纳米材料
纳米材料简介介绍

1 2 3
基础研究
纳米材料的基础研究涉及纳米粒子的制备、性质 、应用等方面,目前已经取得了许多重要成果。
应用研究
纳米材料在能源、环保、医疗等领域的应用研究 也取得了显著进展,为未来的应用提供了广阔的 前景。
技术发展
随着技术的不断进步,纳米材料的制备和应用技 术也在不断发展,为纳米材料的研究和应用提供 了更多的可能性。
安全性评估
针对纳米材料的安全性,需要进 行全面的评估,包括毒性测试、 生物相容性评估等,以确保其在 使用过程中的安全性。
风险控制
针对纳米材料潜在的风险,需要 采取相应的风险控制措施,如使 用防护设备、控制暴露时间等, 以降低潜在风险。
纳米材料的环保性
环境影响
纳米材料在生产、使用和处置过程中可能对环境产生影响,如排放 污染物、消耗能源等。
提高公众意识
加强公众对纳米材料的认知和意识,提高公众的安全意识和环保意 识。
加强研发
加强纳米材料的安全性和环保性的研发工作,开发更加安全、环保 的纳米材料。
THANKS
谢谢您的观看
纳米材料的未来发展趋势
跨学科发展
纳米材料的研究涉及到多个学科领域,未来将进一步促进跨学科 的发展,推动纳米材料在更多领域的应用。
绿色化发展
随着环保意识的提高,未来纳米材料的研究将更加注重绿色化发 展,推动纳米材料在环保领域的应用。
个性化发展
随着个性化需求的提高,未来纳米材料的研究将更加注重个性化 发展,满足不同领域和不同人群的需求。
理和化学性能产生影响。
量子效应
03
在纳米尺度下,量子效应开始显现,对材料的电子结构和性质
产生影响。
03
纳米材料的应用领域
纳米材料

纳米材料研究综述纳米材料是指微观结构至少在一维方向上受纳米尺度调制的各种固态材料, 其晶粒或颗粒尺寸在1~100 nm 数量级, 主要由纳米晶粒和晶粒界面两部分组成, 其晶粒中原子的长程有序排列和无序界面成分的组成后有大量的界面, 晶界原子达15%~50%,且原子排列互不相同,界面周围的晶格原子结构互不相关, 使得纳米材料成为介于晶态与非晶态之间的一种新的结构状态。
此外,由于纳米晶粒中的原子排列的非无限长程有序性,使得通常大晶体材料中表现出的连续能带分裂为接近分子轨道的能级。
高浓度界面及原子能级的特殊结构, 使其具有不同于常规材料和单个分子的性质如表面效应、体积效应、量子尺寸效应、宏观量子隧道效应等, 导致了纳米材料的力学性能、磁性、介电性、超导性光学乃至力学性能发生改变,使之在电子学、光学、化工陶瓷、生物、医药等诸多方面具有重要价值, 得到了广泛应用1 纳米材料研究的现状与特点1.1纳米材料研究的现状上世纪70 年代纳米颗粒材料问世, 80 年代中期在实验室合成了纳米块体材料,80 年代中期以后, 成为材料科学和凝聚态物理研究的前沿热点。
可大致分为3 个阶段;第一阶段(1990 年以前), 主要是在实验室探索用各种手段制备各种材料的纳米颗粒粉体, 合成块体(包括薄膜),研究评价表征的方法, 探索纳米材料不同于常规材料的特殊性能;第二阶段(1994 年前), 人们关注的热点是如何利用纳米材料已挖掘出来的奇特的物理、化学和力学性能,设计纳米复合材料, 通常采用纳米微粒与纳米微粒复合, 纳米微粒与常规块体复合及发展复合纳米薄膜;第三阶段(从1994年到现在), 纳米组装体系、人工组装合成的纳米结构的材料体系越来越受到人们的关注,正在成为纳米材料研究的新的热点。
1.2纳米材料研究的特点(1)纳米材料研究的内涵逐渐扩大第一阶段主要集中在纳米颗粒(纳米晶、纳米相、纳米非晶等)以及由它们组成的薄膜与块体,到第三阶段纳米材料研究对象发展到纳米丝、纳米管、微孔和介孔材料(包括凝胶和气凝胶)。
常用纳米材料

常用纳米材料
纳米材料是指至少在一个空间尺度上尺寸在1到100纳米之间的材料。
由于其
特殊的尺寸效应、量子效应和表面效应,纳米材料具有许多传统材料所不具备的特殊性能,因此在诸多领域都有着广泛的应用前景。
本文将介绍一些常用的纳米材料及其应用。
首先,碳纳米管是一种由碳原子通过卷曲而成的纳米材料,具有极高的导热性
和机械强度,因此在材料强化、导热材料和纳米电子器件等领域有着广泛的应用。
其独特的结构和性能使得碳纳米管成为当前研究的热点之一。
其次,纳米颗粒是一种尺寸在1到100纳米之间的微小颗粒,常见的有金纳米
颗粒、银纳米颗粒等。
这些纳米颗粒具有较大的比表面积和表面能,因此在催化、生物医学、传感器等领域有着广泛的应用。
例如,金纳米颗粒可以作为生物标记物、药物载体等,银纳米颗粒则常用于抗菌材料等方面。
另外,纳米复合材料是由两种或两种以上的材料通过纳米技术制备而成的新型
材料,具有优异的性能。
例如,纳米氧化锌复合材料具有优异的光催化性能和抗菌性能,因此在环境治理和医疗材料等领域有着广泛的应用。
此外,石墨烯是一种由碳原子通过平面排列而成的二维纳米材料,具有极高的
导电性和导热性,因此在电子器件、柔性电子、能源存储等领域有着重要的应用前景。
其独特的结构和性能使得石墨烯成为当前研究的热点之一。
总的来说,纳米材料具有许多传统材料所不具备的特殊性能,因此在诸多领域
都有着广泛的应用前景。
随着纳米技术的不断发展,相信纳米材料将会在更多的领域展现出其独特的魅力,为人类社会的发展做出更大的贡献。
纳米材料

绪论1、纳米科技的提出:源自于费曼大师1959年在美国物理学会年会上的一次演讲。
Richard Feynman:世界上首位提出纳米科技构想的科学家。
2、纳米材料(1)纳米材料的定义:物质结构在三维空间至少有一维处于纳米尺度,或由纳米结构单元组成且具有特殊性质的材料(也是以维数划分纳米材料的原因)(2)纳米尺度:1-100 nm范围的几何尺;纳米的单位:1 nm = 10^-9 m,即千分之一微米(μm)。
(3)纳米结构单元:具有纳米尺度结构特征的物质单元,包括纳米团簇、纳米颗粒、纳米管、纳米线、纳米棒、纳米片等(4)纳米材料的维度:○1零维:纳米团簇、纳米颗粒、量子点(三维尺度均为纳米级,没有明显的取向性,近等轴状)○2一维:纳米线、纳米棒、纳米管(单向延伸、二维尺度为纳米级、第三维尺度不限,、直径大于100 nm,具有纳米结构)○3二维:纳米片、纳米带、超晶格、纳米薄膜(一维尺度为纳米级,面状分布,,厚度大于100 nm,具有纳米结构)○4三维:纳米花、四脚针等(包含纳米结构单元,三维尺寸均超过纳米尺度,由不同型低维纳米结构单元复合形成)(5)纳米材料的分类○1具有纳米尺度外形的材料○2以纳米结构单元作为主要结构组分所构成的材料3、久保理论:即金属的超微粒子将出现量子限域效应,显示出与块体金属显著不同的性能;金属纳米粒子,量子限域效应。
4、扫描隧道电子显微镜(STM):将探针靠近导电材料表面进行扫描,获得表面图像。
分辨率达0.1~0.2 nm,可以直接观察和移动原子。
5、原子力显微镜(AFM):利用针尖和材料原子间的相互微弱作用力来获得材料表面的形貌图像。
可用于研究半导体、导体和绝缘体。
AFM三大特点:原子级高分辨率、观察活生命样品和加工样品的力行为成就。
6、纳米科技的研究内容:纳米科学、纳米技术与纳米工程分支学科:纳米力学:研究物体在纳米尺度的力学性质纳米物理学:研究物质在纳米尺度上的物理现象及表征纳米化学:研究纳米尺度范围的化学过程及反应纳米生物学:利用纳米的手段解决生物学问题,在分子水平揭示细胞内外的物质、能量与信息交换机制;纳米医学:利用纳米科技解决医学问题的边缘交叉学科纳米材料学:包括纳米材料的成分、结构、性能与使用效能四个方面。
纳米材料

纳米膜: 纳米膜分为颗粒膜与致密膜。颗粒膜是纳米颗粒粘在一起,中间有极为细小的间隙的薄膜。致密膜指膜层致密但晶粒尺寸为纳米级的薄膜。可用于:气体催化(如汽车尾气处理)材料;过滤器材料;高密度磁记录材料;光敏材料;平面显示器材料;超导材料等。
纳米粉末: 又称为超微粉或超细粉,一般指粒度在100纳米以下的粉末或颗粒,是一种介于原子、分子与宏观物体之间处于中间物态的固体颗粒材料。可用于:高密度磁记录材料;吸波隐身材料;磁流体材料;防辐射材料;单晶硅和精密光学器件抛光材料;微芯片导热基片与布线材料;微电子封装材料;光电子材料;先进的电池电极材料;太阳能电池材料;高效催化剂;高效助燃剂;敏感元件;高韧性陶瓷材料(摔不裂的陶瓷,用于陶瓷发动机等);人体修复材料;抗癌制剂等。
纳米块体: 是将纳米粉末高压成型或控制金属液体结晶而得到的纳米晶粒材料。主要用途为:超高强度材料;智能金属材料等。
纳米材料的用途
很广,主要用途有:
医药使用纳米技术能使药品生产过程越来越精细,并在纳米材料的尺度上直接利用原子、分子的排布制造具有特定功能的药品。纳米材料粒子将使药物在人体内的传输更为方便,用数层纳米粒子包裹的智能药物进入人体后可主动搜索并攻击癌细胞或修补损伤组织。使用纳米技术的新型诊断仪器只需检测少量血液,就能通过其中的蛋白质和DNA诊断出各种疾病。
纳米材料 纳米材料统指合成材料的基本单元大小限制在1~100nm范围的材料,这大约相当于10~100个原子紧密排列在一起的尺度。
从尺寸大小来说,通常产生物理化学性质显著变化的细小微粒的尺寸在0.1微米以下(注1米=1000毫米,1毫米=1000微米,1微米=1000纳米,1纳米=10埃),即100纳米以下。因此,颗粒尺寸在1~100纳米的微粒称为超微粒材料,也是一种纳米材料。 纳米氧化铝显白色蓬松粉末状态,晶型是γ-Al2O3。粒径是20nm;比表面积≥160m2/g。粒度分布均匀、纯度高、极好分散,其比表面高,具有耐高温的惰性,高活性,属活性氧化铝;多孔性;硬度高、尺寸稳定性好,具有较强的表面酸性和一定的表面碱性,被广泛应用作催化剂和催化剂载体等新的绿色化学材料。可广泛应用于各种塑料、橡胶、陶瓷、耐火材料等产品的补强增韧,特别是提高陶瓷的致密性、光洁度、冷热疲劳性、断裂韧性、抗蠕变性能和高分子材料产品的耐磨性能尤为显著。极好分散,在溶剂水里面;溶剂乙醇、丙醇、丙二醇、异丙醇、乙二醇单丁醚、丙酮、丁酮、苯、二甲苯内,不需加分散剂,搅拌搅拌即可以充分的分散均匀。在环氧树脂,塑料等中,极好添加使用。
纳米材料有哪些

纳米材料有哪些
纳米材料是指具有纳米级尺寸(一般为1-100纳米)的材料。
由于其特殊的结构和性能,纳米材料在各个领域都有广泛的应用。
下面介绍一些常见的纳米材料及其应用。
1. 纳米金属颗粒:纳米金属颗粒具有较大的比表面积和高的反应活性,可以应用于催化剂、电子器件等领域。
2. 纳米二氧化硅:纳米二氧化硅具有良好的光学性能和化学性能,可应用于纳米电子器件、生物医学、光电材料等领域。
3. 纳米氧化锌:纳米氧化锌具有高比表面积和优异的光电性能,广泛应用于太阳能电池、传感器、防晒霜等领域。
4. 纳米碳材料:包括纳米石墨烯、纳米碳管等,具有优异的导电性能、机械性能和热稳定性,被广泛应用于电池、传感器、储能材料等领域。
5. 纳米陶瓷材料:包括纳米氧化铝、纳米氮化硅等,具有高硬度、高耐磨性和热稳定性,广泛应用于耐磨材料、催化剂、陶瓷材料等领域。
6. 纳米荧光材料:具有较高的荧光效率和稳定性,被广泛应用于生物成像、荧光传感、显示技术等领域。
7. 纳米生物材料:包括纳米生物酶、纳米生物球等,具有良好的生物相容性和生物活性,可以应用于生物医学、药物传递、
组织工程等领域。
纳米材料的应用范围广泛,涵盖了电子、光电、催化、医药、能源、环境等多个领域。
纳米材料的研究和应用将对人类的生产生活产生深远的影响,为各个领域的发展带来新的机遇和挑战。
纳米材料有哪些
纳米材料有哪些纳米材料是指至少有一个尺寸在1-100纳米之间的材料,这些材料具有独特的物理、化学和生物学特性,广泛应用于材料科学、生物医学、能源和环境等领域。
纳米材料的种类繁多,下面将介绍一些常见的纳米材料及其应用。
一、纳米碳材料。
1. 石墨烯。
石墨烯是由碳原子构成的二维晶格结构,具有优异的导电性、热导性和机械性能,被广泛应用于电子器件、传感器、储能材料等领域。
2. 碳纳米管。
碳纳米管是由石墨烯卷曲而成的纳米管状结构,具有优异的力学性能和导电性能,被应用于纳米电子学、纳米材料增强等领域。
3. 纳米金刚石。
纳米金刚石是由碳原子构成的立方晶格结构,具有硬度大、导热性好等特点,被广泛应用于涂层材料、生物医学材料等领域。
二、纳米金属材料。
1. 纳米银。
纳米银具有优异的抗菌性能,被广泛应用于医疗器械、纺织品等领域。
2. 纳米金。
纳米金具有优异的光学性能和催化性能,被应用于光电器件、催化剂等领域。
3. 纳米铜。
纳米铜具有优异的导电性能和力学性能,被广泛应用于电子器件、导电材料等领域。
三、纳米氧化物材料。
1. 纳米二氧化硅。
纳米二氧化硅具有优异的光学性能和表面活性,被广泛应用于光学涂料、生物医学材料等领域。
2. 纳米氧化铝。
纳米氧化铝具有优异的耐磨性和热稳定性,被应用于陶瓷材料、涂料材料等领域。
3. 纳米氧化铁。
纳米氧化铁具有优异的磁性能和生物相容性,被广泛应用于磁性材料、生物医学材料等领域。
四、纳米复合材料。
1. 纳米聚合物复合材料。
纳米聚合物复合材料是将纳米材料与聚合物基体复合而成的材料,具有优异的力学性能和导电性能,被广泛应用于航空航天、汽车制造等领域。
2. 纳米陶瓷复合材料。
纳米陶瓷复合材料是将纳米材料与陶瓷基体复合而成的材料,具有优异的耐磨性和耐高温性能,被应用于机械制造、航空航天等领域。
以上就是关于纳米材料的介绍,纳米材料的种类繁多,每一种纳米材料都具有独特的特性和应用价值,随着科学技术的不断发展,相信纳米材料在未来会有更广阔的应用前景。
纳米材料ppt课件
02
纳米材料的制备方法
物理法
机械研磨法
通过高能球磨或振动磨的方式, 将大块材料破碎成纳米级尺寸。 这种方法简单易行,但制备的纳
米材料纯度较低。
激光脉冲法
利用高能激光脉冲在极短时间内 将材料加热至熔化或气化,然后 迅速冷却形成纳米颗粒。该方法 制备的纳米材料粒径小且均匀,
但设备成本高昂。
电子束蒸发法
磁损耗
在交变磁场中,纳米材料的磁损耗远高于宏观材料,这与其界面和 表面效应有关。
磁电阻效应
某些纳米材料表现出显著的磁电阻效应,如巨磁电阻和自旋阀效应 。这些效应可用于磁电阻传感器和磁随机存储器等领域。
04
纳米材料的应用实例
纳米材料在能源领域的应用
太阳能电池
利用纳米结构提高光电转 换效率,降低成本。
纳米材料的环保问题
纳米材料在环境中的持久性
一些纳米材料可能在环境中长时间存在,不易降解,可能造成长期的环境污染。
纳米材料的环境释放途径
生产和使用纳米材料过程中,可能通过废水、废气等途径将纳米颗粒释放到环境中。
纳米材料对生态系统的潜在影响
纳米材料可能通过食物链进入生物体,影响生物的生理功能和生态平衡。
解决纳米材料安全与环保问题的策略与建议
加强纳米材料的环境和健康影响 研究
深入研究纳米材料的环境行为和健康影响 ,为制定有效的管理措施提供科学依据。
制定严格的法规和标准
制定针对纳米材料的生产和使用的法规和 标准,限制其对环境和健康的潜在风险。
发展绿色合成方法和应用技术
提高公众意识和参与度
开发环保友好的纳米材料合成方法和应用 技术,减少纳米材料的环境释放。
生物合成法
利用微生物(如细菌)合成有机或无机纳米材料。该方法制 备的纳米材料具有生物相容性和生物活性,在生物医学领域 有广泛应用前景。
纳米材料
用途:
高密度磁记录材料、吸波隐身材料、磁流 体材料、防辐射材料、单晶硅和精密光学 器件抛光材料、微芯片导热基与布线材料、 微电子封装材料、光电子材料、电池电极 材料、太阳能电池材料、高效催化剂、高 效助燃剂、敏感元件、高韧性陶瓷材料、 人体修复材料和抗癌制剂等。
2、纳米固体材料
纳米固体材料通常指 由尺寸小于15纳米的超微 颗粒在高压力下压制成型, 或再经一定热处理工序后 所生成的致密型固体材料。
(二)、纳米材料的奇异特性
具有很高的活性 特殊的光学性质 特殊的热学性质 特殊的磁学性质 特殊的力学性质 特殊的电学性质
1、具有很高的活性
随着纳米微粒粒径减小,比表面积增大, 表面原子数增多及表面原子配位不饱和 性导致大量的悬键和不饱和键等,这就 使纳米微粒具有高的表面活性,并且粒 径越小,表面原子数所占比率越大,比 表面积越大,表面光滑程度变差,形成 凹凸不平的原子台阶,增加了化学反应 的接触面,使其具有优良的催化性能。
2.小尺寸效应
随着颗粒尺寸的量变,在一定 条件下会引起颗粒性质的质变。由 于颗粒尺寸变小所引起的宏观物理 性质的变化称为小尺寸效应。对超 微颗粒而言,尺寸变小,其比表面 积亦显著增加,从而产生一系列新 奇的性质。
小尺寸效应的主要影响:
1、金属纳米材料的电阻与临界尺寸 2、宽频带强吸收性质 3、激子增强吸收现象 4、磁有序态向磁无序态的转变 5、超导相向正常相的转变 6、磁性纳米颗粒的高矫顽力
4、特殊的磁学性质
主要表现为:超顺磁性、高矫顽力、低居里温度、 高磁化率 。小尺寸超微颗粒的磁性比大块材料 强许多倍,大块的纯铁矫顽力约为80A/m,而当 颗粒尺寸见效到20nm以下时,其矫顽力可增加 1000倍,若进一步减小尺寸,大约小于6nm时, 其矫顽力反而降低到零,表现出所谓超顺磁性
纳米材料 -简介
TiO2车用空气清净机
二、纳米二氧化硅
1、优势
纳米二氧化硅是极其重要的高科技超微细无 机新材料之一,因其粒径很小,比表面积大,表 面吸附力强,表面能大,化学纯度高、分散性能 好、热阻、电阻等方面具有特异的性能,以其优
越的稳定性、补强性、增稠性和触变性,在众多
学科及领域内独具特性,有着不可取代的作用。
Human Hair
Take 1 slice
1nm
1000 slices
1 m
10 纳米
一纳米有多小?
空间尺度的划分
宇观(Cosmoscopic) 宏观(Macroscopic) 人的肉眼可见的物体为最小物
体开始为下限,上至无限大的宇宙天体;
介观(Mesoscopic)或纳米观(Nanoscopic): 1~100nm
纳米二氧化钛及其复合氧化物
应用
(1)光催化剂: TiO2╱SnO2 复合氧化物较 单一级 纯TiO2 有较高的光催化活性。 (2)紫外吸收剂(化妆品) (3)其他用途(光过滤等) (4)环境保护(降解有机物、农药、垃圾)
中国科学院首次打造出的 “纳米皇冠”
国家大剧院用的自清洁玻璃
纳米TiO2在可见光照射下对碳氢化合物(包括油 污、细菌等)有催化作用,使其进一步氧化成气体或 者是很容易被擦掉的物质。 在玻璃、陶瓷和瓷砖的表面涂上一层纳米TiO2 薄层,使其具有自清洁作用。
纳米颗粒(0D)
纳米线(1D)
扭曲的纳米线 (1D)
2
多孔 纳米线 (1D)
纳米膜(2D)
尺寸在纳米量级的晶粒(或颗粒)构 成的薄膜以及每层厚度在纳米量级的单层 或多层膜。
纳米带(2D)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 纳米刻蚀: • 目前微电子技术中最细刻度为几分之一微米, 即激光光列。 • 如果把搬迁原子的位臵按照电路的方式搬迁, 便可以用STM进行纳米级的刻蚀。我国已能用 STM刻出10 nm的细线。 • 一是可制备高密度的存储器。 • 日本NEC公司研制出高密度记录技术,在一张 邮票大小的衬底上可以记录下400万页报纸的 内容。 • 二是可用分子束外延技术制造出三维纳米量子 器件。
§1.1 基本概念和内涵
• 3. 纳米材料(Nanomaterials)
• (1)纳米材料的定义:
• 把组成相或晶粒结构的尺寸控制在1-100纳米范 围的具有特殊功能的材料称为纳米材料。 • 即三维空间中至少有一维尺寸在1-100纳米范围 的材料或由它们作为基本单元构成的具有特殊 功能的材料。
§1.1 基本概念和内涵
• (2) 纳米技术与微电子技术的主要区别是: • 纳米技术研究的是以控制单个原子、分 子来实现设备特定的功能,是利用电子 的波动性来工作的; • 而微电子技术则主要通过控制电子群体 来实现其功能,是利用电子的粒子性来 工作的。 • 人们研究和开发纳米技术的目的,就是 要实现对整个微观世界的有效控制。
• 纳米组装体系是以纳米颗粒或纳米丝、纳米管 及纳米尺寸的孔洞为基本单元在一维、二维和 三维空间组装排列成具有纳米结构的体系。 •
• 根据纳米结构体系构筑过程中的驱动力是靠外 因,还是靠内因来划分,大致可分为两类: • 一是人工纳米结构组装体系, • 二是纳米结构自组装体系。
• 所谓人工纳米结构组装体系,按人类的 意志,利用物理和化学的方法人工将纳 米尺度的物质单元组装、排列构成一维、 二维和三维的纳米结构体系。
§1.1 基本概念和内涵
• (3)目前该领域的主要研究内容: • A 制备纳米尺寸范围材料的相关技术 • 液相法:如沉淀法、溶胶-凝胶法、水热法、聚合法、 化学镀法。 • 气相法:如蒸发法、电弧法、化学气相沉积法、微 弧氧化法。
• B 分析、观察、检测纳米体系物质的相关技术 • 如AFM,STM,XRD,SEM,TEM,激光粒度仪, 比表面吸附(研究晶相、尺寸、表面等),紫外可见 光吸收光谱,荧光光谱,热分析,磁性仪等。
2.1 纳米材料的分类
• 纳米材料:组成相或晶粒结构的尺寸在1-100 nm 范围的具有特殊功能的材料
• 按维数,纳米材料的基本单元可以分为:
零维:纳米颗粒(nanoparticle)、原子团簇(atom cluster) 一维:纳米线(nanowire)、纳米棒(nanorod)、纳米 管(nanotube); 二维:超薄膜(thin film)、纳米片、超晶格 (superlattice) • 按化学组成,可分为:纳米金属、纳米陶瓷、纳 米高分子、纳米复合材料等。 • 按物性:纳米半导体、纳米磁性材料、纳米光学 材、纳米铁电材料等等。
§1.1 基本概念和内涵
• (3) 制造纳米产品的技术路线可分为两种:
• “自上而下” (top down):是指通过微加工或 固态技术,不断在尺寸上将人类创造的功能产 品微型化。 如:切割、研磨、蚀刻、光刻印刷 等。 • 特点:尺寸从大到小 • “自下而上” (bottom up) :是指以原子分子 为基本单元,根据人们的意愿进行设计和组装, 从而构筑成具有特定功能的产品,这种技术路 线将减少对原材料的需求, 降低环境污染。 • 如化学合成、自组装、定位组装等。
• 英国著名科学家莱恩Cahn在Nature杂志上 撰文说:“纳米陶瓷是解决陶瓷脆性的战 略途径。”
• 纳米陶瓷的应用:摔不碎的陶瓷,防弹玻 璃。
• 3、纳米技术在微电子学上的应用
• 4、 纳米技术在光电领域的应用
• 5、纳米技术在化工领域的应用
• 6、 纳米技术在生物学上的应用
• 7、纳米技术在医学上的应用
• 纳米体系和团簇从这种介观范围独立出 来,形成一个单独的领域(狭义的介观领 域)。
§1.1 基本概念和内涵
一、基本概念 1、纳米 (nanometer)
• 纳米(nanometer)是一个长度单位,简写为nm。 1 nm=10(-9) m=10 埃。 • 头 发 直 径 : 50-100 m, 1 nm 相 当 于 头 发 的 1/50000。如图 • 氢原子的直径为1埃,所以1纳米等于10个氢原 子一个一个排起来的长度。
§1.1 基本概念和内涵
• (2) 纳米材料与传统材料的主要差别: • 第一、这种材料至少有一个方向是在纳米的数 量级上。 • 比如说纳米尺度的颗粒,或者是分子膜的厚度 在纳米尺度范围内。尺寸 • 第二、由于量子效应、界面效应、表面效应等, 使材料在物理和化学上表现出奇异现象。 • 比如物体的强度、韧性、比热、导电率、扩散 率等完全不同于或大大优于常规的体相材料。 性能
• 1993年,国际纳米科技指导委员会将纳米技术 划分为6个分支学科 • (1)纳米电子学、 • (2)纳米物理学、 • (3)纳米化学、 • (4)纳米生物学、 • (5)纳米加工学、 • (6)纳米计量学(定位、测长等)。 • 其中,纳米物理学和纳米化学是纳米技术的理 论基础,而纳米电子学是纳米技术最重要的内 容。
§1.1 基本概念和内涵
• C 纳米体系物质的物理性能 • 如小尺寸效应,隧道效应,表面效应,量子尺 寸效应,光、电、热、磁效应等。
• D 纳米体系物质的化学性能 • 纳米金属粒子、半导体粒子等, 如化学活性、 催化性能、稳定性、生物活性等。 • E 纳米体系物质的应用 • 如Nano-Pd/Al2O3:CO助燃剂; Nano-TiO2:抗 菌,光催化,自清洁;碳纤维:吸波,聚苯胺: 化学传感器;V2O5:锂电池正极材料等。
§1.1 基本概念和内涵
• 2. 纳米科技(Nano-ST)
• (1)纳米技术:20世纪80年代末期刚刚 诞生并正在崛起的新科技,是研究在千 万分之一米(10–7)到十亿分之一米(10–9米) 内,原子、分子和其它类型物质的运动 和变化的科学;同时在这一尺度范围内 对原子、分子等进行操纵和加工的技术。
• 8. 纳米技术在分子组装方面的应用
• 9. 其它方面的应用
第2章 纳米材料
• 目的:了解纳米材料的分类和性质。
• 重点: 1、掌握基本概念
纳米固体、纳米组装体系、表面效应、小尺寸效应。
2、纳米材料的特殊性质。 3、纳米材料的团聚机理和分散技术。 4、纳米颗粒的表面改性 • 难点内容:纳米材料的特殊性质。
• 伯克利国家实验室在Nature上指出:纳米尺度 的图案材料是现代材料化学和物理学的重要前 沿课题。
• 纳米技术的应用及其前景
• 纳米科技的重要进展表现在以下几个方面: • 1、直接操纵原子方面:
• 日本科学家成功将硅原子堆成一个“金字塔”, 首次实现原子三维空间的立体搬迁。 • 1991年,IBM的科学家制造了超快的氙原子开 关。可能将美国国会图书馆的全部藏书存储在 一个直径为0.3 cm的硅片上。
• 纳米材料有两层含义: • 其一,至少在某一维方向,尺度小于100nm,如 纳米颗粒、纳米线和纳米薄膜,或构成整体材料 的结构单元的尺度小于100nm,如纳米晶合金中 的晶粒;
• 其二,尺度效应:即当尺度减小到纳米范围,材 料某种性质发生神奇的突变,具有不同于常规材 料的、优异的特性。 • 量子尺寸效应
• 1959年,著名理论物理学家、诺贝尔奖获得者 费曼曾预言:“毫无疑问,当我们得以对纳微 尺度的事物加以操纵的话,将大大的扩充我们 可能获得物性的范围”。 • 这个领域包括了从微米(1-100μ m)、亚微米, 纳米到团簇尺寸(从几个到几百个原子以上尺寸) 的范围。
§1.1 基本概念和内涵
• 从广义上来说,凡是出现量子相干现象 的体系统称为介观体系,包括团簇、纳 米体系和亚微米体系。
§1.1 基本概念和内涵
• 人类对客观世界的认识分为两个层次: • 一是宏观领域,二是微观领域。 • 宏观领域是指以人的肉眼可见的物体为最小物体 开始为下限,上至无限大的宇宙天体;
• 微观领域是以分子原子为最大起点,下限是无限 小的领域。 • 基本粒子:电子、质子、中子等。
• 介观领域:
• 在宏观领域和微观领域之间,存在着一块近年 来才引起人们极大兴趣和有待开拓的“处女 地”,三维尺寸都很细小,出现了许多奇异的 崭新的物理性能。
• 人工组装已经不满足于简单地在物体表 面搬运原子构造图形,新的趋势是能够 对体相的物体实现三维的纳米调控,采 用一种双光子吸收技术,利用非线性光 学效应超越了普通光刻技术的衍射极限, 成功获得了120 nm高分辨率的三维结构。
• 所谓纳米结构的自组装体系是指通过弱的和较 小方向性的非共价键,如氢键、范德瓦键和弱 的离子键协同作用把原子、离子或分子连接在 一起构筑成一个纳米结构或纳米结构的花样。 • 纳米自组装体系、人工纳米结构组装体系越来 越受到人们的关注,称为纳米尺度的图案材料。
• 纳米材料:组成相或晶粒结构的尺寸在1-100 nm 范围的具有特殊功能的材料 • 包含了三个层次:纳米微粒、 纳米固体、 纳米组装体系。
2.1 纳米材料的分类
• 1、纳米微粒:又称为超微粒子,一般指粒 度在100 nm以下的粉末或颗粒,是一种介 于原子、分子与宏观物体之间处于中间物 态的固体颗粒材料。
§1.1 基本概念和内涵
• 4. 纳米器件
• (1) 所谓纳米器件,就是指从纳米尺度上,设计 和制造功能器件。
• 纳米科技的最终目的是以原子分子为起点, 去制 造具有特殊功能的产品。 • 因此, 纳米器件的研制和应用水平是进入纳米时 代的重要标志。----微米时代(微米技术)
§1.1 基本概念和内涵
§1.1 基本概念和内涵
ቤተ መጻሕፍቲ ባይዱ
• (2) 纳米科技的主要研究内容
• 创造和制备优异性能的纳米材料、 • 制备各种纳米器件和装臵、 • 探测和分析纳米区域的性质和现象。 • (基础,目标,前提) • 纳米科技的最终目标:直接利用物质在纳米尺 度上表现出来的新颖的物理化学和生物学特性 制造出具有特定功能的产品。