高等数学教学课件:v-11-3-2008

合集下载

高等数学放明亮版课件1.2-数列的极限ppt.ppt

高等数学放明亮版课件1.2-数列的极限ppt.ppt

2024/9/27
17
目录
上页
下页
返回
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
xn
1
(1)n n
无限接近于常数1 .
怎样用精确的数学语言来阐述“当 n 趋于无穷大时,
数列 xn 无限接近一个确定的常数 a ”这一变化趋势? 我们知道,两个数 a 与 b 之间的接近程度可以用这两个
数之差的绝对值| b a | 来度量( | b a | 的几何意义表示点 a
与点 b 之间的距离),| b a | 越小,a 与 b 就越接近.为此,“数
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
2. 收敛数列一定有界.
(Roundedness)
证: 设nl imxn a, 取 1, 则 N , 当 nN 时, 有 xn a 1,从而有
去求最小的 N.
2024/9/27
9
目录
上页
下页
返回
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
例2 证明
lim
n
(1)n (n 8)3
0
证:
xn0
( 1) n (n 8)3
极限是唯一的.
2024/9/27
12
目录
上页
下页

高教社2024高等数学第五版教学课件-1.4 无穷小与无穷大

高教社2024高等数学第五版教学课件-1.4 无穷小与无穷大
是无穷小.
1
因为
→∞
=0
2.无穷大量
定义2
如果函数 = ()的绝对值在自变量的某一变化过
程中无限增大,则称函数 = ()为无穷大量,记作 () = ∞.
例如,因为 = ∞,所以 是 → ∞时的无穷大;因为
→+∞
1

→0
=
1
示()的绝对值无限变大且都是负值,而后者表示()的绝对值无限
变小,趋于零.
3.无穷小与无穷大的关系
定理1
1
在自变量的同一变化过程中,如果()是无穷大,则

()
无穷小;反之,如果()是无穷小,且() ≠
例如,当 →
1时, 2
1
0,则
是无穷大.
()
1
− 1是无穷小,而 2 是无穷大.
⑴称一个函数()是无穷小,必须指明自变量的变化趋势,如
3 + 1是当 → −1时的无穷小,但当 → 0时就不是无穷小.
⑵ 不要把一个绝对值很小的非零常数(如10−100 )说成是无穷小,
因为这个数的极限不为0.
⑶ 数“0”可以看成无穷小.(是唯一可作为无穷小的常数)
1

⑷ 无穷小的定义对数列也适用,例如数列{ },当 → ∞时,就
∞,所以 是

→ 0时的无穷大.
这里,虽然使用了极限的符号 () = ∞,但并不意味着
()有极限. 因为,根据极限的定义,极限值必须是常数. 然而∞不
是常数,它只表示()的绝对值无限变大的一种变化趋势.
注意:⑴ 称一个函数()是无穷大,必须指明自变量的变化趋势,
1
是当



高数第十一章课件第一节

高数第十一章课件第一节

课件目录
课程简介
课程目标
课程内容
课程安排
课程考核
参考资料
课件简介
主题:高数第十一 章课件第一节
内容:介绍高数第 十一章的基本概念、 定理和公式
目的:帮助学生理 解高数第十一章的 内容,提高学习效 率
适用人群:高数第 十一章的学习者
课件内容
第三章
知识点梳理
极限的四则运算法则
函数极限的定义和性质
高数第十一章课件 第一节
,
汇报人:
目录
CONTENTS
01 添加目录标题 02 课件概览 03 课件内容 04 课件特色
05 课件使用建议
单击添加章节标题
第一章
课件概览
第二章
课件封面
● 课程名称:高数第十一章课件第一节
● 授课教师:XXX
● 授课时间:XXXX年XX月XX日
● 课程内容: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXX

高等数学导数的计算教学ppt课件

高等数学导数的计算教学ppt课件

25
第二章 导数与微分
第二节 导数的计算
三.隐函数与参数式函数的导数
(一)隐函数的导数
显函数:因变量可由自变量的某一分析式来表示 的函数称为显函数.例如:
y 1 sin3 x , z x2 y2 .
隐函数:由含x,y的方程F(x, y)=0给出的函数称 为隐函数.例如:
x2/ 3 y2/ 3 a2/ 3 , x3 y3 z3 3xy 0 .
32
第二章 导数与微分
第二节 导数的计算
(二)参数式函数的导数
由参数方程给出的函数:
x y
x(t) y(t )
t
确定了y与x的函数关系.其中函数x(t),y(t)可导,且
x (t)0, ,则函数y=f (x)可导且
f ( x) 1
( y)

dy dx
1 dx
.
dy
7
第二章 导数与微分
第二节 导数的计算
例5 求y=arcsinx的导数.
解:由于y=arcsinx,x(-1,1) 为x=siny,y (-/2, /2) 的反函数,且当y (-/2, /2)时,
(siny)=cosy>0. 所以
(arcsin x)' 1 1 1 1 (sin y)' cos y 1 sin2 y 1 x2
f
( x)
3
1
x2
1
x2
1
3
x2
2
2
例10 设y arcsin x 2 x x
解:
y
arcsin
x
3
2x4
,求 y .
1
3
x
1 4
1 x2 2

高数3ppt课件

高数3ppt课件
x1, x2 , , xn , 称为一个数列, 记为{ xn }.
数列中的每一个数称为数列的一项
xn = f (n) 称为数列的通项或一般项
(2)
1 2n
:
1 2
,
1 4
,
1 8
,
,
1 2n
,
通项 :
xn
1 2n
.
… xn … x3
x2
••••• •••••
1
1
01
2n
8
4
2
1
x1 x
(3) { (1)n1}: 1, 1, 1, 1,, (1)n1, 通项 : xn (1)n1.
的图上看,
( x1
1 10
x3
•••
(••x• 2n••-1••
(•••
x2n
*•••)•••• •••
)•••x4
1 103
1 102n1
0
1
1
102n
104
x2
1 102
)
x
xn U(O, ) | xn 0 | .
预先任意给定一个正数 > 0, 不论它的值多么小,
0
当 n 无限增大时, 数列 { xn } 总会从某一项开始,
第二章 极限和连续
本章学习的主要内容:
极限的概念、性质和运算法则 无穷小量的性质
两个重要极限
函数的连续性概念
第二章 极限和连续
第一节 数列的极限
一、数列的概念 二、数列的极限的定义 三、数列极限的性质
一、数列概念
引例(刘徽的“割圆术”):设有一半径为1 的圆,用其内接正 6 2n 1边形的面积 An 来逼近圆的面积A. 先作圆的内接正六边形,其面积记作 A1 再作内接正十二边形,其面积记作 A2

第10章-曲线积分与曲面积分 高等数学教学课件

第10章-曲线积分与曲面积分 高等数学教学课件

f (x, y) d s
f (x, y) d s.
L( A,B)
L( B, A)
性质2 设, 为常数,则
L[ f (x, y) g(x, y)]d s L f (x, y)d s L g(x, y)d s.
性质3 若积分路径L可分成两段光滑曲线弧L1,L2, 则
f (x, y) d s f (x, y) d s f (x, y) d s.
把 L分成n个有向小弧段
¼ A0 A1, ¼ A1A2,L , ¼ Ai1Ai ,L , ¼ An1An, (A0(x0, y0) A, An (xn, yn) B).
令xi xi xi1, yi yi yi1,在¼ Ai1Ai上任取点Mi (i ,i ), i 1, 2,L , n,若当小弧段的长度的最大值 0时,和
若L是闭曲线,即L的两个端点重合,那么f (x, y)
在闭曲线L上对弧长的曲线积分记为
ÑL f (x, y) d s.
函数f (x, y, z)在曲线弧上对弧长的曲线积分为
n
f (x, y, z) d s lim 0
i 1
f (xi , yi , zi )si.
性质1 对弧长的曲线积分与曲线L的方向无关,即
方程为x =a cos t, y =a sin t, z = kt, 0 t 2p, k>0.
解 Q x' t asint, y' t a cost, z' t k,
[x '(t)]2 [( y '(t)]2 [z '(t)]2 a2 k2 ,
(x2 y2 z2 ds 2p (a2 k 2t2 ) a2 k 2 dt
d r d xi d yj d zk,即有

高等数学第三版第一章课件(每页16张幻灯片)

高等数学第三版第一章课件(每页16张幻灯片)

第一章 函数与极限§1 函数 §2 初等函数 §3 数列的极限 §4 函数的极限 §5 无穷小与无穷大 §6 极限运算法则 §7 极限存在准则 两个重要极限 §8 无穷小的比较 §9 函数的连续性与间断 §10连续函数的运算与性质第一节 函数一、实数与区间 二、领域 三、函数的概念 四、函数的特性一、实数与区间1.集合: 具有某种特定性质的事物的总体. 组成这个集合的事物称为该集合的元素.2.区间: 是指介于某两个实数之间的全体实数. 这两个实数叫做区间的端点.∀ a , b ∈ , 且a < b.a∈ M, a∉ M, A = { a1 , a 2 , , a n }有限集{ x a < x < b} 称为开区间, 记作 (a , b )o a x b { x a ≤ x ≤ b} 称为闭区间, 记作 [a , b] o aM = { x x所具有的特征 } 无限集数集分类: N----自然数集 Q----有理数集 数集间的关系: Z----整数集 R----实数集N ⊂ Z, Z ⊂ Q, Q ⊂ R.bx{ x a ≤ x < b} 称为半开区间, 记作 [a , b ) { x a < x ≤ b} 称为半开区间, 记作 (a , b] [a ,+∞ ) = { x a ≤ x } ( −∞ , b ) = { x x < b}o a o x x二、邻域有限区间常量与变量: 在某过程中数值保持不变的量称为常量, 而数值变化的量称为变量. 注意 常量与变量是相对“过程”而言的. 常量与变量的表示方法: 通常用字母 a, b, c 等表示常量, 用字母 x, y, t 等表示变量. 例三、函数的概念圆内接正多边形的周长设a与δ是两个实数 , 且δ > 0.数集{ x x − a < δ }称为点 a的δ邻域 ,点a叫做这邻域的中心 , δ 叫做这邻域的半径 .b ( −∞ , +∞ ) = { x −∞ < x < +∞ } =U δ (a ) = { x a − δ < x < a + δ }. δ δ无限区间区间长度的定义: 两端点间的距离(线段的长度)称为区间的长度.a a−δ a+δ o x 点a的去心δ 邻域 , 记作U δ0 (a ), 或 U (a , δ ).π S n = 2 nr sin n n = 3 ,4 ,5 ,S3S4S5圆内接正n 边形S6Oπ nr)Uδ (a ) = { x 0 < x − a < δ }.o定义:设 x 和 y 是两个变量, D 是给定的数集,如果对于每个数 x ∈ D , 变量 y 按照一定法则总函数的两要素: 定义域与对应法则.有唯一的数值和它对应,则称 y 是 x 的函数, 记作因变量x ((D对应法则fx0 )f ( x0 )y = f ( x)自变量数集D叫做这个函数的定义域 自变量Wy)因变量看右图: 如果自变量在定义域 内任取一个数值时,对应 的函数值总是只有一个, 这种函数叫做单值函数, 否则叫做多值函数.y分段函数:在自变量的不同变化范围中, 对应法则用不同的Wy⋅ ( x, y)x式子来表示的函数。

高等数学(第二版)教学课件11-2

高等数学(第二版)教学课件11-2

所以
2
y2
xyd
dy
1
y2
xydx
D
1 2
2 1
y
y
22
y4
dy
1 2
1 5
y5
1 3
y3
2y2
4
y
2 1
45 8
例2
计算累次积分
1
1
dx sin
0
x
y2 dy

由于
1
x
sin
y
2
dy
这个积分的原函数不能表示为
一个初等函数,因此无法直接计算,为此我们需
要交换积分次序。首先确定积分限
xyd xyd xyd
D
D1
D2
1
x
4
x
dx xydy dx xydy
0
x
1
x2
0 1 2
4 1
x
x
x
22
dx
1 2
1 4
x4
5 3
x3
2x2
4 1
45 8
方法2: 将区域D是水平型区域,D可表示为
D (x, y) | y 2 x y 2, 1 y 2
2
d
a e2 d
0
0
D
D
2 0
1 2
e2
a
0
d
1 2
1 ea2
2
d
0
1 ea2
由于积分 ex2dx 不能用初等函数表示,本题如
果用直角坐标计算,则无法算出结果。
下面我们用上面的结果来计算概率论中常用的反
常积分
+ e x2 dx.
0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1825年,他去柏林,结识了业余数学爱好者克莱 尔(Auguste Leopold Crelle 1780-1856)。他与斯坦纳建 议克莱尔创办了著名数学刊物《纯粹与应用数学杂 志》。这个杂志头三卷发表了阿贝尔22篇包括方程论、 无穷级数、椭圆函数论等方面的论文。
所有发散点的全体称为发散域.
高等数学
§11-3 幂级数
3.和函数:
在收敛域上,函数项级数的和是x 的函数s(x) ,
称s( x)为函数项级数的和函数.
s( x) u1( x) u2( x) un( x) (定义域是?)
函数项级数的部分和 sn ( x),
lim
n
sn
(
x)
s(
x)
余项 rn ( x) s( x) sn ( x)
(1) 当 1 1, 1 x
即 1 x 1,
于是 x 0或x 2时, 原级数绝对收敛.
高等数学
§11-3 幂级数
(2) 当 1 1, 即 1 x 1, 1 x
于是 2 x 0时, 原级数发散.
(3) 当| 1 x | 1, x 0或x 2,
当 x 0时, 级数 (1)n 收敛;
定义: 正数 R 称为幂级数的收敛半径.
幂级数的收敛域称为幂级数的收敛区间.
(R, R), [ R, R), (R, R], [ R, R].
规定 (1) 幂级数只在x 0处收敛, R 0, 收敛区间x 0;
(2) 幂级数对一切 x都收敛,
R , 收敛区间(,).
问题: 如何求幂级数的收敛半径?
n1
称为定义在区间I 上的(函数项)无穷级数.
例如级数 xn 1 x x2 ,
n0
高等数学
§11-3 幂级数
2.收敛点与收敛域:
如果 x0 I ,数项级数 un ( x0 )收敛,
n1
则称x0 为级数 un ( x)的收敛点, 否则称为发散点.
n1
函数项级数 un( x)的所有收敛点的全体称为收敛域, n1
高等数学
§11-3 幂级数
非凡的数学家——阿贝尔 阿贝尔(Abel,Niels Henrik,1802-1829) 挪威数学家。1802年8月5日生于芬岛, 1829年4月6日卒于弗鲁兰。是克里斯蒂 安尼亚(现在的奥斯陆)教区穷牧师的 六个孩子之一。尽管家里很贫困,父亲 还是在1815年把阿贝尔送进克里斯蒂安尼亚的一所 中学里读书,15岁时优秀的数学教师洪堡 (Bernt Michael Holmbo 1795-1850)发现了阿贝尔的数 学天才,对他给予指导。使阿贝尔对数学产生了浓厚 的兴趣。16岁时阿贝尔写了一篇解方程的论文。
n1 n
当 x 2时, 级数 1
n1 n
发散;
故级数的收敛域为(,2) [0,).高等数学二、Fra bibliotek级数及其收敛性
§11-3 幂级数
1.定义: 形如 an ( x x0 )n的级数称为幂级数.
n0
当x0 0时, an xn , 其中an 为幂级数系数.
n0
2.收敛性: 例如级数 xn 1 x x2 , n0 当 x 1时, 收敛; 当 x 1时, 发散;
n0
n0
高等数学
§11-3 幂级数
(2) 假设当x x0时发散,
而有一点x1 适合 x1 x0 使级数收敛,
由(1)结论 则级数当 x x0 时应收敛,
这与所设矛盾.
几何说明
收敛区域
• • •• • • ••• • •
发散区域 R o
x R 发散区域
问题: 是否一定存在一个划分收敛与发散的分界数?
证明 (1)
an x0n收敛,
lim
n
an
x0
n
0,
n0
高等数学
§11-3 幂级数
M , 使得 an x0n M (n 0,1,2,)
an xn
an x0n
xn x0n
an x0n
x x0
n
M
x x0
n
当 x
1时,
等比级数
M
n
x 收敛,
x0
n0 x0
an xn 收敛, 即级数 an xn收敛;
lim
n
rn
(
x)
0
(x在收敛域上)
注: 函数项级数在某点 x 的收敛问题,实质上是 数项级数的收敛问题.
高等数学
§11-3 幂级数
例1
求级数
(1)n (
1
)n 的收敛域.
n1 n 1 x
解 由达朗贝尔判别法
un1( x) n 1 1 (n ) un ( x) n 1 1 x 1 x
高等数学
§11-3 幂级数
第三节 幂级数
一、函数项级数的概念 二、幂级数及其收敛法 三、幂级数的运算 四、小 结
高等数学
§11-3 幂级数
一、函数项级数的一般概念
1.定义:
设u1( x), u2 ( x),, un ( x),是定义在I R 上的
函数,则 un( x) u1( x) u2 ( x) un( x)
收敛域(1,1); 发散域(,1] [1,).
高等数学
§11-3 幂级数
定理 1 (Abel 定理)
如果级数 an x n 在 x x0 ( x0 0) 处收敛,则
n0
它在满足不等式 x x0 的一切 x 处绝对收敛;
如果级数 an x n 在 x x0 处发散,则它在满足
n0
不等式 x x0 的一切 x 处发散.
高等数学
§11-3 幂级数
推论
如果幂级数 an x n 不是仅在 x 0一点收敛,
n0
也不是在整个数轴上都收敛,则必有一个完全
确定的正数 R存在,它具有下列性质: 当 x R时,幂级数绝对收敛;
当 x R时,幂级数发散;
当 x R与x R时,幂级数可能收敛也可能发散.
高等数学
§11-3 幂级数
高等数学
§11-3 幂级数
丹麦数学家戴根(Carl Ferdinand Degen 1766-1825) 看过这篇论文后,为阿贝尔的数学才华而惊叹, 当时数学界正兴起对椭圆积分的研究,于是他给 阿贝尔回信写到:“...与其着手解决被认为非常难 解的方程问题,不如把精力和时间投入到对解析 学和力学的研究上。例如,椭圆积分就是很好的 题目,相信你会取得成功...”。于是阿贝尔开始转 向对椭圆函数的研究。
高等数学
§11-3 幂级数
阿贝尔18岁时,父亲去世了,这使生活变得更加 贫困。1821年在洪堡老师的帮助下,阿贝尔进入克里 斯蒂安尼亚大学。1823年,他发表了第一篇论文,是 关于用积分方程求解古老的“等时线”问题的。这是 对这类方程的第一个解法,开了研究积分方程的先河。 1824年,他解决了用根式求解五次方程的不可能性问 题。这一论文也寄给了格丁根的高斯,但是高斯连信 都未开封。
相关文档
最新文档