2012年数学建模A题范文
2012数学建模A题论文:葡萄酒的评价

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期: 2012年 9月日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):葡萄酒的评价摘要葡萄拥有很高的营养价值,含有多种氨基酸、蛋白质和维生素,而以葡萄为原料的葡萄酒也蕴藏了多种营养物质,而且这些物质都是人体必须补充和吸收的营养品。
目前,已知的葡萄酒中含有的对人体有益的成分大约就有600种。
葡萄酒的营养价值由此也得到了广泛的认可,可以说葡萄酒是一个良好的滋补品。
本文通过对葡萄酒的评价,以及酿酒葡萄和葡萄酒的理化指标之间的关系进行讨论分析。
对不同的酿酒葡萄进行了分类,并更深入讨论两者的理化指标是否影响葡萄酒质量。
对于本题,我们主要采用SPSS软件对模型进行求解。
针对问题一,首先我们将附件1中数据在Excel中进行处理;其次,我们在SPSS中,采用T检验,分别分析出两组评酒品红、白葡萄酒的评价结果有无差异性。
2012年数学建模A题优秀论文

基于数理分析的葡萄评价体系摘要葡萄酒质量的好坏主要依赖于评酒员的感观评价,由于人为主观因素的影响,对于酒质量的评价总会存在随机差异,为此找到一种简单有效的客观方法来评酒,就显得尤为重要了。
本文通过研究酿酒葡萄的好坏与所酿葡萄酒的质量的关系,以及葡萄酒和酿酒葡萄检测的理化指标的关系,以及葡萄酒理化指标与葡萄酒质量的关系,旨在通过客观数据建立数学模型,用客观有效的方法来评价葡萄酒质量。
对于问题一,我们首先用配对样品t 检验方法研究两组评酒员评价差异的显著性,将红葡萄酒与白葡萄酒进行分类处理,用SPSS 软件对两组评酒员的评分的各个指标以及总评分进行了配对样本t 检验。
得到的部分结果显示:红葡萄酒外观色调、香气质量的评价存在显著性差异,其他单指标的评价不存在显著差异,白葡萄、红葡萄以及整体的评价存在显著性差异。
接着我们建立了数据可信度评价模型比较两组数据的可信性,将数据的可信度评价转化成对两组评酒员评分的稳定性评价。
首先我们对单个评酒员评分与该组所有评酒员评分的均值的偏差进行了分析,偏差不稳定的点就成为噪声点,表明此次评分不稳定。
然后我们用两组评酒员评分的偏差的方差衡量评酒员的稳定性。
得到第 2 组的方差明显小于第1 组的,从而得出了第2 组评价数据的可信度更高的结论。
对于问题二,我们根据酿酒葡萄的理化指标和葡萄酒质量对葡萄进行了分级。
一方面,我们对酿酒葡萄的一级理化指标的数据进行标准化,基于主成分分析法对其进行了因子分析,并且得到了27 种葡萄理化指标的综合得分及其排序。
另一方面,我们又对附录给出的各单指标百分制评分的权重进行评价,并用信息熵法重新确定了权重,用新的权重计算出27 种葡萄酒质量的综合得分并排序。
最后我们对两个排名次序用基于模糊数学评价方法将葡萄的等级划分为1-5 级。
对于问题三,首先我们将众多的葡萄理化指标用主成分分析法综合成 6 个主因子,并将葡萄等级也列为主因子之一。
对葡萄的 6 个主因子,以及葡萄酒的10 个指标用SPSS 软件进行偏相关分析,得到酒黄酮与葡萄的等级正相关性较强等结论。
2012全国大学生数学建模竞赛A题(葡萄酒评价)

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):重庆交通大学参赛队员(打印并签名) :1. 孟壮2. 瞿琦3. 朱超指导教师或指导教师组负责人(打印并签名):谭远顺10 日期: 2012 年 9 月日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):葡萄酒的评价摘要本文主要用数学建模的方法解决关于葡萄酒评价的一些问题。
结合题目所给信息以及查阅大量资料,对题目所提问题做了相应解答,并验证了相关模型建立及求解的合理性。
针对问题一:首先,我们运用E xcel数据分析和SP SS软件数据分析工具,分别建立了配对样本T检验模型和单因素方差分析模型,分析了两组评酒员的评价结果是否具有显著性差异。
两种方法得出的结果一致:两组评酒员的评价结果有显著性差异。
然后,通过建立权重模型,分别对评酒员与评酒员群体评价之间的“分值偏差”和“排序偏差”两方面考察,得出第二组结果可信。
2012高教社杯全国大学生数学建模竞赛A题

2012高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):CXXY参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期: 2012年 09 月 10 日赛区评阅编号(由赛区组委会评阅前进行编号):2012高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):A题葡萄酒的评价摘要问题一:针对两组评酒员的评价结果需要进行多个平均数间的差异显著性检验,首先应该对数据进行正态分布检验,结论是每一个葡萄酒样品的评价得分都服从正态分布,之后利用SPSS软件进行两独立样本T检验模型进行显著性检验得出两组评酒员的评价结果有显著性差异,结合方差分析得出第二组评分更可信。
问题二:根据酿酒葡萄的理化指标采用聚类分析和主成分分析的方法模型对酿酒葡萄评价,再结合问题一中葡萄酒的质量评价,利用正态分布将两者标准化到统一的评分尺度中,对两者赋予不同的权重系数求总得分,进而对这些酿酒葡萄划分成5个等级。
2012全国数学建模论文a题(葡萄酒)省一等奖范文

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):指导组日期:2012 年 9 月 10 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):2葡萄酒的评价摘要本文主要根据评酒员对葡萄酒的一系列指标的打分,从而对葡萄酒的质量作出判别。
考虑到酿酒葡萄的好坏、所酿葡萄酒的质量和酿酒工艺、陈酿技术等约束条件,为此我们建立模型来确定影响葡萄酒评价的各种因素。
在这模型中利用excel,spss,matlab等一系列的数学工具对模型进行求解,综合统计分析的应用对所给的结果进行比较,从而得出最终的结果。
首先,对于问题1,分析两组评酒员的评价结果,每个评酒员对外观、口感、香气、平衡/整体四个方面指标得分进行求和,得到其总分,确定葡萄酒的质量。
由于葡萄酒的质量满足正态分布,为了能分辨出两组的差异,所以利用spss进行配对T检验,从而得出两组评酒员有显著的差异。
其次,用excel对两组进行方差分析,根据所得到的P值大小,得出第一组的评价结果更为可信。
对于问题2,在问题1的基础下,根据所给的理化指标和葡萄酒的质量利用spss统计分析软件进行分析,相关性分析对数据进行预备分析,剔除与葡萄酒质量无显著性相关的指标,再利用系统聚类的方法对酿酒葡萄进行分级。
2012年数学建模A题优秀论文

基于数理分析的葡萄评价体系摘要葡萄酒质量的好坏主要依赖于评酒员的感观评价,由于人为主观因素的影响,对于酒质量的评价总会存在随机差异,为此找到一种简单有效的客观方法来评酒,就显得尤为重要了。
本文通过研究酿酒葡萄的好坏与所酿葡萄酒的质量的关系,以及葡萄酒和酿酒葡萄检测的理化指标的关系,以及葡萄酒理化指标与葡萄酒质量的关系,旨在通过客观数据建立数学模型,用客观有效的方法来评价葡萄酒质量。
对于问题一,我们首先用配对样品t 检验方法研究两组评酒员评价差异的显著性,将红葡萄酒与白葡萄酒进行分类处理,用SPSS 软件对两组评酒员的评分的各个指标以及总评分进行了配对样本t 检验。
得到的部分结果显示:红葡萄酒外观色调、香气质量的评价存在显著性差异,其他单指标的评价不存在显著差异,白葡萄、红葡萄以及整体的评价存在显著性差异。
接着我们建立了数据可信度评价模型比较两组数据的可信性,将数据的可信度评价转化成对两组评酒员评分的稳定性评价。
首先我们对单个评酒员评分与该组所有评酒员评分的均值的偏差进行了分析,偏差不稳定的点就成为噪声点,表明此次评分不稳定。
然后我们用两组评酒员评分的偏差的方差衡量评酒员的稳定性。
得到第 2 组的方差明显小于第1 组的,从而得出了第2 组评价数据的可信度更高的结论。
对于问题二,我们根据酿酒葡萄的理化指标和葡萄酒质量对葡萄进行了分级。
一方面,我们对酿酒葡萄的一级理化指标的数据进行标准化,基于主成分分析法对其进行了因子分析,并且得到了27 种葡萄理化指标的综合得分及其排序。
另一方面,我们又对附录给出的各单指标百分制评分的权重进行评价,并用信息熵法重新确定了权重,用新的权重计算出27 种葡萄酒质量的综合得分并排序。
最后我们对两个排名次序用基于模糊数学评价方法将葡萄的等级划分为1-5 级。
对于问题三,首先我们将众多的葡萄理化指标用主成分分析法综合成 6 个主因子,并将葡萄等级也列为主因子之一。
对葡萄的 6 个主因子,以及葡萄酒的10 个指标用SPSS 软件进行偏相关分析,得到酒黄酮与葡萄的等级正相关性较强等结论。
数学建模2012a

题。在做这些工作之前,需要对数据进行正态分布检验。由于所给数据是评分,
在求解第一问时也可以用秩和检验模型。 对于第二问,评分标准要求方差较小 的结果更可靠。
3
问题2的求解
问题2是对酿酒葡萄进行分级,这本质上是一个分类问题。 在分类之资料给出
的分类标准也未必满足本题的要求,因此需要自己建立一个分类标准。解决这一问题
和芳香物质是构成酿酒葡萄品质优劣的要素,另外芳香物是葡萄酒质量评价最重
要的影响因素。这是你结论中应该把握的方向。这道题的背景是:国内最初对葡 萄酒的质量鉴别在于感官评价上,这具有一定的主观性和不确定性,后来又引入 了理化指标来进行鉴别。相对客观,而最近的研究表明,芳香物质以及影响葡萄 酒质量的主要理化指标的物质相互平衡是综合质量优劣的关键。所以在不考虑工 艺等因素的影响下,就根据葡萄酒的质量评价分为感官评价指标和理化指标两类 进行综合鉴别就可以了。 2012 年全国竞赛的A 题充分体现了概率统计的相关知识在数学建模中的应
好的成绩。
16
概率统计在数学建模 中的应用
—— 以2012年全国大学生数 学建模竞赛(本科组)A 题为例
1
问题重述
2
问题1的求解
仔细研究题目,看到“著性差异”的字眼,我们自然会想起概率论与数理统 计中的“假设检验”和“方差分析”部分。只要把问题转化为概率统计中假设 检验或方差分析模型,便能得到相应的结论。 在题目给出的原始数据中还有一个缺失值和一个异常值,在数据预测处理中 可用正常值的平均值代替缺失值或异常值,这样问题1 就可以分解为统计中的 “有两批产品,分别经过两次检验,求两批产品是否有显著差异? 哪次检验更可 靠”的经典模型。 显然,对于第一问,可以转化为假设检验问题,也可以转化为方差分析问
2012年数学建模A题一等奖获奖论文

秩和得到一个新的排序。由于此排序综合了 20 个评酒员的结果,因此,更能反 应酒样的排序真实性,即认为该综合排序为理想排序。记样品 j 在第一组、第二 组排序内的秩次为 X j (1) , X j (2) ,综合之后排序秩次为 X j 。红葡萄酒三种排序的 比较图如下:
关键词:葡萄酒评价
排序检验法
符号秩检验
TOPSIS 法
多重比较
1
一、问题重述
对于葡萄酒质量的确定,现如今通常采用感官评价的方法,即聘请一批有资 质的品酒员对葡萄酒进行品评,然后对其外观、口感等分类指标进行打分。最后 通过求和得到每种葡萄酒的总分,从而确定葡萄酒的质量。附件 1 中给出了某一 年份一些葡萄酒的打分结果。 同时,酿酒葡萄的好坏又直接影响着所酿葡萄酒的质量。除了感官评价的方 法之外,在某种程度上,葡萄酒和酿酒葡萄检测的理化指标也能反映葡萄酒和葡 萄的质量。附件 2 和附件 3 即给出了同一年份中,这些葡萄酒的和酿酒葡萄的成 分数据。 请分析题目,试建立合适的数学模型解决以下问题: 1. 对于附件 1 中的红葡萄酒与白葡萄酒, 每种葡萄酒均由两组评酒员对其进 行打分。试分析这两组品酒员的评价结果有无显著性差异,并判断哪一组的结果 更为可信。 2. 综合感官评价所得到的葡萄酒质量与酿酒葡萄的理化指标,对酿酒葡萄 进行分级。 3. 试分析酿酒葡萄、葡萄酒的两组理化指标之间有何关系。 4. 分析酿酒葡萄的理化指标、葡萄酒的理化指标对葡萄酒质量的影响,论 证能否只用葡萄和葡萄酒的理化指标来评价葡萄酒的质量。
3
分的差异是否在一定的置信区间内,若不在,则认为评分差异性显著。 考虑到本题的背景,两组评分的差异可体现在对样本酒的排名差异上。由于 该问属于食品评价中的感官评价问题,因此,可结合感官评价中的排序检验与非 参数检验中的符号秩检验,对两组评分的显著性进行评价。 1.1.1 样品秩次和秩和的求解 评酒员对每一个酒样均从四大方面进行了评分。根据题意,葡萄酒的质量由 总分所确定。 因此, 我们将每一个方面的评分加和, 得到 i 品酒员对葡萄酒样品 j 的总评分。 以红葡萄酒的评价为例,对于品酒员 i ,将其对 27 种样品的评分进行排序, 评分最高的酒样秩次为 1,当多个样品有相同秩次时,则取平均秩次。记在 i 品 酒员的评价排序中, j 酒样的秩次为 xij ,可得到秩次矩阵为:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。
以上内容请仔细核对,提交后将不再允许做任何修改。
如填写错误,论文可能被取消评奖资格。
)日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):2013高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):葡萄酒的评价摘 要本文是关于葡萄酒评价方面的问题,具体分析阐述了对评酒员评价结果的分析检验和酿酒葡萄的分级,应用matlab ,excel ,spss 等软件,结合F 检验、聚类分析、典型相关分析等各种统计学方法,研究了葡萄、葡萄酒的理化指标及葡萄酒质量之间的联系。
针对问题一,本文利用excel 软件对各组评酒员的评分进行了整理和分析。
在此基础上,对各个样品计算两组评价员评分的样本方差2S 和方差D ,运用F 检验公式:2122S F S =检验是否有显著性差异,结果为:两组评酒员对红葡萄酒样品5、17、24的评价结果有显著性差异,其它样品无显著性差异;对白葡萄酒样品2、、5、6、8、14、18、27的评价结果有显著性差异,对其它样品无显著性差异;且第二组评酒员的结果更加可信。
针对问题二,考虑到葡萄酒的质量受酿酒葡萄的直接影响,我们首先根据葡萄酒的得分通过聚类分析得到初步排名,之后集合主成分分析法和相关性分析得出影响葡萄酒质量的主要理化指标加权求和得到新的排名,结合两个方面结果是,红酒中好酒有3、9、23差酒有10、25;白葡萄酒中好酒有5、28差酒有16、13、8。
针对问题三,我们先使用spss 软件对各个理化指标进行典型相关性分析,筛选出有较大相关性的成分,然后运用matlab 软件进行一元线性回归,得到一元回归模型:即葡萄的理化指标X 与葡萄酒的理花指标Y 之间的线性关系。
针对问题四,可以与三题相似的方法,即典型相关性分析,找出理化指标中与葡萄酒的质量有较大相关性的物质,然后用这些物质与葡萄酒的质量进行多元线性回归, 得到如下回归函数:并且通过验证,我们认为可以用葡萄的蛋白质、DPPH 自归基、葡萄总黄酮、PH 值、果皮颜色a 、果皮颜色b 和葡萄酒的总黄酮、白藜芦醇、DPPH 半抑制体来评价葡萄酒的质量。
关键词:F 检验;K-均值分类;主成分分析;典型相关性分析;一元线性回归;多元线性回归;一 问题重述这次论文要解决的问题是葡萄酒的评价问题,葡萄酒的评价是个很抽象和模糊的概16191123441.8552.710.522776.3514.0124.070.0218 3.968Y X Y X Y X Y X =⨯+=⨯+=⨯+=⨯+313312747120.2835 2.3280.3333 1.3620.198962.052.18471.42Y X Y X Y X Y X =⨯+=⨯+=-⨯+=-⨯+念,没有固定的指标可以测量,每个人对同一种葡萄酒的评价都会不一样,而且,这对一个人的味觉要求特别高,必须要经过一定的训练才能掌握这样技巧,于是,评酒员这一职业就诞生了,实际生活中,确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。
每个评酒员在对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定葡萄酒的质量。
酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒葡萄检测的理化指标会在一定程度上反映葡萄酒和葡萄的质量。
附件1给出了某一年份一些葡萄酒的评价结果,附件2和附件3分别给出了该年份这些葡萄酒的和酿酒葡萄的成分数据。
有了以上数据以后,需要我们完成以问题:1. 分析附件1中两组评酒员的评价结果有无显著性差异,哪一组结果更可信?2. 根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级。
3. 分析酿酒葡萄与葡萄酒的理化指标之间的联系。
4.分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,并论证能否用葡萄和葡萄酒的理化指标来评价葡萄酒的质量?二 基本假设1、 所有的葡萄均正常,没有腐烂变质的现象。
2、 所有葡萄酒在由相同工艺酿制而成。
3、 所有葡萄酒都储存在相同材料的容器中。
4、 所有的理化指标均测量无误。
三 符号说明1X ~33X 葡萄中各理化指标 1Y ~9Y葡萄酒中各理化指标F F 检验D方差 2s样本方差四 问题分析葡萄酒的评价是一个复杂的过程,需要综合考虑不同评价员的评分,而且葡萄酒和葡萄的组成成分非常复杂,它们也要影响葡萄酒的质量,对如此繁多的数据,我们就必须依靠计算机工具,运用数学统计学知识对它们进行处理,并找出各个含量之间的关系,联系生活实际,对葡萄酒作出有理有据的评价。
对于问题一:要想得到两组评价员的评价结果有无显著差异,并对它们的可靠性作出判断,我们首先就应该将两组评价员的对27组红葡萄酒和28组白葡萄酒的评价结果整理出来,再运用统计学中的F检验进行假设与检验,再通过计算各组评价员的评价结果的方差和区分度,进而判断谁的结果更加可信。
对于问题二:需要对葡萄进行分级,由于葡萄酒的质量与酿酒葡萄的好坏有直接关系,所以我们可以根据葡萄酒的质量对酿酒葡萄做一个简单的分级,之后,我们用主成分分析法算出每一组样本葡萄的哪些指标该葡萄的主成分,然后通过数据分析判断出这些成分哪些对葡萄酒的质量作出了贡献,筛选出主要成分后,对不同葡萄的成分做加权求和,以此作为葡萄分级的另一个依据。
对于问题三:要想得到葡萄与葡萄酒的指标间的联系,即得到它们之间的函数关系表达式,我们必须对各种指标进行插值和拟合处理。
但是,由于它们各自的指标太多,也不知道互相之间谁与谁有关系,有什么样的关系,所以不能草率地进行拟合。
为此,首先必须要对数据进行筛选和比较,为此可以采用spss软件进行典型相关性分析,找出酿酒葡萄内部和葡萄酒内部各指标之间的相关性,和酿酒葡萄的指标与葡萄酒的指标间的相关性,从而选出具有代表性的指标进行拟合,得到一元线性回归方程。
对于问题四:题中想要求出理化指标对质量的影响,即各理化指标与质量的线性或非线性关系,但是,由于理化指标太多,并且并非没个理化指标都会对葡萄酒的质量造成影响,所以首先必须进行数据的筛选,这里我们使用spss软件进行典型相关性分析,找出哪些指标与质量有较大的关系,然后将这些指标设为自变量,将质量设为因变量,对它们进行多元线性拟合,最后得到一个多元表达式以后,我们就可以通过这个方程来对葡萄酒的质量进行验证,如果验证的结果与评价员打分的结果基本吻合的话,就说明可以用葡萄与葡萄酒的理化指标来对葡萄酒的质量进行评价。
五模型的建立与求解5.1 模型的准备为了方便下面模型的建立与求解,我们需要对附件中的数据进行预处理,计算出下面需要用到的数据,例如,各个数据的平均值,方差,样本方差等,并制成表格,对于葡萄的分级,我们可以上网参考一下国家标准或者国外葡萄酒工业发达国家的标准进行分级。
5.2 问题1模型的建立与求解根据题一的要求,要求得两组评价员的评价结果有无显著性差异,就必须求出两组评价员的评价结果。
对于红葡萄酒样品一,我们先求出第一组评价员的所打分数的平均值,如下表所示:表一:对红葡萄酒样品一的评价表对于评价结果我们采用F 检验法,采用公式:2111ni xi xs n -=-=-∑,2121ni xi xs n -=-=-∑其中我们假设0H:第一组数与第二组数无明显差异,计算F 的值,得到F=1.134618,取显著性水平0.05α=,查F 分布表得和。
,由于0.2481<1.134618<4.03,所以接受原假 设,即认为两组数据无明显差异。
同样的,对于红葡萄酒和白葡萄酒的所有样品使用上述方法检验,得到它们的F 值,然后比较它们是否在0.2481与4.03之间,判断它们是否有无显著性差异得到下表:表二:红葡萄酒的评价2122s F s =1/2120.975(1,1)(9,9)0.2481F n n F α---==/2120.025(1,1)(9,9) 4.03F n n F α--==表三:白葡萄酒的评价通过观察上表,我们可以得到如下结论:对于红葡萄酒,两组评酒员对第样品5、17、24的评价结果有显著性差异,对其它样品无显著性差异;对于白葡萄酒,两组评酒员对样品2、、5、6、8、14、18、27的评价结果有显著性差异,对其它样品无显著性差异。
接下来我们就应该对两组评价员的评价结果进行判断,找出谁的评价结果更加可信,我们就用谁的结果,因此,第一步:计算两组评价员对红、白葡萄酒评价的方差D根据公式1()1nii xD n x -=-=-∑,得到如下方差表:表四:对红葡萄酒评价的方差表五:对白葡萄酒评价的方差那么,为了更加直观地看出这两组评价员谁的评价结果的方差大小,我们用excel 作出他们对白、红葡萄酒的方差折线图如下:图一:两组评酒员对白葡萄酒评价的方差图二:两组评酒员对红葡萄酒评价的方差从上面两幅折线图中,我们可以看出,无论是对于白葡萄酒还是对于红葡萄酒,第二组评价员评价结果的方差普遍小于第一组,那么我们可以认为,第一组评价员在评价同一种样品时,各个组员间的评价结果差异不大,评价结果更加稳定,即我们认为第二组的评价结果更加可信。
5.3 问题2模型的建立、求解与分析问题二要求根据酿酒葡萄的理化指标和葡萄酒的质量对酿酒葡萄进行分级,葡萄酒由酿酒葡萄酿制而成,则酿酒葡萄的质量与葡萄酒的质量有着直接的关系,则可以根据葡萄酒的质量对酿酒葡萄做一个简单的分级,在根据主成分分析从葡萄的理化指标中筛选出对葡萄质量产生影响的主要因素,根据所得各主要因素的贡献率给个因素加权作为系数,求出葡萄中主成分的含量,并进行排名,之后将此排名与之前根据葡萄酒质量所得出的排名综合,进而得出较准确的对酿酒葡萄的分级。