2012全国数学建模b题参考答案

合集下载

2012-2022北京市高考数学建模(有答案)

2012-2022北京市高考数学建模(有答案)

2012-2022北京市高考题中的数学建模1、(2012理第8题)某棵果树前n 年的总产量n S 与n 之间的关 系如图所示.从目前记录的结果看,前m 年的年平均产量最高,m 的值为(A )5(B )7(C )9(D )11 答案:C2、(2014文第8题)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在 特定条件下,可食用率p 与加工时间t (单位:分钟)满足函数关系2p at bt c =++(,,a b c 是常数),下图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到 最佳加工时间为(A )3.50分钟(B )3.75分钟(C )4.00分钟(D )4.25分钟 答案:B3、(2014文第14)顾客请一位工艺师把A, B 两件玉石原料各制成一件工艺品.工艺师带一位徒弟完成这项任务.每件原料先由徒弟完成粗加工,再由工艺师进行精加工完 成制作,两件工艺品都完成后交付顾客.两件原料每道工序所需时间(单位:工作日)如下:则最短交货期为 个工作日.答案:424、(2014理第8题)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若 学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成 绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也 相同的两位学生,那么这组学生最多有(A )2人(B )3人(C )4人(D )5人 答案:B1 2 3 5 6 8 1114 7 9 nOS n· ··5、(2015理第8题)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程.下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是 (A )消耗1升汽油,乙车最多可行驶5千米 (B )以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多(C )甲车以80千米/小时的速度行驶1小时,消耗10升汽油(D )某城市机动车最高限速80千米/小时.相同条件下,在该市用丙车比用乙车 更省油答案:D6、(2015文第8题)某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.加油时间加油量(升) 加油时的累计里程(千米)2015年5月1日 12 35000 2015年5月15日4835600注:“累计里程”指汽车从出厂开始累计行驶的路程.在这段时间内,该车每100千米平均耗油量为 (A )6升(B )8升(C )10升(D )12升答案:B 7、(2015文第14题)高三年级267位学生参加期末考试,某班37位学生的语文成绩、数学成绩与总 成绩在全年级中的排名情况如下图所示,甲、乙、丙为该班三位学生.从这次考试成绩看,① 在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是_______; ② 在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是_______.甲乙丙总成绩年级名次总成绩年级名次 267267语文成绩年级名次数学成绩年级名次OO267267甲车乙车丙车速度燃油效率答案:乙数学8、(2016文第8题)某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则(A)2号学生进入30秒跳绳决赛(B)5号学生进入30秒跳绳决赛(C)8号学生进入30秒跳绳决赛(D)9号学生进入30秒跳绳决赛答案:B9、(2016文第14题)某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种.则该网店①第一天售出但第二天未售出的商品有种;②这三天售出的商品最少有种.答案:162910、(2016理第8题)袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则(A)乙盒中黑球不多于丙盒中黑球(B)乙盒中红球与丙盒中黑球一样多(C)乙盒中红球不多于丙盒中红球(D)乙盒中黑球与丙盒中红球一样多答案:B11、(2017理第8题)根据有关资料,围棋状态空间复杂度的上限M约为3613,而可观测宇宙中普通物质的原子总数N约为8010(参考数据:lg30.48≈)(A)331010(D)9310(B)5310(C)73答案:D12、(2017理第14题)三名工人加工同一种零件,他们在一天中的 工作情况如图所示,其中点i A 的横、纵坐标分别为第i 名工人上午的工 作时间和加工的零件数,点i B 的横、纵坐标分别为第i 名工人下午的工 作时间和加工的零件数,1,2,3i =.① 记i Q 为第i 名工人在这一天中加工的零件总数,则123,,Q Q Q 中最大的是 ;② 记i p 为第i 名工人在这一天中平均每小时加工的零件数,则123,,p p p 中最大的是 .答案:1Q 2p 13、(2017文第14题)某学习小组由学生和教师组成,人员构成同时满足以下三个条件:(ⅰ)男学生人数多于女学生人数;(ⅱ)女学生人数多于教师人数; (ⅲ)教师人数的两倍多于男学生人数.① 若教师人数为4,则女学生人数的最大值为 ; ② 该小组人数的最小值为 .答案:6 12 14、(2018文第5题)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比 例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于 的频率为f ,则第八个单音的频率为(A(B(C)(D)(A )10.110(B )10.1(C )lg10.1(D )10.110- 答案:A16、(2019理第8题)数学中有许多形状优美、寓意美好的曲线,曲线22:1||C x y x y +=+就是其中 之一(如图).给出下列三个结论:① 曲线C 恰好经过6个整点(即横、纵坐标均为整数的点); ② 曲线C③ 曲线C 所围成的“心形”区域的面积小于3. 其中,所有正确结论的序号是(A )①(B )②(C )① ②(D )① ② ③工作时间(小时)答案:C 17、(2019理第14题)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、 西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进 行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会 得到支付款的80%.① 当10x =时,顾客一次购买草莓和西瓜各1盒,需要支付________元; ② 在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值______. 答案:130 1518、(2019文第8题)如图,,A B 是半径为2的圆周上的定点,P 为圆周上 的动点,APB ∠是锐角,大小为β.图中阴影区域的面积的最大值为(A )44cos ββ+(B )44sin ββ+(C )22cos ββ+(D )22sin ββ+ 答案:B19、(2020第10题)2020年3月14日是全球首个国际圆周率日(π Day ).历史上,求圆周率π的 方法有多种,与中国传统数学中的“割圆术”相似,数学家阿尔·卡西的方法是:当正整数n 充分大 时,计算单位圆的内接正6n 边形的周长和外切正6n 边形(各边均与圆相切的正6n 边形)的周长,将 它们的算术平均数作为2π的近似值.按照阿尔·卡西的方法,π的近似值的表达式是(A )30303(sin tan )n nn︒︒+(B )30306(sin tan )n nn︒︒+(C )60603(sin tan )n nn︒︒+(D )60606(sin tan )n nn︒︒+答案:A 20、(2020第15题)为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改.设企业的污水排放量W 与时间t 的关系为()W f t =,用()()f b f a b a---的大小评价在[,]a b 这段时间内企业污水治理能力的强弱.已知整改期内,甲、乙两企业的污水排放量与时 间的关系如下图所示.给出下列四个结论:① 在12[,]t t 这段时间内,甲企业的污水治理能力比乙企业强; ② 在2t 时刻,甲企业的污水治理能力比乙企业强; ③ 在3t 时刻,甲、乙两企业的污水排放都已达标;④ 甲企业在11223[0,],[,],[,]t t tt t 这三段时间中,在1[0,]t的污水治理能力最强. 其中所有正确结论的序号是_______.答案:①②③P21、(2021第8题)对24小时内降水在平地上的积水厚度(mm )进行如下定义:0~10 10~25 25~50 50~100 小雨中雨大雨暴雨小明用一个圆锥形容器接了24小时的雨水,则这一天的雨水属于哪个等级( )A .小雨B .中雨C .大雨D .暴雨答案:B22、(2021第10题)数列{a n }是递增的整数数列,且a 1≥3,a 1+a 2+a 3+…+a n =100,则n 的最大值为( ) A .9 B .10C .11D .12 C答案:C23、(2022第7题)在北京冬奥会上,国家速滑馆“冰丝带”使用高效环保的二氧化碳跨临界直冷制冰技术,为实现绿色冬奥作出了贡献,如图描述了一定条件下二氧化碳所处的状态与T 和1gP 的关系,其中T 表示温度,单位是K ;P 表示压强,单位是bar ,下列结论中正确的是(A )当220T =,1026P =时,二氧化碳处于液态 (B )当270T =,128P =时,二氧化碳处于气态 (C )当300T =,9987P =时,二氧化碳处于超临界状态 (D )当360T =,729P =时,二氧化碳处于超临界状态答案:D。

2012年全国数学建模B题优秀论文

2012年全国数学建模B题优秀论文

B 题 太阳能小屋的设计摘要本题要求设计一个太阳能光伏电池的铺设方案,使得太阳能小屋的年发电量尽可能大,同时单位发电量的费用尽可能小。

为此我们首先研究了了太阳能发电原理,然后运用太阳能辐射原理以及布格——朗伯定律,计算出每种型号光伏电池在小屋的不同表面的发电年收益率,经过计算我们得出了A 类型光伏电池铺设在小屋顶面不能收益等(见附录)有益于简化模型的结论。

在模型建立过程中,我们首先通过计算每种型号光伏电池在不同表面的收益率的大小,进而选择各个表面要铺设的光伏电池型号。

由于不同型号的电池不能串联,我们规定每个表面铺设多于两种型号的光伏电池,来进一步优化了模型。

问题一,在模型求解中,我们使用Excel 软件,首先穷举出每个表面铺设一种型号光伏电池的35年收益,然后穷举出每个表面铺设两种型号光伏电池时的收益。

最后得出最优解是年收入为:13330元,35年的收益320536元。

铺设方案见模型求解,当民用电价Wh k /5.0元不变时,小屋的投资回收年限为:7年。

针对问题二,我们考虑到小屋表面电池板的朝向与倾角均会影响到光伏电池的工作效率。

在问题一的基础上,我们为了使房顶能够获取最大的辐射能,通过查阅文献,并通过相关计算得出:当大倾斜面的光伏电池的倾斜角度为5°,小倾斜面的光伏电池的倾斜角度为45°,光伏电池的朝向为北偏西23.10°时电池所受到的辐射最强,太阳能小屋的收益最大。

针对问题三,我们充分利用前两问的结果,我们注意到房屋的北面和东面的太阳能辐射较弱,所以我们选择在这两面设计了最大窗墙比。

同时对太阳能小屋的朝向和屋顶的角度进行了优化,使得小屋的表面尽可能大,接收的总辐射强度最大,最后建立模型求出经济效益。

关键词: 多目标 整数规划 Excel 软件一、问题重述在设计太阳能小屋时,需在建筑物外表面(屋顶及外墙)铺设光伏电池,光伏电池组件所产生的直流电需要经过逆变器转换成220V 交流电才能供家庭使用,并将剩余电量输入电网。

2012数学建模作业参考答案(部分)[1]

2012数学建模作业参考答案(部分)[1]

但由上面分析知,我们只提取第一对典型变量:
三.结果分析
v1 = 0.8119 y1 + 0.4204 y2 + 0.0289 y3 w1 = 0.3498x1 -1.0378x2
(1)
由(1)式知,典型变量 v1 中 y1 和 y2 的系数较大,典型变量 w1 中 x2 的系数较 大(绝对值大小)。即 w1 主要由变量 x2 所决定,典型变量 v1 主要 y1 和 y2 决定。因 此,典型变量 v1 和 w1 的相关主要是变量 x2 和 y1 和 y2 的相关。也就是说,1 月下 旬至 3 月上旬的日照小时累计数的常用对数与棉花红铃虫第一代发蛾高峰日、第
C
H
O
N
高发热量
69
5.5
24
1.5
6700
57
6
35
2
5200
82
4.3
12
1.9
8400
77
4.8
17
1.3
7500
59
6
33
1.9
5400
80
4.6
14
1.7
8000
64
5.8
29
1.7
6000
67
5.7
26
1.6
6300
62
5.9
30
1.9
5700
73
5
21
1.6
7000
以下解法仅供参考:
本题属于一个因变量(高发热量,并记为 y )与多个自变量(碳、氢、氧、 氮,并依次记为 C、H、O、N)的回归分析。为了初步判断他们属于多元线性回 归还是非线性回归,可以通过画图对比
并且,拟合度 R 2 =0.9963,说明了样本观察值有 99.6%的信息可以用线性回归方程 进行解释。因此,拟合效果较好,认为 y 与各自变量的之间具有显著的线性相关 关系(但并非说明 y 与各自变量都有显著的线性相关关系)。

2012年全国数学建模B题摘要

2012年全国数学建模B题摘要

太阳能小屋的设计
摘要
随着当今社会资源的匮乏,合理利用能源显得越来越重,其中太阳能做为一种新能源,给人们的生活和生产带来了很多帮助。

在设计太阳能小屋时,需在建筑物表面(屋顶及外墙)铺设光伏电池,光伏电池组件所产生的直流电需要经过逆变器转换成220V交流电才能供家庭使用,并将剩余电量输入电网。

不同种类的光伏电池每峰瓦的差别很大,且每峰瓦的实际发电效率或发电量还受诸多因素的影响,如太阳辐射强度、光线入射角、环境、建筑物所处的地理纬度、地区的气候与气象条件、安装部位及方式(贴附或架空)等。

因此,在太阳能小屋的设计中,研究光伏电池在小屋表面的优化铺设是很重要的问题。

问题1仅考虑贴附安装方式,那么光伏电池组件的夹角就可以忽略了小屋的表面安装的个数根据其面积比例就可以计算出来。

问题2的架空方式考虑到电池板的朝向与倾角会影响光伏电池的工作效率,会使小屋产电量更大。

问题3中设计的小屋应尽可能多的装电池组件,以使发电量总量尽可能大。

在问题一中,根据各种光伏电池组件的连接方式和平均发电功率的比较和逆变器的价格(写出数据的对比),选择电池组件*和逆变器*,每个面的面积选择了*个逆变器……利用表格数据作图得到……
在问题二中,根据大同市的每个面得辐射总量知道太阳照射比较强的是*面,于是再根据其每个方向的辐射量的比较选择按*度角安装电池组件在问题三中,根据问题一和问题二的比较,知道用架空方式设计小屋会更有效率,小屋的结构比例和安装方向选择了电池组件*和逆变器*……
关键字:光伏电池、光伏电池组件、逆变器、辐射强度。

全国数学建模大赛B题详解

全国数学建模大赛B题详解

全国数学建模B题解析1.1太阳能小屋的概况1.2设计要求a. 小屋外表面的光伏电池的铺设方案,使小屋的全年太阳能光伏发电尽可能的大,而单位发电量尽可能的小。

b. 在同一表面采用两种或两种以上类型的光伏电池组件时,同一型号的电池可串联,而不型号的电池板不可串联。

在不同表面上的,即使是相同的型号的电池也不能进行串联、并联。

c.光伏分组阵列的端电压应满足逆变器直流输入电压范围。

d.光伏阵列的最大功率不能超过逆变器的额定容量。

e. 同一分组阵列中的组件在安装时,应尽可能保证具有相同的太阳辐射条件(朝向、倾角等)。

2 光伏发电系统运行方式的选择太阳能光伏发电系统的运行方式可分为两类。

即:独立运行和并网运行。

独立运行的光伏发电系统需要有蓄电池作为储能装置,主要用于无电网的边远地区。

由于必须有蓄电池储能装置,所以整个系统的造价很高。

在有公共电网的地区。

光伏发电系统一般与电网连接,即采用并网运行方式。

并网型光伏发电系统的优点是可以省去蓄电池,而将电网作为自己的储能单元。

由于蓄电池在存储和释放电能的过程中,伴随着能量的损失,且蓄电池的使用寿命通常仅为5~8年,报废的蓄电池又将对环境造成污染,所以,省去蓄电池后的光伏系统不仅可大幅度降低造价,还具有更高的发电效率和更好的环保性能,且维护简单、方便。

小屋外表面能够安装太阳能电池板的面积有限,且屋顶光伏发电系统的容量通常远远小于其变压器的容量,即光伏系统的发电功率始终小于小区负载的功率,没有剩余电能送入上级城市电网。

综合考虑,该光伏发电系统拟采用并网运行方式.并在小区内局部并网,不考虑将电能输入上级城市电网,系统原理图如图l所示。

采取小区内局部并网系统设计3.1设计依据该系统的设计依据有:《光伏系统并网技术要求》(GB/T19939—2005);山西省大同市的气象资料;1.2的五点要求;本题提供的附件资料等。

3.2光伏系统太阳能电池组件的配置方案3.2.1最佳方阵倾角的确定大同市位于北纬和东经之间,平均年日照数3086小时,太阳3.2.2太阳能电池组件的选择与分布3.2.2.1太阳能电池组件的选择目前,高效晶体硅太阳能电池的光电转换率已达2l%以上。

2012数学建模国赛B题国家一等奖论文

2012数学建模国赛B题国家一等奖论文
U 'i Ii p
单位面积光伏电池受到的辐射量 第 m 种光伏电池的组件功率 第 i 种逆变器的额定电压 第 i 种逆变器的允许输入电压 第 i 种逆变器的额定电流 民用电价
五、问题一的解答
5.1.总体思路 太阳能电池布局最佳方案非常难解,为了能更好地解决问题,我们在建立详细的数 学模型表示出目标函数和约束条件的基础上将问题 1 分解为两个步骤。 首先,我们根据逆变器求出最优电池阵列,再利用计算机结合人工的方式对各个面 进行最优铺设。 5.2 最优铺设模型 5.2.0 模型的准备 一个方案设计 F 用三元组 ( X , Y , Z ) 表示: X ( x1 , x2 x24 ) 是 24 维向量, xi 表示第 i 种电池使用的个数
三、模型假设
1、一个逆变器只能串并联一种类型的光伏电池,且阵列为矩形 2、光伏电池阵列布局原则为四邻域延伸 3、外墙及屋顶受到的太阳辐射由直射和天空散射两部分组成,忽略地面反射辐射 4、将天空散射部分简化成水平太阳散射的二分之一 5、架空方式只可在屋顶实现 6、贴现率为 5%
四、符号说明
n xi yj
t=1 Y N SN=18 Y 踢出劣解 依据评价 函数排序
N
算法说明 1、 剔除劣解的标准:面积约束 2、 评价函数:单位发电量的费用与经过指数加权后的单位面积年总发电量的比值。 计算结果 对 18 个型号逆变器进行计算,可得出每种逆变器的经过评价函数排序后的最优阵 列矩阵,对于大屋顶,下面给出一个最优阵列: 逆变器 型号 SN15 电池 型号 A3 串联 电池 数 8 并联 电池 组数 5 电池总 面积 单位面积发 电量 单位发电量 费用 逆变器 使用率 96% 所在 墙面 大屋 顶
3、目标整合:利润最大
24 18 y j h j xi gi year 1 1 r i 1 j 1 p 表示民用电价, eyear 表示年发电量的衰减系数(1-10 年 100%,10 年-25 年 90%,25

全国大学生数学建模竞赛B题

全国大学生数学建模竞赛B题

“互联网+”时代的出租车资源配置摘要随着“互联网+”时代的到来,针对当今社会“打车难”的问题,多家公司建立了打车软件服务平台,并推出了多种补贴方案,这无论是对乘客和司机自身需求还是对出租车行业发展都具有一定的现实意义。

本文依靠ISM解释结构、AHP-模糊综合评价、价格需求理论、线性规划等模型依次较好的解决了三个问题。

对于问题一求解不同时空出租车资源“供求匹配”程度的问题,本文先将ISM模型里的层级隶属关系进行改进,将影响出租车供求匹配的12个子因素分为时间、空间、经济、其它共四类组合,然后使用经过改进的AHP-模糊综合评价方法建立模型,提出了出租车空载率这一指标作为评价因子的方案,来分析冬季某节假日哈尔滨市南岗区出租车资源“供求匹配”程度。

通过代入由1-9标度法确定的各因素相互影响的系数,得出各个影响因素的权重大小,利用无量纲化处理各影响因素,得出最终评判因子为0.3062,根据“供求匹配”标准,得出哈尔滨市南岗区出租车资源“供求匹配”程度处于供需合理状态的结论。

同理,也得到了哈尔滨市不同区县、不同时间的供求匹配程度,最后作出哈尔滨市出租车“供求匹配”程度图。

对于问题二我们运用价格需求理论建立模型,以补贴前后打车人数比值与空驶率变化分别对滴滴和快的两个公司的不同补贴方案进行求解,依次得到补贴后对应的打车人数及空驶率的变化,再和无补贴时的状态对比,最后得出结论:当各公司补贴金额大于5元时,打车容易,即补贴方案能够缓解“打车难”的状况;当补贴小于5元时,不能缓解“打车难”的状况。

对于问题三,在问题二的模型下,建立了一个寻找最优补贴金额的优化模型,利用lingo软件[1]进行求解算出最佳补贴金额为8元,然后将这个值带入问题二的模型进行验证,经论证合理后将补贴金额按照4种分配方案分配给司机乘客。

关键词:ISM解释结构模型;AHP-模糊综合评价;价格需求理论;线性规划一问题重述交通是社会生活众多产业当中的一项基础产业,不但和社会的经济发展关系紧密,与人们的生活也是息息相关。

2012年高脚杯数学建模竞赛B题初稿,国家二等

2012年高脚杯数学建模竞赛B题初稿,国家二等

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写):我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):太阳能小屋的设计摘要随着石油能源的消耗,全球都在面临能源危机,太阳能依靠其清洁、分布广泛等特点成为当今发展速度居第二位的能源。

太阳能光伏发电可直接将太阳光转换成电能,是一种不需要燃料、没有污染获取电能的高新技术,是太阳能众多利用方式中最重要、最具有应用前景的技术之一,而太阳能房屋是光伏发电组件把太阳能转换成电能的最有效,最普及的方法之一。

针对问题一:首先我们对题目中的附件三进行数据处理,针对光伏电池种类以及相关参数的差异,对相关参数进行无量纲处理,并根据题目要求对各个级别的影响因素给出不同权重,进而使得影响方案确立的因素能直接通过数据体现出来,给出判断出每个型号电池的M(优先)值,从而为每个立面墙上提供筛选电池板提供依据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

太阳能设计的小屋方案 摘 要 太阳能电池板方阵安装角度怎样计算 由于太阳能发电系统的成本还是较高的,从我国现阶段的太阳能发电成本来看,其花费在太阳电池组件的费用大约为60~70%,因此,为了更加充分有效地利用太阳能,如何选取太阳电池方阵的方位角与倾斜角是一个十分重要的问题。

1.方位角 太阳电池方阵的方位角是方阵的垂直面与正南方向的夹角(向东偏设定为负角度,向西偏设定为正角度)。一般情况下,方阵朝向正南(即方阵垂直面与正南的夹角为0°)时,太阳电池在设计太阳能小屋时,需在建筑物外表面(屋顶及外墙)铺设光伏电池,光伏电池组件所产生的直流电需要经过逆变器转换成220V交流电才能供家庭使用,并将剩余电量输入电网。不同种类的光伏电池每峰瓦的价格差别很大,且每峰瓦的实际发电效率或发电量还受诸多因素的影响,如太阳辐射强度、光线入射角、环境、建筑物所处的地理纬度、地区的气候与气象条件、安装部位及方式(贴附或架空)等。因此,在太阳能小屋的设计中,研究光伏电池在小屋外表面的优化铺设是很重要的问题。为了躲避太阳阴影时的方位角,以及布置规划、发电效率、设计规划、建设目的等许多因素都有关系。 如果要将方位角调整到在一天中负荷的峰值时刻与发电峰值时刻一致时,请参考下述的公式。至于并网发电的场合,希望综合考虑以上各方面的情况来选定方位角。 方位角 =(一天中负荷的峰值时刻(24小时制)-12)×15+(经度-116) 10月9日北京的太阳电池方阵处于不同方位角时,日射量与时间推移的关系曲线。在不同的季节,各个方位的日射量峰值产生时刻是不一样的。

2.倾斜角 倾斜角是太阳电池方阵平面与水平地面的夹角,并希望此夹角是方阵一年中发电量为最大时的最佳倾斜角度。 一年中的最佳倾斜角与当地的地理纬度有关,当纬度较高时,相应的倾斜角也大。但是,和方位角一样,在设计中也要考虑到屋顶的倾斜角及积雪滑落的倾斜角(斜率大于50%-60%)等方面的限制条件。对于积雪滑落的倾斜角,即使在积雪期发电量少而年总发电量也存在增加的情况,因此,特别是在并网发电的系统中,并不一定优先考虑积雪的滑落,此外,还要进一步考虑其它因素。 对于正南(方位角为0°度),倾斜角从水平(倾斜角为0°度)开始逐渐向最佳的倾斜角过渡时,其日射量不断增加直到最大值,然后再增加倾斜角其日射量不断减少。其实很简单,如果每家每户都安装上光伏发电,那么一个家庭他得光伏发电系统就会有2个作用,一是每户的光伏得到的电供自己家庭使用,那么每个家庭就会有一个蓄电池,尔如果当天气好,太阳照射很充足,它产生多余的电量就会通过国家电网,传回给国家电网,国家会根据价格返还你补助,就是并网光伏系统,对于具体设计某一个方阵的方位角和倾斜角还应综合地进一步同实际情况结合起来考虑。 3.阴影对发电量的影响 一般情况下,我们在计算发电量时,是在方阵面完全没有阴影的前提下得到的。因此,如果太阳电池不能被日光直接照到时,那么只有散射光用来发电,此时的发电量比无阴影的要减少约10%~20%。针对这种情况,我们要对理论计算值进行校正。 通常,在方阵周围有建筑物及山峰等物体时,太阳出来后,建筑物及山的周围会存在阴影,因此在选择敷设方阵的地方时应尽量避开阴影。如果实在无法躲开,也应从太阳电池的接线方法上进行解决,使阴影对发电量的影响降低到最低程度。 另外,如果方阵是前后放置时,后面的方阵与前面的方阵之间距离接近后,前边方阵的阴影会对后边方阵的发电量产生影响。有一个高为L1的竹竿,其南北方向的阴影长度为L2,太阳高度(仰角)为A,在方位角为B时,假设阴影的倍率为R,则: R = L2/L1 = ctgA×cosB 此式应按冬至那一天进行计算, 因为,那一天的阴影最长。例如方阵的上边缘的高度为h1,下边缘的高度为h2,则:方阵之间的距离a = (h1-h2)×R。当纬度较高时,方阵之间的距离加大,相应地设置场所的面积也会增加。对于有防积雪措施的方阵来说,其倾斜角度大,因此使方阵的高度增大,为避免阴影的影响,相应地也会使方阵之间的距离加大。通常在排布方阵阵列时,应分别选取每一个方阵的构造尺寸,将其高度调整到合适值,从而利用其高度差使方阵之间的距离调整到最小。 具体的太阳电池方阵设计,在合理确定方位角与倾斜角的同时,还应进行全面的考虑,才能使方阵达到最佳状态。 太阳能发电系统原理 光伏系统设计 1 ·引言

这个问题尤其在我国南方地区应引起高度重视,因为我国南方地区阴雨天既长又多,而对于方便适用的独立光伏电源系统,由于没有应急的其他电源保护备用,所以应该将此问题纳入设计中一起考虑。 本文综合以往各设计方法的优点,结合笔者多年来实际从事光伏电源系统设计工作的经验,引入两组最长连续阴雨天之间的最短间隔天数作为设计的依据之一,并综合考虑了各种影响太阳能辐射条件的因素,提出了太阳能电池、蓄电池容量的计算公式,及相关设计方法。 还有光伏电池的选择,一般来说都是单晶硅,很少多晶硅,因为价格太昂贵,至于薄膜电池,那就更贵了,澳大利亚的有些房屋使用薄膜电池,贴在玻璃上就可以发电,而且效率很高,生产的硅纯度在99.99%所以大天朝不敢想啊 设计者的任务是:在太阳能电池方阵所处的环境条件下(即现场的地理位置、太阳辐射能、气候、气象、地形和地物等),设计的太阳能电池方阵及蓄电池电源系统既要讲究经济效益,又要保证系统的高可靠性。 某特定地点的太阳辐射能量数据,以气象台提供的资料为依据,供设计太阳能电池方阵用。这些气象数据需取积累几年甚至几十年的平均值。 地球上各地区受太阳光照射及辐射能变化的周期为一天24h。处在某一地区的太阳能电池方阵的发电量也有24h的周期性的变化,其规律与太阳照在该地区辐射的变化规律相同。但是天气的变化将影响方阵的发电量。如果有几天连续阴雨天,方阵就几乎不能发电,只能靠蓄电池来供电,而蓄电池深度放电后又需尽快地将其补充好。设计者多数以气象台提供的太阳每天总的辐射能量或每年的日照时数的平均值作为设计的主要数据。由于一个地区各年的数据不相同,为可靠起见应取近十年内的最小数据。根据负载的耗电情况,在日照和无日照时,均需用蓄电池供电。气象台提供的太阳能总辐射量或总日照时数对决定蓄电池的容量大小是不可缺少的数据。 对太阳能电池方阵而言,负载应包括系统中所有耗电装置(除用电器外还有蓄电池及线路、控制器等)的耗量。 方阵的输出功率与组件串并联的数量有关,串联是为了获得所需要的工作电压,并联是为了获得所需要的工作电流,适当数量的组件经过串并联即组成所需要的太阳能电池方阵。 3·蓄电池组容量设计 太阳能电池电源系统的储能装置主要是蓄电池。与太阳能电池方阵配套的蓄电池通常工作在浮充状态下,其电压随方阵发电量和负载用电量的变化而变化。它的容量比负载所需的电量大得多。蓄电池提供的能量还受环境温度的影响。为了与太阳能电池匹配,要求蓄电池工作寿命长且维护简单。 (1)蓄电池的选用 能够和太阳能电池配套使用的蓄电池种类很多,目前广泛采用的有铅酸免维护蓄电池、普通铅酸蓄电池和碱性镍镉蓄电池三种。国内目前主要使用铅酸免维护蓄电池,因为其固有的“免”维护特性及对环境较少污染的特点,很适合用于性能可靠的太阳能电源系统,特别是无人值守的工作站。普通铅酸蓄电池由于需要经常维护及其环境污染较大,所以主要适于有维护能力或低档场合使用。碱性镍镉蓄电池虽然有较好的低温、过充、过放性能,但由于其价格较高,仅适用于较为特殊的场合。 电压最大化有很多影响因素,如:电池的纯度,还有太阳的照射时间,因为太阳是移动的所以如何让太阳最大化的现在光伏电池板上就是最大的问题,有些光伏电池板会编写一个程序,它会在程序里自动检测什么角度能够吸收最大的太阳光照,所以它会像向日葵一样跟着太阳转,这也就是空架电池的好处TO为温度修正系数,一般在0℃以上取1,-10℃以上取1.1,-10℃以下取1.2; CC为蓄电池放电深度,一般铅酸蓄电池取0.75,碱性镍镉蓄电池取0.85。 4·太阳能电池方阵设计 (1)太阳能电池组件串联数Ns 将太阳能电池组件按一定数目串联起来,就可获得所需要的工作电压,但是,太阳能电池组件的串联数必须适当。串联数太少,串联电压低于蓄电池浮充电压,方阵就不能对蓄电池充电。如果串联数太多使输出电压远高于浮充电压时,充电电流也不会有明显的增加。因此,只有当太阳能电池组件的串联电压等于合适的浮充电压时,才能达到最佳的充电状态。 计算方法如下: Ns=UR/Uoc=(Uf+UD+Uc)/Uoc(2) 式中:UR为太阳能电池方阵输出最小电压; Uoc为太阳能电池组件的最佳工作电压; Uf为蓄电池浮充电压; UD为二极管压降,一般取0.7V; UC为其它因数引起的压降。 表1我国主要城市的辐射参数表 :需补充的蓄电池容量Bcb为: Bcb=A×QL×NLAh(5) ④太阳能电池组件并联数Np的计算方法为: Np=(Bcb+Nw×QL)/(Qp×Nw)(6) 式(6)的表达意为:并联的太阳能电池组组数,在两组连续阴雨天之间的最短间隔天数内所发电量,不仅供负载使用,还需补足蓄电池在最长连续阴雨天内所亏损电量。 (3)太阳能电池方阵的功率计算 根据太阳能电池组件的串并联数,即可得出所需太阳能电池方阵的功率P: P=Po×Ns×NpW(7) 式中:Po为太阳能电池组件的额定功率。 5设计实例 以广州某地面卫星接收站为例,负载电压为12V,功率为25W,每天工作24h,最长连续阴雨天为15d,两最长连续阴雨天最短间隔天数为30d,太阳能电池采用云南半导体器件厂生产的38D975×400型组件,组件标准功率为38W,工作电压17.1V,工作电流2.22A,蓄电池采用铅酸免维护蓄电池,浮充电压为(14±1)V。其水平面太阳辐射数据参照表1,其水平面的年平均日辐射量为12110(kJ/m2),Kop值为0.885,最佳倾角为16.13°,计算太阳能电池方阵功率及蓄电池容量。 (1)蓄电池容量Bc Bc=A×QL×NL×To/CC =1.2×(25/12)×24×15×1/0.75 =

1. 太阳时 时间的计量以地球自转为依据,地球自转一周,计24太阳时,当太阳达到正南处为12:00。钟表所指的时间也称为平太阳时(简称为平时),我国采用东经120度经圈上的平太阳时作为全国的标准时间,即“北京时间”。(注:大同的经度为 )。(该定义摘自《太阳能应用技术》的第二章——太阳辐射) 2. 时角 时角是以正午12点为0度开始算,每一小时为15度,上午为负下午为正,即10点和14点分别为-30度和30度。因此,时角的计算公式为

相关文档
最新文档