正交试验设计中的方差分析 例题分析

合集下载

实验设计的方差分析与正交试验

实验设计的方差分析与正交试验

实验设计的方差分析与正交试验一、实验设计中的方差分析方差分析(analysis of variance,ANOVA)是一种统计方法,用于比较不同组之间的均值差异是否具有统计学上的显著性。

在实验设计中,方差分析主要被用来分析因变量(dependent variable)在不同水平的自变量(independent variable)中的变化情况。

通过比较不同组之间的方差,判断是否存在显著差异,并进一步分析差异的原因。

1. 单因素方差分析单因素方差分析是最简单的方差分析方法,适用于只有一个自变量的实验设计。

该方法通过比较不同组之间的方差来判断各组均值是否有差异。

步骤如下:(1)确定研究目的,选择合适的因变量和自变量。

(2)设计实验,确定各组的样本个数。

(3)进行实验,并收集数据。

(4)计算各组的平均值和总平均值。

(5)计算组内方差和组间方差。

(6)计算F值,通过计算F值来判断各组均值是否有显著差异。

2. 多因素方差分析多因素方差分析是在单因素方差分析的基础上,增加了一个或多个自变量的情况下进行的。

这种方法可以用来分析多个因素对因变量的影响,并判断各因素的主效应和交互效应。

步骤如下:(1)确定研究目的,选择合适的因变量和多个自变量。

(2)设计实验,确定各组的样本个数。

(3)进行实验,并收集数据。

(4)计算各组的平均值和总平均值。

(5)计算组内方差、组间方差和交互方差。

(6)计算F值,通过计算F值来判断各组均值是否有显著差异。

二、正交试验设计正交试验设计是一种设计高效实验的方法,可以同时考虑多个因素和各个因素之间的交互作用,并通过较少的试验次数得到较准确的结果。

1. 正交表的基本原理正交表的设计是基于正交原理,即每个因素和其他所有因素的交互效应都是独立的。

通过正交表设计实验,可以确保各因素和交互作用在样本中能够均匀地出现,从而减少误差来源,提高实验结果的可靠性。

2. 正交试验设计的步骤(1)确定要研究的因素和水平。

第三章 正交试验设计(2)-正交试验数据方差分析和贡献率分析

第三章 正交试验设计(2)-正交试验数据方差分析和贡献率分析
Hubei Automotive Industries Institute
试验优化设计
主讲:刘建永
材 料 工 程 系 Department of Materials Engineering
第三章 正交试验设计
正交试验数据 方差分析与贡献率分析
正交试验结果的方差分析
1.离差平方和的计算
总离差平方和:
项目 因素A 因素B 因素C 误差 总和
平方和SS SSA SSB SSC SSE SST
自由度DF a- 1 a- 1 a- 1 a- 1 n-1
纯平方和 SSA- fA×MSE SSB- fB×MSE SSC- fC×MSE fT×MSE SST
贡献率 ρA ρB ρC ρE
其中: 纯平方和= SS因- f因×MSE 贡献率ρ因等于纯平方和与SST的比值 贡献率最大的几个因素是重要因素,与误差贡献率差不多的认为不 重要。
μ 3.2 的 1 − α 置信区间为: μ 3.2± t1−α / 2 ( f e′)σ / ne ˆ ˆ
′ ˆ 这里 σ = S e / f e′ , ′ S e = S e + 不显著因子的平方和, f e′ = f e + 不显著因子的自由度,
ne = 试验次数 1 + 显著因子自由度之和
n e = 9 /( 1 + f A + f C ) = 9 / 5 = 1 . 8 , ′ S e = S e + S B=132 , f ′ = f + f =4 ,
y 31 54 38 53 49 42 57 62 64 T=450 yi2 =23484 ST=984

方差分析表 把上述计算表中得到的平方和与自由度移至一张方差分 析表中继续进行计算。 例 3.3 的方差分析表 来源 平方和 S 自由度 f 均方和 MS 因子 A 因子 B 因子 C 误差 e T 618 114 234 18 984 2 2 2 2 8 309 57 117 9 F比 34.33 6.33 13.00

正交试验设计及其方差分析

正交试验设计及其方差分析
Lp(nm)中,p=m(n-1)+1. 下面通过实例来说明如何用正交表来 安排试验.
例 9. 8 提高某化工产品转化率的试验 . 某种化工产品的转化率可能与反应温度A,反应时间B,某两 种原料之配比C和真空度D有关.为了寻找最优的生产条件,因此 考虑对 A , B ,C , D 这4个因素进行试验.根据以往的经验,确 定各个因素的3个不同水平,如表9-19所示 .分析各因素对产品的 转化率是否产生显著影响,并指出最好生产条件.
3
显然 T Tij ,j =1,2,3,4.此处 i 1
T11 大致反映了A1 对试验结果的影响, T21 大致反映了A2 对试验结果的影响, T31 大致反映了A3 对试验结果的影响, T12 , T22 和 T32 分别反映了B1 , B2 , B3 对试验结果的影响,
T13 , T23 和T33 分别反映了C1, C2 , C3 对试验结果的影响, T14 , T24 和 T34 分别反映了D1, D2 , D3 对试验结果的影响.
Rj 反映了第j列因素的水平改变对试验结果的影响大小, Rj 越大反映第j列因素影响越大.上述结果列表 of range) 由极差大小顺序排出因素的主次顺序:
这里, Rj值相近的两因素间用“、”号隔开,而Rj 值相差较 大的两因素间用“;”号隔开.由此看出,特别要求在生产过程中 控制好因素B,即反应时间.其次是要考虑因素A和D,即要控制 好反应温度和真空度.至于原料配比就不那么重要了.
(2 ) 表中任两列,其横向形成的有序数对出现的次数相同 . 如 表 L4 (23) 中任意两列,数字1 , 2 间的搭配是均衡的 .
凡满足上述两性质的表都称为正交表(Orthogonal table).
常用的正交表有L9(34), L8(27),L16(45)等,见附表7. 用正 交表来安排试验的方法,就叫正交试验设计. 一般正交表)

第4讲5(1) 正交试验设计(方差分析)

第4讲5(1) 正交试验设计(方差分析)

处理号 1 2
第1列(A) 1 1
表 L9(34)正交表
第2列 1 2
第3列 1 2
第4列 1 2
因素A第1 试验结果y水i 平3次
重复测定 y1 值 y2
3
1
3
3
3
y3
单4 因素 2
1
2
3
y4
试5 验数 2
2
3
1
y5
因素A第2
SS据A6=资13(料y1 y22
格式 78=13(K12

3 K322
y3)2 (y43y5

K32)-
T2 9
1 2
y6)2 ( 1 y7 3 1
y 82y 9)2 2 3
(y1yy62 ...
9
y7 y8

y水9)平2(修 3次正重项) 复测定值
9
3
3
2
1
y9
分析第1列因素时,其它列暂不考虑,将其看做条件因因素素A。第3
因素 重复1 重复2 重复3
显著影响
(6)列方差分析表
(1)偏差平方和分解:
总偏差平方和=各列因素偏差平方和+误差偏差平方和
SST SS因素 SS空列(误差)
(2)自由度分解:
dfT df因素 df空列( 误列(
(3)方差:MS因素=
SS因素 df因素
,MS误差=
SS误差 df误差
(4)构造F统计量:
F因素=
MS因素 MS误差
(5)列方差分析表,作F检验
若计算出的F值F0>Fa,则拒绝原假设,认为 该因素或交互作用对试验结果有显著影响;若 F0≼Fa,则认为该因素或交互作用对试验结果 无显著影响。

高级篇 第二章 正交试验设计及统计分析-方差分析

高级篇 第二章 正交试验设计及统计分析-方差分析

0.415
(2)显著性检验
根据以上计算,进行显著性检验,列出方差分析表,结果见表10-24
变异来源
A B C△ 误差e 误差e△ 总和
平方和 45.40 6.49 0.31 0.83 1.14 53.03
自由度 2 2 2 2 4
表10-24 方差分析表
均方 F值
Fa
22.70 79.6 F0.05(2,4) =6.94
油温℃A 1 1 2 2 3 3 4 4
1.8 4.5 9.8 6.8 3.24 20.25 96.04 46.24
表10-27 试验方案及结果分析
含水量%B 油炸时间s C
1
1
空列 1
2Hale Waihona Puke 2211
2
2
2
1
1
2
1
2
1
2
1
2
2
2 11.4
1 10.2
1 12.1
11.5
12.7
10.8
空列 1 2 2 1 2 1 1 2
3.24 11.4 F0.01(2,4)=18.0
0.16
0.41
0.285
显著水平 ** *
因素A高度显著,因素B显著,因素C不显著。 因素主次顺序A-B-C。
(3)优化工艺条件的确定
本试验指标越大越好。对因素A、B分析,确定优 水平为A3、B1;因素C的水平改变对试验结果几乎无影
响,从经济角度考虑,选C1。优水平组合为A3B1C1。 即温度为58℃,pH值为6.5,加酶量为2.0%。
K2k2 SST=QT CT

Kmk2 SSk
Q

j
1 r

第4讲5(2) 正交试验设计(方差分析)

第4讲5(2) 正交试验设计(方差分析)

2
1 1 2 2 1 10.12 10.09 0.03
2
1 2 1 1 2 10.19 10.02 0.17
2.66
2.58 2.36 2.4 2.79 2.76
0.0055 0.0078 0.0091 0.0001 0.0036
返回15
链接
(2)显著性检验
变异来源 A 平方和 自由度 0.0210 1
0.575
1.845 0.11 12.745
1
1 2 7
0.575
1.845 0.055
10.455
33.545 *
根据F值的大小排出因子的主次: 主 次
A×B、A、B×C、B、(A×C、 C)
A×B的重要性排在A、B的前面,挑选A、B的最优水平时 要从A×B的最优搭配来考虑,同理C的最优水平也应以B×C为 主. A×B的最优搭配的选取是通过A、B搭配效果表决定的。 A、B搭配效果表
B与C的最优搭配:B1C2 从A×B和B×C的最优搭配中,B因素的最优水平矛盾, 但是A×B的重要性排在B×C的前面,所以,从A×B来考选B2, 当B因素选B2时,由B×C的搭配表C选C1,综合考虑其最优工 艺为:A2B2C1. 因为,本例三个因素的所有搭配就是正交表中的8次试 验,从表中试验数据也可以看到,A2B2C1是第7号试验,不匀率 为3.17是8次试验中最小的,即为最优组合(最优工艺)。
它用多水平正交表安排水平数较少的因素的一种方法
例:在高效液相色谱法测定食品中胡萝卜素 的研究中,欲通过正交试验选择柱层析法净 化条件,试验指标为胡萝卜素回收率,不考 虑交互作用,试验因素水平表见表4-35。
表4-35 因素水平表
1
活化温度 ℃ A 100

第三章正交试验设计中的方差分析2例题分析

第三章正交试验设计中的方差分析2例题分析

第三章_正交试验设计中的方差分析2-例题分析第三章中的例题分析是关于正交试验设计中的方差分析的。

本例题分析主要涉及到两个因素和一个响应变量,通过正交试验设计的方法,对这两个因素的影响进行分析。

首先,我们需要了解正交试验设计的基本原理。

正交试验设计是一种实验设计方法,通过选择合适的试验因素和水平,使得每个试验条件都能够得到充分的信息,从而降低试验误差,提高试验效率。

在正交试验设计中,试验因素之间是相互独立的,这样可以更好地分析每个因素对响应变量的影响。

在本例题中,我们有两个因素,分别记作因素A和因素B,每个因素有两个水平。

我们还有一个响应变量Y,需要确定因素A、因素B和Y之间的关系。

接下来,我们需要进行方差分析。

方差分析是一种用于比较不同因素对响应变量的影响的统计方法。

在本例题中,我们可以使用两因素方差分析来分析因素A和因素B对响应变量Y的影响。

首先,我们需要计算总平方和(SST),表示响应变量的总变异。

然后,我们需要计算因素A的平方和(SSA),表示因素A对响应变量的影响,以及因素B的平方和(SSB),表示因素B对响应变量的影响。

同时,我们还需要计算交互作用的平方和(SSAB),表示因素A和因素B之间的交互作用对响应变量的影响。

接下来,我们可以计算各个平方和的自由度和均方差,从而得到F值。

F值可以用来判断因素对响应变量的影响是否显著。

如果F值大于临界值,则说明该因素对响应变量的影响是显著的。

最后,我们可以进行多重比较,比较每个因素水平之间的差异。

多重比较可以帮助我们确定哪些因素水平之间的差异是显著的。

通过以上的分析,我们可以得出因素A、因素B和响应变量Y之间的关系。

同时,我们还可以根据多重比较的结果,确定哪些因素水平之间的差异是显著的。

总结起来,本例题分析主要涉及到正交试验设计中的方差分析。

通过对两个因素和一个响应变量进行分析,我们可以确定因素对响应变量的影响是否显著,并确定哪些因素水平之间的差异是显著的。

正交试验设计中的方差分析

正交试验设计中的方差分析
方差分析(ANOVA)是一种统计技术, 用于比较三个或更多组数据的平均值 是否存在显著差异。
目的
通过方差分析,可以确定不同组之间 的平均值差异是否由随机误差引起, 还是由处理因素或自变量引起。
方差分析的数学模型
数学模型
方差分析使用数学模型来描述数据之间的关系,特别是不同组之间的平均值差异。模型通常包括组间差异和组内 差异两部分。
医学研究
通过正交试验设计中的方差分析,研究不同治疗方案、药物剂量等因素对疾病治疗效果的影响,为临床 治疗提供科学依据。
方差分析的局限性
04
方差分析对数据的要求
独立性
数据必须是相互独立的,不存 在相互关联或依赖关系。
正态性
数据应符合正态分布,才能保 证统计推断的准确性。
同方差性
各组数据的方差应相等,否则 可能导致误判。
制定试验方案
根据正交表设计试验方案,确定每个因素的每个 水平。
实施试验
按照试验方案进行试验,记录每个试验的结果。
方差分析
利用方差分析法对试验结果进行分析,确定各因 素对试验结果的影响程度和显著性。
优化方案
根据方差分析结果,优化试验方案,进行下一步试验。
方差分析的基本原理
02
方差分析的定义与目的
定义
拉丁方设计方差分

适用于需要控制试验条件的试验, 通过拉丁方设计平衡试验条件和 试验误差。
正交试验设计中的方差分析步骤
确定试验因素和水平
根据研究目的和实际情况确定试验因 素和水平。
制定正交表
根据试验因素和水平选择合适的正交 表。
安排试验
按照正交表进行试验,记录试验数据。
方差分析
对试验数据进行方差分析,包括自由 度、离均平方和、均方、F值等计算。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

可见: F0.05(2,4)≥FA>F0.10(2,4), F0.05(2,4)≥FC>F0.10(2,4), 因此A和C属于影响显著的因素,要重点考察。 而B的F值小于F0.25(2,4),因此B因素对指标没什么 影响,可以忽略。因此其加入体积可以在给定范围内 任意变化。 这是用方差分析和前面直观分析以及极差分析得出的 一个比较重要的不同结论。 当然,在实际分析中,因素B还要用其他试验指标进 一步确定,以保证得到准确的结果。
QA 33.4, QB 5.4 , QC 38.1, Qe 7.1,
fA
fB
fC
fe
可以看出,B的平均方差和小于误差效应,因此可 以将其合并到误差效应中,用合并后的误差效应做 F检验,自由度变大,灵敏度更高 :

QB Qe 6.3, fB fe
然后计算各因素的F值:
QA
FA
QB
Qe
fA
fB
数据的方差分析:
首先计算各因素的方差和、总方差和以及试验误差 的方差和:
因素A的方差和如下计算:
同样:QB=10.9;QC=76.2;
总的方差和QT如下计算:
那么试验误差的差方和就可如下计算:
Qe=QT-(QA+QB+QC) =168.2-(66.9+10.9+76.2) =14.2
其次,计算自由度:
fT=n-1=9-1=8; fA=fB=fC=m-1=3-1=2 ;
fe=fT-fA-fB-fC=2 。
再次,计算平均差方和: 因素的平均差 因方 素和 差= = 方Q因 和
因素的自f由 因 度
试 验 误 差 的= 平试 均验 差误方差 和 = 差 Qe方 试验误差的 fe 自
这样,计算得出的各因素及误差的差方和分别是:
20
4
2(7 ml)
1
2
3
22
5
2
2
6
2
3
7
3(10 ml)
1
3
1
29
1
2
17
3
2
21
8
3
2
1
3
19
9
3
3
2
1
19
这里看出A2B2C3的结果最好。 第四步,计算各因素平均试验指标以及极差:
A
B
C
D
K1
48
56
49
61
K2
68
63
56
53
K3
59
56
70
61
k1
16
18.7
16.3
20.3
k2
22.7
根据正交设计法的步骤:
第一步,明确试验目的和试验指标: 目的:用正交设计找出测定痕量铁的最佳试 验条件。 指标:吸光度,越大越好。
第二步,挑选必须考察的因素和合适的水平,
制定因素水平表;
因素-水平表
因素 A
B
C
水平 1
酸度(1:1 0.5%8-羟基 20 mg/ml 锶
HCl)
喹啉

4 ml
3 ml
fe
33.4 5.30 6.3
QC
FC
QB
Qe
fC
fB
fe
38.1 6.05 6.3
最后是显著性检验:
对不同置信度的临界F值可以从F表中查找。 F表在一般的数理统计书里都有。 对本例,在置信度分别为99%、95%、90% 以及75%(即a=0.01,0.05,0.10,0.25) 时的临界值分别是: F0.01(2,4)=18.00,F0.05(2,4)=6.94, F0.10(2,4)=4.32,F0.25(2,4)=2.00。
1 ml
2
7 ml
6 ml
9 ml
3
10 ml
9 ml
17 ml
第三步,根据因素水平表,选择L9(34)正交表,试 验安排如下表:
L9(34)试验方案及结果表
A
B
C
D
1
1(4 ml) 1(3 ml)
1(1 ml) 1
Abs (×100) 13
2
1
2(6 ml)
2(9 ml) 2
15
3
1
3(9 ml) 3(17 ml) 3
三.实际应用举例
例8:用原子吸收光谱测定铝合金中痕量铁时, 需要选择以下三个因素的最适宜条件:1)酸度 (用1:1盐酸的体积代表);2)络合剂(5%的8羟基喹啉)加入量;3)释放剂(20mg/ml的锶 盐)加入量。每个因素考虑三个水平,分别是: 4ml、7ml、10ml;3ml、6ml、9ml;1ml、 9ml、17ml。如何安排这个试验,并对结果进 行分析。
正交试验设计的方差分析小结
一。几个数据处理中常用的数理统计名词 平均值 ;总体平均值m;总体;样本; 极差 R ; 差方和Q ;
自由度f ;
方差s2 ;
样本方差s2 ;
标准偏差s ;
二.正交试验设计的方差分析的步骤和格式 1.计算差方和(离差平方和): 包括以下几部分:(1)各因素差方和,(2)总差方 和QT,(3)试验误差的差方和Qe。 2.计算自由度 : 包括:试验的总自由度;各因素自由度;试验误差的 自由度。 3.计算平均差方和 包括各因素平均差方和与误差的平均差方和。 4.求F比 5.对因素进行显著性检验: 对照F表检验。F检验的规律。
19
18.5
2
4
6
8
10
0.5% 8-OH喹啉 (ml)
24 23 22
21 20 19 18
17 16 15
0
5
10
15
20
20mg/ml Sr2+ (ml)
从趋势图看试验指标与因素C,即释放剂锶盐的浓度 呈单调增长,因此增加锶盐浓度可能会使吸光度更 高,即灵敏度得到更大的提高。
以上就是一个完整的正交试验及直观分析的过程。 如果采用方差分析,其正交试验过程和前面的一致, 只是数据处理采用了方差分析法。
21
18.7
17.7
k3
19.7
18.7
23.3
20.3
R
6.7
2.3
7
优水平 A2
B2
C3
由极差看B的影响最小,即络合剂是测定的次要因素。 第五步,进一步画出指标-因素趋势图观察。
Abs Abs Abs
24
23
22
21
20
19
18
17
16
15
2
7
12
1:1HCl(ml)
21.5
21
20.5
20
19.5
相关文档
最新文档