实验四--信号的产生、分解与合成

合集下载

信号分解与合成实验报告

信号分解与合成实验报告

信号分解与合成实验报告实验报告实验目的:1.了解信号分解与合成的基本概念和原理;2.掌握信号分解与合成的具体方法;3.能够利用信号分解与合成技术分析和合成简单信号。

实验仪器:信号发生器、示波器、频谱分析仪。

实验原理:信号分解是指将一个复杂信号分解成一组频率、振幅和相位不同的简单信号。

信号合成是指根据给定的频率、振幅和相位信息,将多个简单信号合成为一个复杂信号。

实验步骤:1.将信号发生器的输出接入示波器的输入端,并调整信号发生器的频率、振幅和相位设置。

2.调节示波器以及频谱分析仪的参数,观察信号在示波器上的波形和幅频特性。

实验结果与分析:在实验中,我们选择了一个周期为1s,频率为1Hz,振幅为5V,相位为0的方波信号作为实验对象。

将该方波信号输入示波器中,观察到了方波的周期性波形。

接着,我们使用频谱分析仪对方波信号进行频谱分析。

观察到频谱图中只存在基频和其奇次谐波(3Hz,5Hz,7Hz,...),并且振幅逐渐衰减。

这说明方波信号可以被分解为一组频率不同、振幅逐渐衰减的简单信号。

然后,我们选择了多个简单信号(如正弦波、方波、三角波等)并分别输入到示波器中,调整其频率、振幅和相位,观察到了不同波形的复杂信号。

这表明信号分解与合成技术可以通过调节简单信号的频率、振幅和相位,实现对复杂信号的合成。

结论:通过本实验,我们了解了信号分解与合成的基本概念和原理,掌握了信号分解与合成的具体方法。

我们可以根据需要,对复杂信号进行分解,并利用合适的简单信号进行合成,从而实现对信号的分析和合成。

这对于信号处理和通信领域具有重要意义。

信号的产生、分解与合成

信号的产生、分解与合成

信号的产生、分解与合成东南大学电工电子实验中心实验报告课程名称:电子电路实践第四次实验实验名称:信号的产生、分解与合成院(系):吴健雄学院专业:电类强化姓名:周晓慧学号:61010212实验室: 实验组别:同组人员:唐伟佳(61010201)实验时间:2012年5月11日评定成绩:审阅教师:实验四信号的产生、分解与合成一、实验内容及要求设计并安装一个电路使之能够产生方波,并从方波中分离出主要谐波,再将这些谐波合成为原始信号或其他周期信号。

1.基本要求(注:方波产生与最后合成为唐伟佳设计,滤波和移相我设计)(1)设计一个方波发生器,要求其频率为1kHz,幅度为5V;(2)设计合适的滤波器,从方波中提取出基波和3次谐波;(3)设计一个加法器电路,将基波和3次谐波信号按一定规律相加,将合成后的信号与原始信号比较,分析它们的区别及原因。

2.提高要求设计5次谐波滤波器或设计移相电路,调整各次谐波的幅度和相位,将合成后的信号与原始信号比较,并与基本要求部分作对比,分析它们的区别及原因。

3. 创新要求用类似方式合成其他周期信号,如三角波、锯齿波等。

分析项目的功能与性能指标:说明:这次实验我负责的是基波和3次谐波信号滤波器及其移相电路的设计,其余部分是唐伟佳设计,同时我还参与了全过程的调试。

功能:此次实验主要功能是实现信号的产生,并让我们在对信号的分解过程中体会傅里叶级数对周期信号的展开,以及滤波器的设计(该实验主要使用带通和全通滤波器(即移相器)),最后通过将分解出的谐波分量合成。

性能指标:1、对于方波而言:频率要为1kHz,幅度为5V (即峰峰值为10V),方波关键顶部尽可能是直线,而不是斜线。

2、滤出的基波:a、波形要为正弦波,频率为1kHz,幅度理论值为6.37V(注:其实滤除的基波幅度只要不太离谱即可,因为后面的加法器电路可以调整增益,可以调到6.37V,后面的3次谐波、5次谐波也一样)故最主要的是波形和频率。

方波信号的分解与合成

方波信号的分解与合成

实验四 方波信号的分解与合成任何电信号都是由各种不同频率、幅度和初相的正弦波迭加而成的。

1822年法国数学家傅里叶在研究热传导理论时提出并证明了将周期函数展开为正弦级数的原理。

奠定了傅里叶级数的理论基础、揭示了周期信号的本质,即任何周期信号(正弦信号除外)都可以看作是由无数不同频率、不同幅度的正弦波信号叠加而成的,就像物质都是由分子或者原子构成一样。

周期信号的基本单元信号是正弦谐波信号。

一、实验目的1、通过对周期方波信号进行分解,验证周期信号可以展开成正弦无穷级数的基本原理,了解周期方波信号的组成原理。

2、测量各次谐波的频率与幅度,分析方波信号的频谱。

3、观察基波与不同谐波合成时的变化规律。

4、通过方波信号合成的实验,了解数字通信中利用窄带通信系统传输数字信号(方波信号)的本质原理。

二、实验原理1、一般周期信号的正弦傅里叶级数按照傅里叶级数原理,任何周期信号在满足狄利克雷条件时都可以展开成如式2-3-1所示的无穷级数∑∑∑∞=∞=∞=+Ω+=Ω+Ω+=10110)cos(2)sin()cos(2)(n n n n n n n t n A A t n b t n a a t f ϕ (2-4-1)其中)cos(n n t n A ϕ+Ω称为周期信号的n 谐波分量,n 次谐波的频率为周期信号频率的n 倍,每一次的谐波的幅度随谐波次数的增加依次递减。

当0=n 时的谐波分量为2a (直流分量)。

当1=n 时的谐波分量为)cos(11ϕ+Ωt A (一次谐波或基波分量直流分量)。

2、一般周期信号的有限次谐波合成及其方均误差按照傅里叶级数的基本原理可知,周期信号的无穷级数展开中,各次谐波的频率按照基波信号的频率的整数倍依次递增,幅度值随谐波次数的增加依次递减,趋近于零。

因此,从信号能量分布的角度来讲,周期信号的能量主要分布在频率较低的有限次谐波分量上。

此原理在通信技术当中得到广泛应用,是通信技术的理论基础。

实验四 信号的分解与合成

实验四 信号的分解与合成

实验四信号的分解与合成实验目的:1.了解正弦波的频率、周期、幅值的概念,学习如何扫描振荡器的操作方法;3.学会分解信号为基波和谐波的叠加形式,并学习信号的合成原理。

实验仪器:1.示波器2.扫描振荡器3.电容电阻箱或电位器4.函数发生器5.电源实验原理:1.正弦波的频率、周期、幅值正弦波是指时间、电压或电流都随着正弦函数变化的周期性波形,常表示为y=A*sin(ωt+φ),其中A为振幅,ω为角频率,φ为初相位,t为时间。

正弦波的频率指的是单位时间内波形变化的次数,即ω/2π,单位为赫兹(Hz)。

频率越高,波形在单位时间内变化的次数越多,波形的周期越短。

正弦波的周期指波形从一个极值到另一个极值所需的时间,即T=1/f。

正弦波的幅值指波形振动的最大距离,通常用峰值(Vp)或峰峰值(Vpp)来表示。

峰值是指波形振动的最大值或最小值,峰峰值是指波形振动的最大值与最小值之差。

扫描振荡器是一种信号源,它能够产生可调频率、可调幅度的正弦波信号。

其操作方法如下:(1)将扫描振荡器电源插座插入电源插座;(3)按下扫描振荡器的POWER开关,激活电源;(4)调节FREQUENCY旋钮和AMPLITUDE旋钮,调节正弦波的频率和幅度;(5)根据需要选择SINE、SQUARE、TRIANGLE等波形。

3.调节示波器的基本参数(1)调节触发电平。

触发电平是示波器用于捕捉波形起点的电平参考值,需要根据所测量的信号进行调节。

在示波器的“Trigger”面板上,可以通过“LEVEL”旋钮进行设置。

(2)调节时间/电压比。

示波器有自动触发和正常触发两种模式。

在自动触发模式下,示波器会自动捕捉信号并显示波形;在正常触发模式下,示波器需要先捕捉到信号才能进行显示。

在示波器的“Trigger”面板上,可以通过“MODE”选择触发模式。

(4)选择或调节显示模式。

示波器有AC、DC、GND三种显示模式,分别表示显示交流信号、直流信号和零参考信号。

信号的分解与合成实验报告

信号的分解与合成实验报告

信号的分解与合成实验报告一、实验目的本次实验的主要目的是深入理解信号的分解与合成原理,通过实际操作和观察,掌握信号在时域和频域的特性,以及如何将复杂信号分解为简单的基本信号,并重新合成原始信号。

二、实验原理1、信号的分解任何周期信号都可以用一组正弦函数和余弦函数的线性组合来表示,这就是傅里叶级数展开。

对于非周期信号,可以通过傅里叶变换将其表示为连续频谱。

2、信号的合成基于分解得到的各个频率成分的幅度和相位信息,通过逆过程将这些成分相加,可以合成原始信号。

三、实验设备与环境1、实验设备信号发生器示波器计算机及相关软件2、实验环境安静、无电磁干扰的实验室环境四、实验内容与步骤1、产生周期信号使用信号发生器产生一个周期方波信号,设置其频率和幅度。

2、观察时域波形将产生的方波信号输入示波器,观察其时域波形,记录波形的特点,如上升时间、下降时间、占空比等。

3、进行傅里叶级数分解通过计算机软件对观察到的方波信号进行傅里叶级数分解,得到各次谐波的频率、幅度和相位信息。

4、合成信号根据分解得到的谐波信息,在计算机软件中重新合成信号,并与原始方波信号进行比较。

5、改变信号参数改变方波信号的频率和幅度,重复上述步骤,观察分解与合成结果的变化。

6、非周期信号实验产生一个非周期的脉冲信号,进行傅里叶变换和合成实验。

五、实验结果与分析1、周期方波信号时域波形显示方波具有陡峭的上升和下降沿,占空比固定。

傅里叶级数分解结果表明,方波包含基波和一系列奇次谐波,谐波的幅度随着频率的增加而逐渐减小。

合成的信号与原始方波信号在形状上基本一致,但在细节上可能存在一定的误差,这主要是由于分解和合成过程中的计算精度限制。

2、改变参数的影响当方波信号的频率增加时,谐波的频率也相应增加,且高次谐波的相对幅度减小。

幅度的改变主要影响各次谐波的幅度,而对频率和相位没有影响。

3、非周期脉冲信号傅里叶变换结果显示其频谱是连续的,且在一定频率范围内有能量分布。

实验四、信号的分解与合成实验实验报告(报告人09光信2)

实验四、信号的分解与合成实验实验报告(报告人09光信2)

实验四、信号的分解与合成实验实验报告(报告⼈09光信2)实验四信号的分解与合成实验报告⼀、实验⽬的1、进⼀步掌握周期信号的傅⾥叶级数。

2、⽤同时分析法观测锯齿波的频谱。

3、全⾯了解信号分解与合成的原理。

4、掌握带通滤波器的有关特性测试⽅法及其选频作⽤。

5、掌握不同频率的正弦波相位差是否为零的鉴别和测试⽅法(李沙育图形法)。

⼆、实验原理任何电信号都是由各种不同频率、幅度和初相的正弦波叠加⽽成的。

对周期信号由它的傅⾥叶级数展开式可知,各次谐波为基波频率的整数倍。

⽽⾮周期信号包含了从零到⽆穷⼤的所有频率成分,每⼀频率成分的幅度均趋向⽆限⼩,但其相对⼤⼩是不同的。

通过⼀个选频⽹络可以将信号中所包含的某⼀频率成分提取出来。

对周期信号的分解,可以采⽤性能较佳的有源带通滤波器作为选频⽹络。

若周期信号的⾓频率0w ,则⽤作选频⽹络的N种有源带通滤波器的输出频率分别是0w 、02w 、03w 、04w 、05w ....0N w ,从每⼀有源带通滤波器的输出端可以⽤⽰波器观察到相应谐波频率的正弦波,这些正弦波即为周期信号的各次谐波。

把分离出来的各次谐波重新加在⼀起,这个过程称为信号的合成。

因此对周期信号分解与合成的实验⽅案如图2-7-1所⽰。

本实验中,将被测锯齿波信号加到分别调谐于其基波和各次谐波频率的⼀系列有源带通滤波器电路上。

从每⼀有源带通滤波器的输出端可以⽤⽰波器观察到相应频率的正弦波。

本实验所⽤的被测周期信号是100Hz的锯齿波,⽽⽤作选频⽹络的7种有源带通滤波器的输出频率分别是100Hz、200Hz 、300Hz 、400Hz 、500Hz 、600Hz 、700Hz ,因⽽能从各有源带通滤波器的两端观察到基波和各次谐波。

按照锯齿波的傅⾥叶级数展开式如下所⽰:111111211111f(t)=[sin()sin(2)sin(3)sin(4)sin(5)sin(6)....]23456w t w t w t w t w t w t -+-+-+∏可知,锯齿波的1~7次谐波的幅度⽐应为 1111111::::::234567。

实验四信号的分解与合成实验

实验四信号的分解与合成实验

深圳大学实验报告课程名称:信号与系统
实验项目名称:信号的分解与合成实验学院:生命科学学院
专业:生物技术
指导教师:张坤华
报告人:鲜欣邑学号:2011300054 班级: 1 实验时间:2013-04- 30
实验报告提交时间:2013-05-14
教务部制
送入Y轴,示波器采用X-Y方式显示,观察李沙育图形。

90、1800时,波形分别如图2-2-3当基波与三次谐波相位差为00(即过零点重合)、0
所示。

相位差=0º相位差=90º相位差=180º
图4-3 基波与三次谐波相位的观察
以上是三次谐波与基波产生的典型的李沙育图,通过图形上下端及两旁的波峰个数,确定频率比,即3:1,实际上可用同样的方法观察五次谐波与基波的相移和频率比,其应约为5:1。

实验内容:
1、观察信号分解的过程及信号中所包含的各次谐波。

2、观察由各次谐波合成的信号。

数据处理:
基波三次谐波
五次谐波七次谐波
基波与三次谐波的相位图、幅度比
基波与五次谐波的相位与幅度比
基波与七次谐波的相位、幅度比
基波与各次谐波的合成图形
深圳大学学生实验报告用纸
注:1、报告内的项目或内容设置,可根据实际情况加以调整和补充。

2、教师批改学生实验报告时间应在学生提交实验报告时间后10日内。

信号的分解与合成实验报告

信号的分解与合成实验报告

信号的分解与合成实验报告信号的分解与合成实验报告引言:信号是信息传递的基本单位,它在我们日常生活中无处不在。

了解信号的特性和处理方法对于电子通信、信号处理等领域有着重要的意义。

本实验旨在通过信号的分解与合成实验,深入探究信号的本质和处理技术。

一、实验目的本实验旨在通过实际操作,了解信号的分解与合成原理,并通过实验数据分析,探究不同信号类型的特点。

二、实验器材与方法1. 实验器材:示波器、信号发生器、电阻、电容、电感等。

2. 实验方法:a. 信号的分解:将复杂信号通过滤波器进行分解,观察信号的频谱特征。

b. 信号的合成:通过不同信号的叠加,合成新的信号,并观察合成信号的波形和频谱。

三、实验过程与结果1. 信号的分解a. 实验步骤:(1) 将信号发生器输出正弦波信号。

(2) 将正弦波信号输入到滤波器中。

(3) 调节滤波器的参数,观察输出信号的变化。

b. 实验结果:通过调节滤波器的参数,我们可以观察到输出信号的频率范围发生变化。

当滤波器的截止频率与输入信号的频率相等时,输出信号的幅值最大。

这说明滤波器可以将特定频率范围内的信号分离出来。

2. 信号的合成a. 实验步骤:(1) 将信号发生器输出两个不同频率的正弦波信号。

(2) 将两个正弦波信号通过电阻、电容、电感等元件进行叠加。

(3) 观察合成信号的波形和频谱。

b. 实验结果:通过调节叠加信号的幅值和相位差,我们可以观察到合成信号的波形和频谱发生变化。

当两个信号的频率相近且相位差为零时,合成信号的幅值最大。

这说明信号的合成是通过叠加各个频率分量得到的。

四、实验讨论与分析通过本实验,我们深入了解了信号的分解与合成原理,并通过实验数据分析,得出以下结论:1. 信号的分解可以通过滤波器将特定频率范围内的信号分离出来。

这为信号处理提供了重要的基础。

2. 信号的合成是通过叠加各个频率分量得到的,通过调节叠加信号的幅值和相位差,可以得到不同形态的合成信号。

3. 信号的频谱特征对于信号的分解与合成具有重要影响,通过观察频谱可以更好地理解信号的特性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验四信号的产生、分解与合成【实验内容】设计并安装一个电路使之能够产生方波,并从方波中分离出主要谐波,再将这些谐波合成为原始信号或其他周期信号。

1.基本要求(1)设计一个方波发生器,要求其频率为1kHz,幅度为5V;(2)设计合适的滤波器,从方波中提取出基波和3次谐波;(3)设计一个加法器电路,将基波和3次谐波信号按一定规律相加,将合成后的信号与原始信号比较,分析它们的区别及原因。

2.提高要求设计5次谐波滤波器或设计移相电路,调整各次谐波的幅度和相位,将合成后的信号与原始信号比较,并与基本要求部分作对比,分析它们的区别及原因。

3. 其他部分用类似方式合成其他周期信号,如三角波、锯齿波等。

【实验目的】1.掌握方波信号产生的基本原理和基本分析方法,电路参数的计算方法,各参数对电路性能的影响;2. 掌握滤波器的基本原理、设计方法及参数选择;3. 了解实验过程:学习、设计、实现、分析、总结。

4. 系统、综合地应用已学到的电路、电子电路基础等知识,在单元电路设计的基础上,利用multisim 和FilterPro 等软件工具设计出具有一定工程意义和实用价值的电子电路。

5. 掌握多级电路的安装调试技巧,掌握常用的频率测量方法。

6. 本实验三人一组,每人完成一个功能电路,发挥团队合作优势,完成实验要求。

【报告要求】1. 根据实验内容、技术指标及实验室现有条件,自选方案设计出原理图,分析工作原理,计算元件参数。

(写出理论推导,不能只有图) 非正弦周期信号可以通过Fourier 分解成直流、基波以及与基波成自然倍数的高次谐波的叠加。

本实验需要设计一个高精度的带通滤波器和移相器,组成选频网络,实现方波Fourier 分解的原理性实验,实现方波合成的原理性实验。

简易波形分解与合成由下述四个部分功能电路—周期信号产生电路、波形分解电路(滤波器)、相位调节、幅值调节与合成电路组成。

1. 非正弦周期信号的分解与合成对某非正弦周期信号()f t ,其周期为T ,频率为f ,则可以分解为无穷项谐波之和,即:000112()sin()sin(2)n n n n n n nf t c c t c c f t T πϕπϕ∞∞===++=++∑∑上式表明,各次谐波的频率分别是基波频率0f 的整数倍。

方波信号可以分解为:()⎪⎭⎫ ⎝⎛++++=...........7sin 715sin 513sin 31sin 4t t t t U t f ωωωωπ 由1、3、5、7等奇次波构成,21n -次谐波的幅度值为基波幅值4U π的121-n 倍。

(1) 设计一个方波发生器,要求其频率为1kHz ,幅度为5V ; 方波电路的设计:用运放实现方波发生器的设计,主要是由普通积分器(充放电回路不同)和迟滞比较器组成。

电路图如下:高电平V0=+Vz 经历的时间为)121ln(T 41fR R C R += 低电平V0=-Vz 经历的时间为)121ln(T 162fR R C R += 振荡频率为)21ln()(111f 116421fR RC R R T T T ++=+==占空比16441R R R T T D +==因此,要使得方波的频率为1kHz ,取参数值如下: C=0.1uF R1=Rf=10k Ω要使得占空比为50%,则R4=R16=4.55k Ω。

因此调节两个电位器R4和R16,改变其阻值,即可调节输出波形的占空比和输出方波的频率,从而达到输出方波占空比为50%,频率为1kHz 。

(2) 设计合适的滤波器,从方波中提取出基波和3次谐波; 基次谐波提取:从方波中提取出一次谐波可以通过设计一个二阶有源低通滤波器实现。

二阶有源低通滤波器的转移函数为:2022)(ωωω++=s Qs A s A uf三次谐波的提取:从方波中提取三次谐波可以通过设计一个二阶有源带通滤波器实现。

二阶有源带通滤波器的转移函数为:2200)(ωωω++=s Qs s Q A s A目前已经有很多专业的有源滤波器设计软件如:德州仪器的Filter Pro 、国家半导体WEBENCH ® 中的Active Filter Designer 、Nuhertz Technologies 的Filter Solutions 等。

这些软件可以根据我们的设计指标要求很快的算出电路参数,很大程度上节省了开发周期。

我们实验中选用的是德州仪器的Filter Pro 软件设计有源滤波器。

基次谐波滤波器的电路图和参数如下:Ω=k 10R 3Ω=k 10R 5Ω=k 10R 6nF 10C 2=nF 100C 3=三次谐波滤波器的电路图和参数如下:Ω==k 10R R 87Ω==k R 1R 1211Ω==k R 33R 109 nF C C C 10C 7654====(3)设计移相电路,调整各次谐波的幅度和相位考虑幅值的损失,应使得最终输入输出表达式为两个共轭复数的相除,使得模值比为1,而使输出相对源输入产生附加相移。

通过可变电阻对输出的相移进行改变,输入输出比表达式应该是R 的函数,即()f R ,选择图所示的电路实现移项功能。

由图,联立方程组 ()311R U C j U U in =-ω ① 2111R U U R U U outin -=- ② 解得13123+-=CR j R R CR j U U inoutωω若选择参数1R =2R ,则表达式化简为1133+-=CR j CR j U U in out ωω,其模为1。

针对滤波器网络输出的不同频率的波形适当选择C 的大小,3CR ω在调节的过程中大小在1左右变动实现相移。

当3R =0时,相移为π;当3CR ω=∞时,相移为0,相移的变化范围可以满足调整的需要。

在此实验中,取21R R ==10k Ω,都选用100nF 的电容,电位器选用1k Ω。

可以根据实际的情况来选择以上两种移项,移相器的可移动相位角为0~180°。

(4)设计一个加法器电路,将基波和3次谐波信号按一定规律相加,将合成后的信号与原始信号比较。

加法器由简单的反相加法电路构成,其结构如图所示。

其中输入端的电位器用于调整输入波的幅度。

12341234out R R R RU U U U U R R R R =----2. 利用EDA 软件进行仿真,并优化设计。

(对仿真结果进行分析) 方波产生电路的仿真结果如下:分析:由(1)的方波产生原理可知,方波的频率和占空比取决于两个点位器的阻值。

因此调节两个电位器,改变其阻值,即可调节输出波形的占空比和输出方波的频率,从而达到输出方波占空比为50%,频率为1kHz 。

基次谐波滤波器仿真如下:分析:由Fourier变换的知识可知,当方波通过低通滤波器后,高次谐波被滤除,输出的是基次谐波。

三次谐波滤波器仿真如下:分析:当方波通过带通滤波器后,输出的是三次谐波。

由仿真结果可以看出通过滤波器的三次谐波并不是完全的正弦波形,这与滤波器的参数设计有关,调节滤波器的参数,或者用更多次的滤波器级联,可以实现更好的滤波效果,但是这样对器件的要求会更高。

移相电路仿真:分析:调节电位器,可以改变移动的相位值。

在实际中,可以根据具体的需要调节电位器的阻值,从而实现要的结果。

加法电路仿真结果:分析:将基次谐波和三次谐波相加,可以得到如图所示波形,要通过调节移相电路的电位器可以使得波形的两个峰相等。

3.实验过程步骤以及按照设计要求对调试好的硬件电路进行测试,记录测试数据,处理和分析电路性能指标。

电路图在第一步已经说明。

按图搭建电路,下面是实验结果。

实验中方波和基次谐波波形:分析:在实验中得到的方波的频率在1kHz,偶尔会有所波动,如在测量方波和基次谐波时,用示波器读出的方波和基次谐波的频率为984Hz,在1kHz左右,存在的误差可以忽略不计。

调节方波产生电路中的电位器阻值可以调节频率。

所得基次谐波的峰峰值为17.6V,与理论分析结果基次谐波的峰峰值为方波峰峰值的4/π倍(18V)接近。

实验中方波和三次谐波波形:分析:方波频率为1kHz,三次谐波的频率由示波器测得为2.825kHz,约为方波频率的3倍。

三次谐波的峰峰值为5.4V,和方波的三次谐波理论值很接近。

实验中存在的误差在实验允许范围内。

合成波形图:1.未加移相电路时的基次谐波和三次谐波的合成波形:分析:未加移相电路时,将基次谐波和三次谐波通过加法器相加,得到的波形如图所示,合成波形和方波比较类似,频率相同。

2.加移相电路时的基次谐波和三次谐波的合成波形:分析:合成后的波形和原方波信号存在一定的相位差,这是因为基次谐波没有移相的原因。

加上移相电路后,调节移相电路的电位器,对三次谐波进行移相,再将移相后的波形相加,得到的波形如图所示,和理论分析所得的基次谐波和三次谐波相加波形一致。

理论分析的基次谐波和三次谐波相加波形如下:4.实验总结通过波形的分解和合成实验,加深了对方波产生电路、有源滤波器、移相网络和加法电路的理解与实际运用能力。

通过仿真到实践的过程,加深了对理论知识的分析和运用,在设计滤波器的过程中,学习使用新的软件Filter Pro,能够加深对低通、带通、高通滤波器知识的理解。

一个项目的实施不仅仅是各个部分电路能够实现方波产生、滤出基次谐波和三次谐波等部分功能的实现,同时也要考虑到将各个部分整合到一起去之后可以使得整个项目的结果可以得到正确的结果。

当然这离不开每个部分的正确设计,但同时也要在设计中考虑到整体的功能实现。

在实验中,合理明确的分工也是保障实验成功的必要条件。

通过实验,锻炼了项目合作者之间的相互协作能力与共同努力完成项目的精神。

相关文档
最新文档