新颖版北师版初中数学知识点总结材料
(最新版)北师大版初中数学各册章节知识点总结

(最新版)北师大版初中数学各册章节知识点一、七年级数学1.1 第一章常数与代数式本章主要介绍了常数、代数式的概念,以及代数式的基本运算法则。
其中,重点掌握同类项的概念和合并同类项的方法,能够用数学符号正确表示代数式及其运算过程。
1.2 第二章整式的加减本章介绍了整式加减的基本法则和实际应用,重点掌握某些常见整式的加减法则。
在学习整式加减时,需要积极练习,掌握加减法的基本原理,熟悉各种整式的加减运算法则。
1.3 第三章一元一次方程本章主要介绍一元一次方程及其解法,包括方程的定义、方程的解等。
其中,需要掌握方程的基本概念,学会应用代数运算解决实际问题。
1.4 第四章图形的初步认识本章主要介绍平面图形的性质和种类,包括点、线、面图形的定义及其特点。
学生需要掌握平面图形的基本概念和应用,同时也需要理解三视图和等轴测图等图形展开方法。
1.5 第五章角与三角形本章主要介绍角的概念、角的度量、三角形的定义和分类等内容。
要掌握角的概念和相邻角、补角、余角等基本知识,以及三角形的性质和分类等基本概念。
二、八年级数学2.1 第一章整式的乘法本章主要介绍整式乘法的基本法则和实际应用,涉及整式相乘的一般法则和模型法则,以及代数式的因式分解等内容。
需要掌握各种整式乘法法则和方法,尤其是模型法则的应用。
2.2 第二章一元二次方程与因式分解本章主要介绍一元二次方程的定义和解法,以及因式分解的基本原理。
需要掌握二次方程解法和因式分解方法,能够应用数学知识解决实际问题。
2.3 第三章向量的初步认识本章主要介绍向量的定义、加法、减法、数量积等基本概念和运算法则。
要掌握向量的基本性质和应用,学会用向量方法解决实际问题。
2.4 第四章几何变形与相似本章主要介绍几何变形的定义和分类,以及相似三角形的定义和判定方法。
需要掌握几何变形和相似三角形的基本知识和方法,能够应用数学知识解决实际问题。
2.5 第五章勾股定理及其应用本章主要介绍勾股定理及其证明、三角形的面积和周长等内容。
2024年北师大初中数学知识点总结(2篇)

2024年北师大初中数学知识点总结____年北师大初中数学知识点总结一、数与式1.自然数、整数、有理数、无理数、实数2.数的四则运算3.绝对值与相反数4.数的比较与大小关系5.数的表示方法及数量关系6.代数式的基本概念7.展开与化简代数式二、代数方程与方程式1.一元一次方程2.一元一次方程的解集3.一元一次方程的应用4.二元一次方程组5.二元一次方程组的解集6.二元一次方程组的应用7.一次方程与一次方程组的混合应用8.二次方程与根的概念9.二次方程的求解方法与解的分类10.二次方程的应用三、几何基础1.角的基本概念2.角的分类及性质3.角的运算4.平行线及其性质5.平行线与一组角的关系6.平行线与交线的性质7.三角形的基本概念8.三角形的分类与性质9.三角形的内角和10.直角三角形、等腰三角形、等边三角形及其性质11.三角形的判定12.三角形的相似性质与判定13.勾股定理及其应用14.几何推理与几何关系四、图形与变换1.图形的基本概念2.点、线、面及其相互关系3.平面图形的分类与性质4.相交直线的性质与分类5.相交线与角的关系6.相似图形及其判定7.比例与相似图形的性质8.对称图形与轴对称及其性质9.平移、旋转、翻折变换与其性质10.图形的拼接、剪裁及其应用五、数据与统计1.数据的搜集与整理2.统计图的制作与解读3.数据的分析与归纳4.概率与统计的基本概念5.简单事件的概率计算6.随机事件及其概率计算7.概率的性质与运算8.概率与统计的应用六、函数1.函数与变量的关系2.函数的表示及其性质3.函数的定义域与值域4.函数的图像与性质5.函数关系式的化简与变形6.函数的逆运算7.函数与方程的应用以上是____年北师大初中数学的知识点总结,总计____字左右。
这些知识点涵盖了数与式、代数方程与方程式、几何基础、图形与变换、数据与统计以及函数等各个方面的内容,可以帮助学生全面掌握初中数学的基本知识,并能应用于实际问题中。
北师大版初中数学知识点归纳(初中完整版)

第一章丰富的图形世界1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形.立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体.3、生活中的立体图形圆柱柱生活中的立体图形球棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……(按名称分) 锥圆锥棱锥4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
5、正方体的平面展开图:11种6、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形.7、三视图物体的三视图指主视图、俯视图、左视图.主视图:从正面看到的图,叫做主视图。
左视图:从左面看到的图,叫做左视图。
俯视图:从上面看到的图,叫做俯视图。
8、多边形:由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形,叫做多边形。
从一个n 边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个n 边形分割成(n-2)个三角形。
弧:圆上A 、B 两点之间的部分叫做弧.扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形.第二章 有理数及其运算1、有理数的分类 正有理数有理数 零 有限小数和无限循环小数负有理数或 整数有理数分数2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可).任何一个有理数都可以用数轴上的一个点来表示。
【初中数学】新北师大版七年级数学上册知识点总结(完美)

【初中数学】新北师大版七年级数学上册
知识点总结(完美)
【初中数学】新北师大版七年级数学上册知识点总结
一、整数
1. 整数的概念及表示法
2. 整数的相加、相减、相乘及相除运算法则
3. 负数的意义及性质
4. 整数间的大小比较
5. 整数的绝对值及其性质
二、有理数
1. 有理数的概念及表示法
2. 有理数的相加、相减、相乘及相除运算法则
3. 有理数的小数表示法
4. 有理数的大小比较及判断
5. 有理数的绝对值及其性质
三、代数
1. 代数式的基本概念
2. 代数式的化简与计算
3. 代数式的字母代数意义
4. 代数式的值与相等
四、方程
1. 方程的基本概念及解的概念
2. 一次方程的解及解集的表示
3. 一次方程的应用问题
五、图形与几何
1. 平面直角坐标系的引入
2. 长方形和正方形的面积计算
3. 平行四边形的性质及面积计算
4. 三角形的性质及分类
5. 圆的基本性质及计算
六、数据与统计
1. 统计调查及收集数据的方法
2. 制作统计表
3. 条形统计图的制作及分析
以上是新北师大版七年级数学上册的主要知识点总结,希望能帮助同学们更好地理解和掌握数学知识。
北师大版初中数学各册章节知识点总结

北师大版初中数学各册章节知识点总结第一册:《初二上册》1.直角三角形:直角三角形的定义、直角三角形的性质、勾股定理。
2.平面图形的表示:点、线、线段、射线、角度、平行线、垂直线、相交线等基本概念。
3.二次根式:二次根式的定义、运算法则。
4.初中平面几何基本定理:垂线定理、等腰三角形的性质、三角形中位线定理、角平分线定理等。
5.多边形:多边形的定义、正多边形、变位积分、多边形的内角和、多边形的外角和。
6.梅涅劳斯定理:梅涅劳斯定理的概念、定理的应用。
第二册:《初二下册》1.线性方程:线性方程的定义、解线性方程的常用方法。
2.三角函数的定义和初步认识:三角函数的定义、正弦函数、余弦函数、正切函数等。
3.平行线与相交线:平行线的性质、平行线之间的角对、相交线之间的角对等。
4.二次函数:二次函数的基本性质、二次函数图像的性质与应用。
5.海伦公式:海伦公式的概念、海伦公式的应用。
第三册:《初三上册》1.集合:集合的概念、集合的运算、集合的表示等。
2.图形的相似:图形相似的概念、相似比、相似三角形的性质等。
3.三角形的性质:三角形的角与边的关系、角边关系等。
4.空间几何基本概念:欧几里得空间几何学的基本概念、空间图形与平面图形的关系等。
5.高中数学预修知识:比例与相似、复数等。
第四册:《初三下册》1.数系的扩充:有理数和无理数的概念、实数的分类等。
2.几何体的计算:几何体的表面积、几何体的体积等。
3.空间几何基本定理:角的平分线、角的辅助线等。
4.三角恒等式:三角函数的反函数、三角函数的周期等。
第五册:《九年级上册》1.一次函数:一次函数的定义、一次函数图像的性质、线性规律等。
2.向量几何:向量的定义、向量的运算、向量的平行和垂直等。
3.数的四则运算:整数、有理数、无理数的四则运算等。
4.二次方程与不等式:二次方程的定义、解二次方程的方法等。
5.三角形的面积:三角形的名字、面积的计算公式等。
第六册:《九年级下册》1.指数与对数:指数、对数和底数的概念、指数与对数的性质等。
有关北师大版初中数学知识点总结5篇

有关北师大版初中数学知识点总结5篇北师大版初中数学知识点总结2实数无理数:无限不循环小数叫无理数平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。
②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。
③一个正数有2个平方根/0的平方根为0/负数没有平方根。
④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。
②正数的立方根是正数、0的立方根是0、负数的立方根是负数。
③求一个数A 的立方根的运算叫开立方,其中A叫做被开方数。
实数:①实数分有理数和无理数。
②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。
③每一个实数都可以在数轴上的一个点来表示。
相信通过上面的学习,同学们对实数知识点可以很好的掌握了,希望同学们在考试中取得好成绩。
初中数学知识点总结:平面直角坐标系下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
平面直角坐标系平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合三个规定:①正方向的规定横轴取向右为正方向,纵轴取向上为正方向②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
初中数学知识点:平面直角坐标系的构成对于平面直角坐标系的构成内容,下面我们一起来学习哦。
平面直角坐标系的构成在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。
北师大版初中数学知识点总结最新最全
北师大版初中数学知识点总结以下是北师大版初中数学的知识点总结,涵盖了初中阶段的主要数学概念、定理、公式和解题方法。
一、数与代数1.1 有理数•定义:有理数是可以表示为两个整数比值的数,形式为a/b,其中a、b为整数,b不为0。
•分类:正有理数、负有理数、零。
•性质:有理数加减乘除运算遵循交换律、结合律和分配律。
1.2 实数•定义:实数是包含有理数和无理数的数集。
•无理数:不能表示为两个整数比值的数,如π、√2等。
1.3 函数•定义:函数是一种关系,使得一个集合(定义域)中的每个元素对应到另一个集合(值域)中的唯一元素。
•表示方法:解析式、表格、图象。
二、几何2.1 点、线、面•点:没有长度、宽度和高度的物体。
•线:由无数个点连成的直线、射线和线段。
•面:由无数个线段围成的平面图形。
2.2 三角形•定义:由三条边和三个角组成的图形。
•分类:锐角三角形、直角三角形、钝角三角形。
•性质:三角形的内角和为180°,两边之和大于第三边。
2.3 四边形•定义:由四条边和四个角组成的图形。
•分类:矩形、平行四边形、梯形、菱形等。
•性质:四边形的内角和为360°。
2.4 圆•定义:平面上到一个固定点(圆心)距离相等的所有点的集合。
•性质:圆的半径相等,圆心到圆上任意一点的距离等于半径。
2.5 立体几何•定义:研究三维空间中的点、线、面及其相互关系的几何学。
•主要概念:平面、直线、球、锥、柱等。
三、统计与概率3.1 统计•定义:研究数据收集、整理、分析和解释的方法。
•主要内容:图表、平均数、中位数、众数等。
3.2 概率•定义:描述事件发生可能性大小的数学概念。
•计算方法:频率、树状图、列表等。
四、综合应用•定义:将数学知识应用到实际问题中的能力。
•主要类型:几何问题、概率问题、应用题等。
以上就是北师大版初中数学的知识点总结,希望能对您的学习有所帮助。
学习建议1.重视基础:掌握数学基础知识是解决复杂问题的关键。
北师大版初中数学知识点总结最新最全
北师大版初中数学知识点总结最新最全北师大版初中数学知识点总结一、数与式1.自然数、零、整数、有理数2.分数、小数的读法、写法及其相互转换3.数的四则运算及其性质:加减乘除4.整数余数定理:被几整除?5.计算含有带分数的算式6.代数式的认识:字母、常数、系数、次数、同类项、多项式7.代数式的计算:加减乘8.利用代数式来解决应用问题:等式、方程9.美元、欧元、人民币、英镑、日元、韩元等外币的汇率及相互换算。
10.银行利息与存款、贷款、信用卡账户余额之间的关系。
二、平面图形1.点、线、面2.直角、等腰、等边三角形3.矩形、正方形、长方形、菱形、梯形、圆、弧4.几何图形的支配性规则及其应用5.相似图形及其性质6.比例、比例关系及其应用7.勾股定理及其应用8.三角形和四边形的性质9.圆心角、中心角、弧、弦、切线、切角、异向角定义及特点10.三角形、四边形及圆的周长和面积的计算三、空间几何1. 全等和相似的三角形2. 空间内常见几何图形(长方体,正方体,棱台,圆柱,圆锥,球)之间的关系3. 空间几何公理及其它性质的应用4. 空间图形体积及表面积的计算4. 三视图及制图5. 空间图形剖分6. 空间图形的对称性及其应用四、单位换算和应用1. 长度、质量、容积、面积、时间、速度、密度、温度等各种物理量的单位换算2. 平均、比例、利率、利益、折扣、增长等问题的计算方法3. 房地产4. 理财5. 道路、桥梁6. 奇妙山7. 建筑物8. 旅游总结:以上是北师大版初中数学的主要知识点,需要注意的是数学知识的学习不是一朝一夕的事,也不是单纯的记忆,需要较长的时间不断练习和总结。
而且,学习数学的时候,应该根据自己的能力和兴趣选择适合自己的学习方法,并注意合理安排时间、多思考多质疑,培养自己的逻辑思维和解决实际问题的能力。
北师大版初中数学知识点总结
北师大版初中数学知识点总结一、数与代数A:数与式1. 有理数:(1)概念:我们把正整数、0、负整数统称为整数,正分数和负分数统称为分数。
(2)数轴:规定了原点、正方向和单位长度的直线叫做数轴。
(3)相反数与绝对值:相反数:只有符号不同的两个数叫做互为相反数。
绝对值:数轴上表示一个数的点到原点的距离叫做这个数的绝对值。
(4)有理数的运算:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)减法运算性质:a-b-c=a-(b+c)乘法交换律:ab=ba乘法结合律:(ab)c=a(bc)乘法分配律:a(b+c)=ab+ac除法运算性质:a÷b÷c=a÷(b×c)(b≠0,c≠0)乘方运算:a^n=a×a×…×a(n是正整数)科学记数法:把一个大于10的数记成a×10^n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法(其中n是正整数)。
2. 实数:(1)平方根与算术平方根:平方根:如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。
算术平方根:一个正数的正的平方根叫做这个正数的算术平方根。
(2)无理数:无限不循环小数叫做无理数。
(3)实数的运算:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)减法运算性质:a-b-c=a-(b+c)乘法交换律:ab=ba乘法结合律:(ab)c=a(bc)乘法分配律:a(b+c)=ab+ac除法运算性质:a÷b÷c=a÷(b×c)(b≠0,c≠0)乘方运算:a^n=a×a×…×a(n是正整数)科学记数法:把一个大于10的数记成a×10^n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法(其中n是正整数)。
二、数与代数B:方程与不等式1. 方程的解与解方程:把未知数的值代入方程,若左右两边相等,则未知数的值是方程的解;解方程就是求出使方程左右两边相等的未知数的值。
北师大初中数学知识点总结(3篇)
北师大初中数学知识点总结绝对值⒈绝对值的几何定义2.绝对值的代数定义⑴一个正数的绝对值是它本身;⑵一个负数的绝对值是它的相反数;⑶0的绝对值是0.可用字母表示为:如数轴所示,化简下列各数解:由题知道,因为a>0,b<0,c<0,a-b>0,a-c>0,b+c<0,3.绝对值的性质(非负数的常用性质:若几个非负数的和为0,则有且只有这几个非负数同时为0)北师大初中数学知识点总结(二)三角形一.认识三角形1.关于三角形的概念及其按角的分类由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
这里要注意两点:①组成三角形的三条线段要“不在同一直线上”;如果在同一直线上,三角形就不存在;②三条线段“首尾是顺次相接”,是指三条线段两两之间有一个公共端点,这个公共端点就是三角形的顶点。
三角形按内角的大小可以分为三类:锐角三角形、直角三角形、钝角三角形。
2.关于三角形三条边的关系根据公理“连结两点的线中,线段最短”可得三角形三边关系的一个性质定理,即三角形任意两边之和大于第三边。
三角形三边关系的另一个性质:三角形任意两边之差小于第三边。
对于这两个性质,要全面理解,掌握其实质,应用时才不会出错。
设三角形三边的长分别为a、b、c则:3.关于三角形的内角和三角形三个内角的和为180°①直角三角形的两个锐角互余;②一个三角形中至多有一个直角或一个钝角;③一个三角中至少有两个内角是锐角。
4.关于三角形的中线、高和中线①三角形的角平分线、中线和高都是线段,不是直线,也不是射线;②任意一个三角形都有三条角平分线,三条中线和三条高;③任意一个三角形的三条角平分线、三条中线都在三角形的内部。
但三角形的高却有不同的位置:锐角三角形的三条高都在三角形的内部,如图1;直角三角形有一条高在三角形的内部,另两条高恰好是它两条边,如图2;钝角三角形一条高在三角形的内部,另两条高在三角形的外部,如图3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级上第一章丰富的图形世界1生活中的立体图形2展开与折叠3截一个几何体4从三个方向看物体的形状圆柱 : 底面是圆面,侧面是曲面¤1.柱体棱体 : 底面是多边形,侧面是形或长方形圆锥 : 底面是圆面,侧面是曲面¤2.锥体棱锥 : 底面是多边形,侧面都是三角形¤3. 球体:由球面围成的(球面是曲面)¤4. 几何图形是由点、线、面构成的。
①几何体与外界的接触面或我们能看到的外表就是几何体的表面。
几何的表面有平面和曲面;②面与面相交得到线;③线与线相交得到点。
※5. 棱:在棱柱中,任何相邻两个面的交线都叫做棱。
.※6. 侧棱:相邻两个侧面的交线叫做侧棱,所有侧棱长都相等。
..¤7. 棱柱的上、下底面的形状相同,侧面的形状都是长方形。
¤8. 根据底面图形的边数,人们将棱柱分为三棱柱、四棱柱、五棱柱、六棱柱……它们底面图形的形状分别为三边形、四边形、五边形、六边形……¤9. 长方体和体都是四棱柱。
¤10. 圆柱的表面展开图是由两个相同的圆形和一个长方形连成。
¤11. 圆锥的表面展开图是由一个圆形和一个扇形连成。
※12. 设一个多边形的边数为 n(n≥3,且 n 为整数),从一个顶点出发的对角线有(n-3)条;可以把 n 边形n(n 3)成(n-2)个三角形;这个 n 边形共有条对角线。
◎13. 圆上两点之间的部分叫做弧,弧是一条曲线。
.◎14. 扇形,由一条弧和经过这条弧的端点的两条半径所组成的图形。
¤15. 凸多边形和凹多边形都属于多边形。
有弧或不封闭图形都不是多边形。
第二章有理数及其运算1.有理数2.数轴3.绝对值4.有理数的加法5.有理数的减法6.有理数的加减混合运算7.有理数的乘法8.有理数的除法9.有理数的乘方10.科学记数法11.有理数的混和运算12.用计算器进行运算正整数(如:1, 2, 3 )零(0)整数负整数(如:1, 2, 3 )有理数11正分数(如2,3, 5.3, 3.8 )11分数负分数(如: , , 2.3, 4.8 )23※数轴的三要素:原点、向、单位长度(三者缺一不可)。
※任何一个有理数,都可以用数轴上的一个点来表示。
(反过来,不能说数轴上所有的点都表示有理数)※如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数。
(0的相反数是 0)※在数轴上,表示互为相反数的两个点,位于原点的侧,且到原点的距离相等。
¤数轴上两点表示的数,右边的总比左边的大。
正数在原点的右边,负数在原点的左边。
※绝对值的定义:一个数 a 的绝对值就是数轴上表示数 a 的点与原点的距离。
数 a 的绝对值记作|a|。
※正数的绝对值是它本身;负数的绝对值是它的数;0 的绝对值是 0。
a(a0)a(a 0)越来越大| a |0(a 0)或 | a |-3 -2 -1 0 1 2 3a(a 0)a(a0)※绝对值的性质:除0 外,绝对值为一正数的数有两个,它们互为相反数;互为相反数的两数(除 0 外)的绝对值相等;任何数的绝对值总是非负数,即|a|≥0※比较两个负数的大小,绝对值大的反而小。
比较两个负数的大小的步骤如下:①先求出两个数负数的绝对值;②比较两个绝对值的大小;③根据“两个负数,绝对值大的反而小”做出正确的判断。
※绝对值的性质:①对任何有理数 a,都有|a|≥0.②若|a|=0,则|a|=0,反之亦然.③若|a|=b,则 a=±b.④对任何有理数 a,都有|a|=|-a|※有理数加法法则:①同号两数相加,取相同符号,并把绝对值相加。
②异号两数相加,绝对值相等时和为0;绝对值不等时取绝对值较大的数的符号,并用较大数的绝对值减去较小数的绝对值。
③一个数同 0 相加,仍得这个数。
※加法的交换律、结合律在有理数运算中同样适用。
¤灵活运用运算律,使用运算简化,通常有下列规律:①互为相反的两个数,可以先相加;②符号相同的数,可以先相加;③分母相同的数,可以先相加;④几个数相加能得到整数,可以先相加。
※有理数减法法则:减去一个数,等于加上这个数的相反数。
¤有理数减法运算时注意两“变”:①改变运算符号;②改变减数的性质符号(变为相反数)有理数减法运算时注意一个“不变”:被减数与减数的位置不能变换,也就是说,减法没有交换律。
¤有理数的加减法混合运算的步骤:①写成省略加号的代数和。
在一个算式中,若有减法,应由有理数的减法法则转化为加法,然后再省略加号和括号;②利用加法则,加法交换律、结合律简化计算。
(注意:减去一个数等于加上这个数的相反数,当有减法统一成加法时,减数应变成它本身的相反数。
)※有理数乘法法则:①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与 0 相乘,积仍为 0。
13 5※如果两个数互为倒数,则它们的乘积为 1。
(如:-2 与 2 、 5 与 3 …等)※乘法的交换律、结合律、分配律在有理数运算中同样适用。
¤有理数乘法运算步骤:①先确定积的符号;②求出各因数的绝对值的积。
¤乘积为 1 的两个有理数互为倒数。
注意:①零没有倒数。
②求分数的倒数,就是把分数的分子分母颠倒位置。
一个带分数要先化成假分数。
③正数的倒数是正数,负数的倒数是负数。
※有理数除法法则: ①两个有理数相除,同号得正,异号得负,并把绝对值相除。
②0 除以任何非 0 的数都得 0。
0 不可作为除数,否则无意义。
n 个a※有理数的乘方指数a a aaa n底数幂※注意:①一个数可以看作是本身的一次方,如 5=51;②当底数是负数或分数时,要先用括号将底数括上,再在右上角写指数。
※乘方的运算性质:①正数的任何次幂都是正数;②负数的奇次幂是负数,负数的偶次幂是正数;③任何数的偶数次幂都是非负数;④1 的任何次幂都得 1,0 的任何次幂都得 0;⑤-1 的偶次幂得 1;-1 的奇次幂得-1;⑥在运算过程中,首先要确定幂的符号,然后再计算幂的绝对值。
※有理数混合运算法则:①先算乘方,再算乘除,最后算加减②如果有括号,先算括号里面的.第三章 整式及其加减1 字母表示数2 代数式3 整式4 整式的加减5 探索与表达规律※代数式的概念:用运算符号(加、减、乘除、乘方、开方等)把数与表示数的字母连接而成的式子叫做代数式。
单独...的一个数或一个字母也是代数式。
注意:①代数式中除了含有数、字母和运算符号外,还可以有括号;②代数式中不含有“=、>、<、≠”等符号。
等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。
※代数式的书写格式:①代数式中出现乘号,通常省略不写,如 vt ;②数字与字母相乘时,数字应写在字母前面,如 4a ;③带分数与字母相乘时,应先把带分数化成假分数后与字母相乘,如 21a 应写作 7a ; 334⑤在代数式中出现除法运算时,一般按照分数的写法来写,如 4÷(a-4)应写作a4;注意:分数线具有“÷”号和括号的双重作用。
⑥在表示和(或)差的代差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面,如 (a2b2 ) 平方米※代数式的系数:代数式中的数字中的数字因数叫做代数式的系数。
如 3x,4y 的系数分别为 3,4。
......注意:①单个字母的系数是 1,如 a 的系数是 1;②只含字母因数的代数式的系数是 1 或-1,如-ab 的系数是-1。
a3b 的系数是1 ※代数式的项:代数式 6x2 2x 7 表示6x2、-2x、-7的和,6x2、-2x、-7是它的项,其中把不含字母的项叫做常数项注意:在交待某一项时,应与前面的符号一起交待。
※同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
注意:①判断几个代数式是否是同类项有两个条件:a.所含字母相同;b.相同字母的指数也相同。
这两个条件缺一不可;②同类项与系数无关,与字母的排列顺序无关;③几个常数项也是同类项。
※合差同类项:把代数式中的同类项合并成一项,叫做合并同类项。
①合并同类项的理论根据是逆用乘法分配律;②合并同类项的法则是把同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
注意:①如果两个同类项的系数互为相反数,合并同类项后结果为 0;②不是同类项的不能合并,不能合并的项,在每步运算中都要写上;③只要不再有同类项,就是最后结果,结果还是代数式。
※根据去括号法则去括号:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变符号;括号前面是“-”号去掉,括号里各项都改变符号。
※根据分配律去括号:括号前面是“+”号看成+1,括号前面是“-”号看成-1,根据乘法的分配律用+1 或-1 去乘括号里的每一项以达到去括号的目的。
※注意:①去括号时,要连同括号前面的符号一起去掉;②去括号时,首先要弄清楚括号前是“+”号还是“-”号;③改变符号时,各项都变号;不改变符号时,各项都不变号。
第四章基本平面图形1.线段、射线、直线2.比较线段的长短3.角4.角的比较5.多边形和圆的初步认识一. 线段、射线、直线※1.名称图形表示方法端点长度直线l直线 AB(或 BA) 无端点无法度量AB直线 l射线OM射线 OM1 个无法度量线段l线段 AB(或 BA) 2 个可度量长度AB线段 l※2. 二.比较线段的长短※1. 线段公理:两点间线段最短;两之间线段的长度叫做这两点之间的距离.※2. 比较线段长短的两种方法:①圆规截取比较法;②刻度尺度量比较法.※3. 用刻度尺可以画出线段的中点,线段的和、差、倍、分;用圆规可以画出线段的和、差、倍.三.角※1. 角:有公共端点的两条射线组成的图形叫做角;这个公共端点叫做角的顶点;这两条射线叫做角的边.※2. 角的表示法:角的符号为“∠” A①用三个字母表示,如图 1 所示∠AOBBb所示∠b O②用一个字母表示,如图 2 图 1图 2③用一个数字表示,如图 3 所示∠1④用希腊字母表示,如图 4 所示∠β1β※经过两点有且只有一条直线。
图 3图 4※两点之间的所有连线中,线段最短。
※两点之间线段的长度,叫做这两点之间的距离。
终边 ........ 1º=60’ 1’=60”※角也可以看成是由一条射线绕着它的端点旋转而成的。
如图 5 所示:图 5※一条射线绕它的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。
如图 6 所示:..平角图 6※终边继续旋转,当它又和始边重合时,所成的角叫做周角。
如图 7 所示:..图7周角始边※从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。