∂+=∂∂‎,w 满足拉普拉斯方程‎,从而是调和函数. ‎(2) 设w u i υ=+,cos 1x u e y =⋅+ ‎sin 1x e y υ=⋅+∴cos x u e y x ∂=⋅∂ s i n x ue y y∂=-⋅∂ 22cos x u e y x ∂=⋅∂ ‎ 22cos x u e y y∂=-⋅∂ 从而有22220u ux y∂∂+=∂∂,u ‎满足拉普拉斯方程,从‎而是调和函数. sin x e y x υ∂=⋅∂ ‎ cos x e y yυ∂=⋅∂ 22sin xe y x υ∂=⋅∂ 22s i n x y e yυ∂=-⋅∂ 22220x yυυ∂∂+=∂∂,‎υ满足拉普拉斯方程,‎从而是调和函数.‎20.证明:函数22u x y =-,‎22xx yυ=+都是调和函数,但()f z u i υ=+‎不是解析函数证明:‎ 2u x x ∂=∂ 2u y y ∂=-∂ 222u x ∂=∂ 222u y∂=-∂ ‎∴22220u ux y ∂∂+=∂∂,从而u 是调和函‎数. 22222()y x x x y υ∂-=∂+ 2222()xy y x y υ∂-=∂+ 223222362()xy x x x y υ∂-+=∂+ ‎ 223222362()xy x y x y υ∂-=∂+ ∴22220x yυυ∂∂+=∂∂,从而υ是‎调和函数. 但∵u x y υ∂∂≠∂∂ ‎ u yx υ∂∂≠-∂∂ ∴不满足C-R ‎方程,从而()f z u i υ=+不是解析‎函数.22.由下‎列各已知调和函数,求‎解析函数()f z u i υ=+ (1)22u x y xy =-+‎(2)22,(1)0yu f x y ==+ 解 (‎1)因为 2u x y x y υ∂∂=+=∂∂ 2u y x y xυ∂∂=-+=-∂∂ ‎ 所以22(,)(,)(2)(2)(2)00(0,0)(0,0)222u u x y x y y x dx dy C y x dx x y dy C xdx x y dy C y xx y xy Cυ∂∂=-++=-+++=-+++⎰⎰⎰⎰∂∂=-+++2222()i(2)22x y f z x y xy xy C =-++-+++令y ‎=0,上式变为22()i()2x f x x C =-+‎从而22()i i 2z f z z C =-⋅+(2)2222()u xy x x y ∂=-∂+ ‎ 22222()u x y y x y ∂-=∂+ 用线积分法,取‎(x 0,y 0)为(1‎,0),有2(,)4222(1,0)122222()0()1110x y x u u x y ydx dy C dx x dy Cy x x x y x x yC x x y x y υ∂∂=-++=-+⎰∂∂+=-+=-+++⎰⎰ 2222()i(1)y xf z C x y x y=+-+++ ‎由(1)0.f =,得C=0 ()11f i z z ⎛⎫∴=- ⎪⎝⎭‎23.设12()()()()n p z z a z a z a =--- ,其中(1,2,,)i a i n = ‎各不相同,闭路C 不通‎过12,,,n a a a ,证明积分1()d 2π()C p z z i p z '⎰ ‎等于位于C 内的p(z ‎)的零点的个数.‎证明: 不妨设闭路C ‎内()P z 的零点的个数为k ‎, 其零点分别为12,,...k a a a‎1112312121()()()...()...()1()12πi ()2πi ()()...()111111...2πi 2πi 2πi 111111...1...2πi 2πi nnk k n k k C Cn C C C nC C k n k z a z a z a z a z a P z dz dzP z z a z a z a dz dz dz z a z a z a dz d z a z a -==+-+--+--'=---=+++---=++++++--∏∏⎰⎰⎰⎰⎰⎰⎰个z k=24.试证明下‎述定理(无界区域的柯‎西积分公式): 设f ‎(z )在闭路C 及其外‎部区域D 内解析,且lim ()z f z A →∞=≠∞‎,则(),,1()d ,.2πC f z A z D f A z G i z ξξξ-+∈⎧=⎨∈-⎩⎰ 其中G 为C ‎所围内部区域.证‎明:在D 内任取一点Z ‎,并取充分大的R ,作‎圆C R : R z =,将C 与‎Z 包含在内则f(z ‎)在以C 及RC 为边界的‎区域内解析,依柯西积‎分公式,有R 1()()()[-]2πi C C f f f z d d z zζζζζζζ=--⎰⎰ 因为‎()f z zζζ-- 在R ζ>上解析,且‎()1lim lim ()lim ()11f f f z z ζζζζζζζζζ→∞→∞→∞=⋅==--所以,当Z 在C 外‎部时,有1()()2πi C f f z A d z ζζζ=--⎰即1()()2πi C f d f z A zζζζ=-+-⎰ ‎设Z 在C 内,则f(z ‎)=0,即 R 1()()0[]2πi C C f f d d zz ζζζζζζ=---⎰⎰ 故有‎:1()2πi C f d A z ζζζ=-⎰ ‎。

复变函数第三章答案


I1 = ∫
C
� � 构成闭曲线(非简单) ,此时 C + 3, 2 可分解成两个简单闭曲线 2 MA2 和 3 AN 3 ,类似于上面的情
形,有
��� �


于是由复积分的曲线可加性
� 2 MA 2
� 3 AN 3
1 dz = 2π i , z −1 1 dz = 2π i , z −1

��� � C + 3,2
C
综上所述,
I1 = ∫
( 2)当 n ≠ 1 时,
C
1 。 dz = k ⋅ ( ±2π i ) + ln 2 ( k = 0,1, 2,⋯ ) z −1
1 1 在 ℂ \{1} 内存在单值的原函数 ⋅ ( z − 1)1− n ,所以,由复积分的 n ( z − 1) 1− n
牛顿—莱布尼茨公式,
I = ∫ Im zd z = ∫
C
1 0
( Im a + Im( b − a) ⋅ t )(b − a ) d t
1 ⎛ ⎞ 1 = ( b − a ) ⎜ Im a + Im(b − a ) ⎟ = (b − a ) Im ( a + b ) 。 2 ⎝ ⎠ 2
3. 计算下列积分:
I1 = ∫

在 C + 1, 0 上,所以
���
1 1 1 1 1 dz = ∫ ���� ( − )dz = (2π i) = π , 2 C + 1,0 1+ z 2i z −i z +i 2i 同理如果 C 仅围绕 i 按顺时针转一周,有 1 1 1 1 1 dz = ∫ ���� ( − )dz = ( −2π i) = −π , ��� � 2 ∫C +1,0 1+ z 2i C +1,0 z − i z + i 2i
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复变函数练习题 第三章 复变函数的积分系 专业 班 姓名 学号§1 复变函数积分的概念 §4 原函数与不定积分一.选择题1.设C 为从原点沿2y x =至1i +的弧段,则2()Cx iy dz +=⎰[ ](A )1566i - (B )1566i -+ (C )1566i -- (D )1566i + 2. 设C 是(1)z i t =+,t 从1到2的线段,则arg Czdz =⎰[ ](A )4π(B )4i π (C )(1)4i π+ (D )1i +3.设C 是从0到12i π+的直线段,则zC ze dz =⎰ [ ](A )12e π- (B )12e π-- (C )12ei π+ (D )12ei π-4.设()f z 在复平面处处解析且()2iif z dz i πππ-=⎰,则积分()iif z dz ππ--=⎰[ ](A )2i π (B )2i π- (C )0 (D )不能确定二.填空题1. 设C 为沿原点0z =到点1z i =+的直线段,则2Czdz =⎰2 。

2. 设C 为正向圆周|4|1z -=,则2232(4)ÑC z z dz z -+=-⎰10.i π三.解答题1.计算下列积分。

(1)323262121()02iz iiz i i i e dzee e ππππππ---==-=⎰22222sin1cos2sin 2224sin 2.244iiiii i zdzz z z dz i e e e e i i i i ππππππππππππππ------⎛⎫==- ⎪⎝⎭⎛⎫--=-=-=+⎪⎝⎭⎰⎰(3)110sin (sin cos )sin1cos1.z zdzz z z =-=-⎰(4)20222cos sin 1sin sin().222iiz z dzz i ππππ==⋅=-⎰2.计算积分||C z dz z ⎰Ñ的值,其中C 为正向圆周:(1)2200||22,022224.2i i i z C z e e ie d id i θθππθθπθθπ-==≤≤⋅==⎰⎰积分曲线的方程为则原积分I=2200||44,024448.4i i i z C z e e ie d id i θθππθθπθθπ-==≤≤⋅==⎰⎰积分曲线的方程为则原积分I=3.分别沿y x =与2y x =算出积分10()ii z dz +-⎰的值。

解:(1)沿y=x 的积分曲线方程为(1),01z i t t =+≤≤则原积分11120[(1)](1)(12)[(1)]2I i i t i dti t dt i t t i =--+=--=--=-⎰⎰(2)沿2y x =的积分曲线方程为2,01z t it t =+≤≤则原积分120113224300[()](12)3112[32(1)][()]2.2233I i t it it dtt t i t dt t t i t t i =--+=--+-=--+-=-+⎰⎰4.计算下列积分(1)2()Cx y ix dz -+⎰,C:从0到1i +的直线段;C 的方程:(1),01z i t t =+≤≤(),01x t tt =⎧≤≤⎨或则原积分120120[](1)1(1).3I t t it i dti i t dt =-++-=-=⎰⎰(2)2()Cz zz dz +⎰,C :||1z =上沿正向从1到1-。

C 的方程:,0i z e θθπ=≤≤则原积分20330(1)8().33i i i i i i I e ie d e i e e d e πθθπθπθθθθθ=+⎛⎫=+=+=- ⎪⎝⎭⎰⎰复变函数练习题 第三章 复变函数的积分系 专业 班 姓名 学号 §2 柯西-古萨基本定理 §3 基本定理的推广-复合闭路定理一、选择题1. 设()f z 在单连通区域B 内解析,C 为B 内任一闭路,则必有 [ ](A )Im[()]0Cf z dz =⎰Ñ (B )Re[()]0Cf z dz =⎰Ñ (C )|()|0Cf z dz =⎰Ñ (D )Re ()0Cf z dz =⎰Ñ2.设C 为正向圆周1||2z =,则321cos2(1)C z z dz z -=-⎰Ñ [ ] (A )2(3cos1sin1)i π- (B )0 (C )6cos1i π (D )2sin1i π- 3.设()f z 在单连通域B 内处处解析且不为零,C 为B 内任何一条简单闭曲线,则积分()2()()()Cf z f z f z dz f z '''++=⎰Ñ[ ](A )2i π (B ) 2i π- (C ) 0 (D )不能确定 二、填空题1.设C 为正向圆周||3z =,则||C z z dz z +=⎰Ñ6.i π2.闭曲线:||1C z =取正方向,则积分122(2)(3)z C edz z z -=+-⎰Ñ 0 。

三、解答题利用柯西积分公式求复积分(1)判断被积函数具有几个奇点; (2)找出奇点中含在积分曲线内部的,若全都在积分曲线外部,则由柯西积分定理可得积分等零; 若只有一个含在积分曲线内部,则直接利用柯西积分公式;若有多个含在积分曲线内部,则先利用复合闭路定理,再利用柯西积分公式. 1.计算下列积分 (1)221,:||(0);C dz C z a a a z a -=>-⎰Ñ.()22111121111=20.22C C C C dz dz z a a z a z a i dz dz i a z a z a a aππ⎛⎫=-⎪--+⎝⎭⎛⎫=--= ⎪-+⎝⎭⎰⎰⎰⎰蜒蜒解:22221112.C z aC z a z aidz i z a z aaππ==-=⋅=-+⎰Ñ解法二:由被积函数在内部只有一个奇点,故由柯西积分公式可得 (2).2,:||2;1C zdz C z z =-⎰Ñ21111=+=22)2.121+12C C z dz dz i i i z z z πππ⎛⎫+= ⎪--⎝⎭⎰⎰蜒解:( 解法二:211zC z z =±-被积函数在内部具有两个奇点,分别作两个以1, -1为心,充分小的长度为半径的圆周C 1、 C 2, 且C 1和 C 2含于C 内部。

由复合闭路定理,122221111122112C C C z z z z zdz dz dz z z z z zi iz z i i iπππππ==-=+---=++-=+=⎰⎰⎰蜒? (3)2||5||53123212226.31z z z dzz z dz i i i z z πππ==---⎛⎫=+=⨯+=⎪-+⎝⎭⎰⎰ÑÑ同上题中的解法二,122||51331313123(3)(1)(3)(1)31312224631z C C z z z z z dz dz dzz z z z z z z z ii i i iz z πππππ==-=---=+---+-+--=+=+=-+⎰⎰⎰蜒?(4)2cos 4-⎰ÑC z dz z ,其中22:4C x y x +=正向2cos cos /(2)cos22cos2/(22).422C C z z z i dz dz i z z ππ+==+=--⎰⎰蜒2.计算积分2(1)C dz z z +⎰Ñ,其中C 为下列曲线:2121111111(1)222C C C C C dzI dz dz dz dz z z z z i z i z z i z i ⎛⎫==--=-- ⎪++-+-⎝⎭⎰⎰⎰⎰⎰蜒蜒?(1)1:||2C z =; 2002.I i i ππ=--=解法二:21221z I i i z ππ===+(2)3:||2C z i -=; 1202.2I i i i πππ=--⋅=解法二:20112221()z z iI i i i i i z z z i πππππ===+=-=++(3)1:||2C z i +=; 1020.2I i i ππ=-⋅-=-解法二:12()z iI i i z z i ππ=-==--(4)3:||2C z =。

112220.22I i i i πππ=-⋅-⋅=解法二:20111222201()()z z i z iI ii i i i i z z z i z z i ππππππ==-==++=--=+-+ 3.计算Ln Czdz ⎰,其中(1)Ln ln ||arg ,:||1z z i z C z =+=; C 的方程:,i z e θπθπ=-≤≤Ln (1)2.i i Czdz i ie d i e i ππθθππθθθπ--=⋅=-=-⎰⎰(2)Ln ln ||arg 2,:||z z i z i C z R π=++=. C 的方程:,i z Re θπθπ=-≤≤Ln (ln arg 2)arg 2.i CCCzdz R i z i dz i zdz i Rie d R i πθππθθπ-=++==⋅=-⎰⎰⎰⎰复变函数练习题 第三章 复变函数的积分系 专业 班 姓名 学号§5 柯西积分公式 §6 解析函数的高阶导数一.选择题。

1.设C 是正向圆周2220x y x +-=,则2sin()41C z dz z π=-⎰Ñ [ ] (A)2i (Bi (C )0 (D)2i - 2.设C 为正向圆周||2z =,则2cos (1)C zdz z =-⎰Ñ [ ](A )sin1- (B )sin1 (C )2sin1i π- (D )2sin1i π3.设||4()ξξξξÑe f z d z ==-⎰,其中||4z ≠,则()f i π'= [ ](A )2i π- (B )1- (C )2i π (D )1 4.设C 为不经过点1与1-的正向简单闭曲线,则2(1)(1)C zdz z z -+⎰Ñ为 [ ](A )2i π(B )2i π-(C )0 (D )以上都有可能二.填空题:1.闭曲线:||3C z =取正方向,积分(2).ze dz e i π=-⎰Ñ32011111()''()'22(1)(1)12!1!z z z z zz C z e e e dz i e ie z z z z ππ==⎛⎫⎛⎫⎛⎫-+-=-+- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭⎰Ñ 2.设||2sin()2()Ñf z d zξπξξξ==-⎰,其中||2z ≠,则(1)f '= 0 ,(3)f '= 0 。

相关文档
最新文档