三角形的判定方法SSS

合集下载

判定全等三角形的五种方法

判定全等三角形的五种方法

判定全等三角形的五种方法全等三角形是指具有相同形状和相等边长的三角形。

判定两个三角形是否全等是数学中的一个重要问题。

下面将介绍判定全等三角形的五种方法。

方法一:SSS判定法(边边边)SSS判定法是指通过比较两个三角形的三条边是否相等来判定其是否全等。

如果两个三角形的三条边长度相等,则可以判断它们是全等三角形。

方法二:SAS判定法(边角边)SAS判定法是指通过比较两个三角形的两条边和夹角是否相等来判定其是否全等。

如果两个三角形的一边和夹角分别相等,则可以判断它们是全等三角形。

方法三:ASA判定法(角边角)ASA判定法是指通过比较两个三角形的两个角和夹边是否相等来判定其是否全等。

如果两个三角形的两个角和夹边分别相等,则可以判断它们是全等三角形。

方法四:AAS判定法(角角边)AAS判定法是指通过比较两个三角形的两个角和非夹边的对应边是否相等来判定其是否全等。

如果两个三角形的两个角和非夹边的对应边分别相等,则可以判断它们是全等三角形。

方法五:HL判定法(斜边和直角边)HL判定法是指通过比较两个直角三角形的斜边和直角边是否相等来判定其是否全等。

如果两个直角三角形的斜边和直角边分别相等,则可以判断它们是全等三角形。

通过以上五种方法,我们可以准确地判定两个三角形是否全等。

这些方法都是基于几何学中的一些定理和公理推导而来,经过严谨的数学证明,可以确保判定结果的准确性。

需要注意的是,在判定全等三角形时,我们需要确保给定的条件足够,即要求已知的边长、角度等信息能够满足相应的判定条件。

如果给定的信息不足够,或者不满足判定条件,那么就无法准确地判定两个三角形是否全等。

判定全等三角形的方法还可以用于解决一些实际问题,例如在建筑设计、图形测量等领域。

通过判定三角形是否全等,可以确保设计和测量的准确性,提高工作效率。

总结起来,判定全等三角形的五种方法分别是SSS判定法、SAS判定法、ASA判定法、AAS判定法和HL判定法。

这些方法都是基于几何学中的定理和公理推导而来,通过比较边长、角度等信息,可以准确地判定两个三角形是否全等。

三角形全等的判定SSS

三角形全等的判定SSS

THANKS
感谢观看
确定两个三角形是否相似
在数论中,SSS定理可以用来确定两个三角形是否相似。如果 三个对应角相等,则两个三角形相似。
证明定理
SSS定理可以用来证明其他数论定理。例如,可以用它来证明 “如果两个三角形的对应边成比例,那么这两个三角形相似 ”这个定理。
06
其他三角形全等判定方法介绍
ASA方法
总结词
ASA方法是指通过两个角及其夹边对应相等的两个三角形全等。
在全等三角形中,对应相等的边和角是相互对应的,例如: 如果两个三角形中有一个角相等,则这两个三角形不一定全 等。
02
三角形全等的证明方法概述
直接证明法
综合运用三角形全等的条件,通过一系列逻辑推理,直接 证明两个三角形全等。
方法比较直观,但是证明过程相对复杂,需要熟练掌握三 角形全等的条件和证明方法。
AAS定理的表述及证明
AAS定理总结
两角及其夹边对应相等的两个三角形全等。
AAS定理的证明
首先,证明两角及其夹边对应相等的两个三角形一定相似;其次,证明相似 的两个三角形一定全等。
04
SSS定理的应用
在几何题中的应用
1 2 3
证明两个三角形全等
通过三边对应相等,可以很容易地证明两个三 角形全等。
证明恒等式
通过三个向量的模相等,可以证明这三个向量共线。
在实际生活中的应用
测量不可到达的物体
如果一个人站在两个固定点A和B上,他可以看到一个不可到 达的物体C,那么他可以通过测量AC和BC的长度来确定C的 位置。
确定建筑物位置
如果一个建筑物与另外两个建筑物分别的距离等于其到另两 个定点的距离,那么这个建筑物就在这两个建筑物所在直线 上。

《三角形全等的判定SSS》课堂教学实录及评析

《三角形全等的判定SSS》课堂教学实录及评析

《三角形全等的判定SSS>课堂教学实录及评析【设计理念】学习是一个探究与发现的过程,是一个认识、实践、提高的过程。

在教学中通过组织引导学生探索三角形全等的条件,让学生们在交往中学,在观察中学,在比较中学,努力实行知与行、学与用、识与能的高度统一,培养学生善于“做数学”的能力。

教学目标1. 知识目标:(1)掌握“边边边”公理;(2)能应用“边边边”公理判定两个三角形全等。

2. 能力目标:(1)培养学生动手操作、观察、分析、归纳获得数学结论的能力;(2)培养学生推理论证能力。

3. 情感态度价值观目标:通过多种手段的活动过程,让学生动手操作,激发学生学习的兴趣,并能通过合作交流解决问题,体会数学在现实生活中的应用,增强学生的自信心。

教学重点:寻找判定三角形全等的条件。

教学难点:三角形全等条件的探索和推理论证方法。

教学方法:“悟学式”教学法。

教学准备:多媒体课件、三角板、圆规、木棒、硬纸、剪刀等。

教学过程一、课堂启发(感动。

感动是学习的动力)师:大家知道数学来源于生活,用数学知识又可以解决许多生活中的问题,下面让我们先来看一个与生活有关的数学问题。

(幻灯片演示)皮皮公司接到一批三角形支架的加工任务,客户的要求是所有的三角形支架必须与样本完全一样。

质检部门为了使产品顺利过关,提出了明确的要求:要逐一比对所有的三角形支架与样本是否完全一样。

技术科的毛毛提出了质疑:为了提高效率,是不是可以找到一个更优化的方法呢?师:问题中的“完全一样”在数学中是指什么?生:全等。

师:“逐一比对”是怎样比呢?生:用重合法,分别比较三角形的三条边和三个角是否重合。

师:也就是验证几个条件?生:6 个。

师:是不是一定要满足这6 个条件才能判定两个三角形全等呢?在这里毛毛提出的更优化的方法,实质上是给我们提出了一个什么样的数学问题呢?生:也就是说,如何判定两个三角形全等需要的条件最少。

师:很好!这节课就让我们一起来研究三角形全等的判定方法。

12全等三角形判定二(SSS,AAS)(基础)知识讲解

12全等三角形判定二(SSS,AAS)(基础)知识讲解

全等三角形的判定二(SSS ,AAS )【学习目标】1.理解和掌握全等三角形判定方法3——“边边边”,和判定方法4——“角角边”;2.能把证明角相等或线段相等的问题,转化为证明它们所在的两个三角形全等.【要点梳理】要点一、全等三角形判定3——“边边边”全等三角形判定1——“边边边”三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS ”).要点诠释:如图,如果''A B =AB ,''A C =AC ,''B C =BC ,则△ABC ≌△'''A B C .要点二、全等三角形判定4——“角角边”1.全等三角形判定4——“角角边”两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”)要点诠释:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC 和△ADE 中,如果DE ∥BC ,那么∠ADE =∠B ,∠AED =∠C ,又∠A =∠A ,但△ABC 和△ADE 不全等.这说明,三个角对应相等的两个三角形不一定全等.要点三、判定方法的选择1.选择哪种判定方法,要根据具体的已知条件而定,见下表: 已知条件可选择的判定方法 一边一角对应相等SAS AAS ASA 两角对应相等ASA AAS 两边对应相等 SAS SSS2.如何选择三角形证全等(1)可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;(2)可以从已知出发,看已知条件确定证哪两个三角形全等;(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;(4)如果以上方法都行不通,就添加辅助线,构造全等三角形.【典型例题】1、已知:如图,△RPQ 中,RP =RQ ,M 为PQ 的中点.求证:RM 平分∠PRQ .【思路点拨】由中点的定义得PM =QM ,RM 为公共边,则可由SSS 定理证明全等.【答案与解析】证明:∵M 为PQ 的中点(已知),∴PM =QM在△RPM 和△RQM 中,()(),,RP RQ PM QM RM RM ⎧=⎪=⎨⎪=⎩已知公共边 ∴△RPM ≌△RQM (SSS ).∴ ∠PRM =∠QRM (全等三角形对应角相等).即RM 平分∠PRQ.【总结升华】在寻找三角形全等的条件时有的可以从图中直接找到,如:公共边、公共角、对顶角等条件隐含在题目或图形之中. 把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等,综合应用全等三角形的性质和判定.举一反三:【变式】已知:如图,AD =BC ,AC =BD.试证明:∠CAD =∠DBC.【答案】证明:连接DC ,在△ACD 与△BDC 中()AD BC AC BDCD DC ⎧=⎪=⎨⎪=⎩公共边 ∴△ACD≌△BDC(SSS )∴∠CAD =∠DBC (全等三角形对应角相等)2、已知:如图,AB ⊥AE ,AD ⊥AC ,∠E =∠B ,DE =CB .求证:AD =AC .【思路点拨】要证AC =AD ,就是证含有这两个线段的三角形△BAC ≌△EAD.【答案与解析】证明:∵AB ⊥AE ,AD ⊥AC ,∴∠CAD =∠BAE =90°∴∠CAD +∠DAB =∠BAE +∠DAB ,即∠BAC =∠EAD在△BAC 和△EAD 中BAC EAD B E CB=DE ∠=∠⎧⎪∠=∠⎨⎪⎩∴△BAC ≌△EAD (AAS )∴AC =AD【总结升华】我们要善于把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.举一反三:【变式】如图,AD 是△ABC 的中线,过C 、B 分别作AD 及AD 的延长线的垂线CF 、BE.求证:BE =CF.【答案】证明:∵AD 为△ABC 的中线∴BD =CD∵BE ⊥AD ,CF ⊥AD ,∴∠BED =∠CFD =90°,在△BED 和△CFD 中BED CFD BDE CDFBD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩(对顶角相等) ∴△BED ≌△CFD (AAS )∴BE =CF3、如图:AB=A′B′,∠A=∠A′,若△ABC≌△A′B′C′,则还需添加的一个条件有()种.A.1B. 2C.3D.4【思路点拨】本题要证明△ ABC≌△ A′B′C′,已知了AB=A′B′,∠A=∠ A′,可用的判别方法有ASA,AAS,及SAS,所以可添加一对角∠B=∠B′,或∠C=∠C′,或一对边AC=A′C′,分别由已知与所添的条件即可得证.【答案与解析】解:添加的条件可以为:∠B=∠B′;∠C=∠C′;AC=A′C′,共3种.若添加∠B=∠B′,证明:在△ABC和△A′B′C′中,,∴△ABC≌△A′B′C′(ASA);若添加∠C=∠C′,证明:在△ABC和△A′B′C′中,,∴△ABC≌△A′B′C′(AAS);若添加AC=A′C′,证明:在△ABC和△A′B′C′中,,∴△ABC≌△A′B′C′(SAS).故选C.【总结升华】此题考查了全等三角形的判定,是一道条件开放型问题,需要由因索果,逆向推理,逐步探求使结论成立的条件,解决这类问题要注意挖掘隐含的条件,如公共角、公共边、对顶角相等,这类问题的答案往往不唯一,只有合理即可.熟练掌握全等三角形的判定方法是解本题的关键.类型三、全等三角形判定的实际应用4、“三月三,放风筝”.下图是小明制作的风筝,他根据DE =DF ,EH =FH ,不用度量,就知道∠DEH =∠DFH .请你用所学的知识证明.【答案与解析】证明:在△DEH 和△DFH 中,DE DF EH FH DH DH ⎧⎪⎨⎪=⎩==∴△DEH ≌△DFH(SSS)∴∠DEH =∠DFH .【总结升华】证明△DEH ≌△DFH ,就可以得到∠DEH =∠DFH ,我们要善于从实际问题中抽离出来数学模型,这道题用“SSS ”定理就能解决问题.举一反三:【变式】雨伞的中截面如图所示,伞骨AB=AC ,支撑杆OE=OF ,AE=AB ,AF=AC ,当O 沿AD 滑动时,雨伞开闭,问雨伞开闭过程中,∠BAD 与∠CAD 有何关系?说明理由.【答案】解:雨伞开闭过程中二者关系始终是:∠BAD=∠CAD,理由如下:∵AB=AC,AE=AB ,AF=AC ,∴AE=AF,在△AOE 与△AOF 中,,∴△AOE≌△AOF(SSS ),∴∠BAD=∠CAD.。

判定三角形全等的方法(SSS)优质课教案

判定三角形全等的方法(SSS)优质课教案

判定三角形全等的方法(四)课 型:新授课课 时:1课时教学目标:知识目标:掌握“三边分别相等的两个三角形全等”这一基本事实并初步学会运用。

能力目标:在学习过程中,逐步培养学生的推理意识和能力。

情感目标:让学生体会数学在生活中的作用,增强学生学习数学的兴趣。

教学重点:掌握“三边分别相等的两个三角形全等”这一基本事实,并熟练其证明两个三角形全等。

教学难点:SSS 的探究证明过程教学方法:本节课主要采用引探式教学方法,在活动中教师着眼于“引”,尽力激发学生求知的欲望,引导他们解决问题,并掌握解决问题的方法,学生着眼于“探”,通过探索活动发现规律,发展学生的探索能力和创造能力。

教学过程老 师学 生复习回顾回顾与思考:1、全等三角形的概念和性质2、判定三角形全等的方法(SAS 、ASA 、AAS )回忆全等三角形的概念和其性质,以及判定三角形全等的方法(SAS 、ASA 、AAS )创设情景导入新课如图在△ABC 与△A ′B ′C ′中,如果AB= A ′B ′,BC= B ′C ′ ,AC=A ′C ′ ,那么△ABC 与△A ′B ′C ′全等吗?通过这一环节,唤起对新知识的探求欲望,直接进入主题。

揭示新课的内容。

实验操作操作:已知:AB=A 'B '=8cm ,BC= B ′C ′=9cm ,AC= A 'C '=10cm画△ABC 和A 'B 'C ',并把所画的三角形剪下来。

把你们剪下来的三角形与同伴所画的三角形比一比,你有何发现?学生分组,动手操作,同桌合作交流,得出结论,学生上台演示过程,并用语言总结结论。

结论:三边分别相等的两个三角形全等(可以简写成“边边边”或“SSS”)用几何语言来表示在△ABC与△A′B′C′中,AB= A′B′BC= B′C′AC= A′C′教学过程教师学生例题讲解例8:如图,AC与BD相交于点O,且AB=DC,AC=DB.求证:∠A=∠D.学生思考并回答问题,教师指点,逐步完善发散思维强化新知1. 如图,已知AD=BC,AC=BD,那么∠1与∠2相等吗?2. 如图,点A,C,B,D在同一条直线上,AC=BD,AE=CF,BE=DF.求证:AE∥CF,BE∥DF.在老师分析讲解的基础上学生说明过程教学过程教师学生师生小结,反思提高设计三个问题(1)通过本节课学习你学会了哪些知识?(2)通过本节课学习你最深刻的体验是什么?(3)通过本节课的学习,你心里还存在什么疑惑?师生互动、共同反思、总结、补充的方式进行。

全等三角形的判定 (SSS)

全等三角形的判定  (SSS)
全等三角形的判定 (SSS)
知识点拨: 1: 已知三边画三角形. 2: 边边边(SSS)公理;有三边对应 相等的两个三角形全等. 3: 全等三角形的判定方法.
已知条件 只有一边对应相等 只有两边对应相等 三边对应相等 可选判定方法 ASA、AAS SAS SSS
1:给定三条边长,画出三角形。
c a b
C
MDΒιβλιοθήκη AM平分CAD思维拓展
A T Q
已知:在AOB的两边上,分别 取OQ OP,OT OS PT和QS交于点C, 求证:OC平分AOB
提示:已知条件
C O
OPT OQS(SAS) QCT PCS(AAS) OCT OCS(SSS) 结论
B
P S
b c
c
a
b
2:利用 “边边边公理(SSS)” 证明
例1:
A
证明: D是BC中点, BD CD 在ABD和ACD中, AB AC BD CD AD AD ABD

B D
C
ABC是一个钢架, AB AC, AD是连接点A与BC中点D的 支架。 求证:ABD ≌ ACD
ACD(SSS)
例2:
已知:AB CD, 证明:连结BD 在ABD和CDB中, AD BC, 求证:A C
A O C
AB CD AD BC BD BD
ABD ≌ CDB(SSS) A C
D
B
已知:AB AE, BC DE, B E, M为CD中点, 求证:AM平分BAE
本课小结:
• 1: 已知三边画三角形. • 2: 边边边(SSS)公理;有三边对应 • 相等的两个三角形全等. • 3: 全等三角形的判定方法.

12.2.1三角形全等的判定sss及教学反思

12.2.1三角形全等的判定sss及教学反思

12.2.1三角形全等的判定sss及教学反思•相关推荐12.2.1三角形全等的判定(sss)及教学反思12.2.1三角形全等的判定(SSS)西河九年制学校郭欢教学目标1.了解三角形的稳定性,会应用“边边边”判定两个三角形全等.2.经历探索“边边边”判定全等三角形的过程,解决简单的问题.3.培养有条理的思考和表达能力,形成良好的合作意识.重、难点与关键1.重点:掌握“边边边”判定两个三角形全等的方法.2.难点:理解证明的基本过程,学会综合分析法.3.关键:掌握图形特征,寻找适合条件的两个三角形.教具准备一块形状如图1所示的硬纸片,直尺,圆规.(1) (2)教学方法采用“操作──实验”的教学方法,让学生亲自动手,形成直观形象.教学过程一、设疑求解,操作感知【教师活动】(出示教具)问题提出:一块三角形的玻璃损坏后,只剩下如图2所示的残片,•你对图中的残片作哪些测量,就可以割取符合规格的三角形玻璃,与同伴交流.【学生活动】观察,思考,回答教师的问题.方法如下:可以将图1•的玻璃碎片放在一块纸板上,然后用直尺和铅笔或水笔画出一块完整的三角形.如图2,•剪下模板就可去割玻璃了.【理论认知】如果ABCA′B′C′,那么它们的对应边相等,对应角相等.•反之,•如果ABC与A′B′C′满足三条边对应相等,三个角对应相等,即AB=A′B′,BC=B′C′,CA=C′A′,∠A=∠A′,∠B=∠B′,∠C=∠C′.这六个条件,就能保证ABCA′B′C′,从刚才的实践我们可以发现:•只要两个三角形三条对应边相等,就可以保证这两块三角形全等.信不信?【作图验证】(用直尺和圆规)先任意画出一个ABC,再画一个A′B′C′,使A′B′=AB,B′C′=BC,C′A′=CA.把画出的A′B′C′剪下来,放在ABC上,它们能完全重合吗?(即全等吗)【学生活动】拿出直尺和圆规按上面的要求作图,并验证.(如课本图11.2-2所示)画一个A′B′C′,使A′B′=AB′,A′C′=AC,B′C′=BC:1.画线段取B′C′=BC;2.分别以B′、C′为圆心,线段AB、AC为半径画弧,两弧交于点A′;3.连接线段A′B′、A′C′.【教师活动】巡视、指导,引入课题:“上述的生活实例和尺规作图的结果反映了什么规律?”【学生活动】在思考、实践的基础上可以归纳出下面判定两个三角形全等的定理.(1)判定方法:三边对应相等的两个三角形全等(简写成“边边边”或“SSS”).(2)判断两个三角形全等的推理过程,叫做证明三角形全等.【评析】通过学生全过程的画图、观察、比较、交流等,逐步探索出最后的结论──边边边,在这个过程中,学生不仅得到了两个三角形全等的条件,同时增强了数学体验.二、范例点击,应用所学【例1】如课本图11.2─3所示,ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的.支架,求证ABDACD.(教师板书)【教师活动】分析例1,分析:要证明ABDACD,可看这两个三角形的三条边是否对应相等.证明:D是BC的中点,∴BD=CD在ABD和ACD中∴ABDACD(SSS).【评析】符号“”表示“因为”,“∴”表示“所以”;从例1可以看出,•证明是由题设(已知)出发,经过一步步的推理,最后推出结论(求证)正确的过程.书写中注意对应顶点要写在同一个位置上,哪个三角形先写,哪个三角形的边就先写.三、实践应用,合作学习【问题思考】已知AC=FE,BC=DE,点A、D、B、F在直线上,AD=FB(如图所示),要用“边边边”证明ABCFDE,除了已知中的AC=FE,BC=DE以外,还应该有什么条件?怎样才能得到这个条件?【教师活动】提出问题,巡视、引导学生,并请学生说说自己的想法.【学生活动】先独立思考后,再发言:“还应该有AB=FD,只要AD=FB两边都加上DB即可得到AB=FD.”【教学形式】先独立思考,再合作交流,师生互动.四、随堂练习,巩固深化课本练习.【探研时空】如图所示,AB=DF,AC=DE,BE=CF,BC与EF相等吗?•你能找到一对全等三角形吗?说明你的理由.(BC=EF,ABCDFE)五、课堂总结,发展潜能1.全等三角形性质是什么?2.正确地判断出全等三角形的对应边、对应角,•利用全等三角形处理问题的基础,你是怎样掌握判断对应边、对应角的方法?3.“边边边”判定法告诉我们什么呢?•(答:只要一个三角形三边长度确定了,则这个三角形的形状大小就完全确定了,这就是三角形的稳定性)六、布置作业,专题突破1.习题11.2第1,2题.2.选做课时作业设计.教学反思:首先,本节课重点关注:“一个条件”、“两个条件”包括的情形,以及不能形成的原因,先让学生自行探索,关键时刻老师再加以引导并利用多媒体演示。

全等三角形判定一(SSSSAS)(基础)知识讲解

全等三角形判定一(SSSSAS)(基础)知识讲解

全等三角形判定一(SSS ,SAS )(基础)责编:杜少波【学习目标】1.理解和掌握全等三角形判定方法1——“边边边”,和判定方法2——“边角边”;2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.【要点梳理】【高清课堂:379109 全等三角形判定一,基本概念梳理回顾】要点一、全等三角形判定1——“边边边”全等三角形判定1——“边边边”三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS ”).要点诠释:如图,如果''A B =AB ,''A C =AC ,''B C =BC ,则△ABC ≌△'''A B C .要点二、全等三角形判定2——“边角边”1. 全等三角形判定2——“边角边”两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS ”).要点诠释:如图,如果AB = ''A B ,∠A =∠'A ,AC = ''A C ,则△ABC ≌△'''A B C . 注意:这里的角,指的是两组对应边的夹角.2. 有两边和其中一边的对角对应相等,两个三角形不一定全等.如图,△ABC 与△ABD 中,AB =AB ,AC =AD ,∠B =∠B ,但△ABC 与△ABD 不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等.【典型例题】类型一、全等三角形的判定1——“边边边”【高清课堂:379109 全等三角形的判定(一)同步练习4】1、已知:如图,△RPQ 中,RP =RQ ,M 为PQ 的中点.求证:RM 平分∠PRQ .【思路点拨】由中点的定义得PM =QM ,RM 为公共边,则可由SSS 定理证明全等.【答案与解析】证明:∵M 为PQ 的中点(已知),∴PM =QM在△RPM 和△RQM 中,()(),,RP RQ PM QM RM RM ⎧=⎪=⎨⎪=⎩已知公共边 ∴△RPM ≌△RQM (SSS ).∴ ∠PRM =∠QRM (全等三角形对应角相等).即RM 平分∠PRQ.【总结升华】在寻找三角形全等的条件时有的可以从图中直接找到,如:公共边、公共角、对顶角等条件隐含在题目或图形之中. 把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等,综合应用全等三角形的性质和判定.类型二、全等三角形的判定2——“边角边”2、(2016•泉州)如图,△ABC 、△CDE 均为等腰直角三角形,∠ACB=∠DCE=90°,点E 在AB 上.求证:△CDA ≌△CEB .【思路点拨】根据等腰直角三角形的性质得出CE=CD ,BC=AC ,再利用全等三角形的判定证明即可.【答案与解析】证明:∵△ABC 、△CDE 均为等腰直角三角形,∠ACB=∠DCE=90°,∴CE=CD ,BC=AC ,∴∠ACB ﹣∠ACE=∠DCE ﹣∠ACE ,∴∠ECB=∠DCA ,在△CDA 与△CEB 中,∴△CDA ≌△CEB .【总结升华】本题考查了全等三角形的判定,熟记等腰直角三角形的性质是解题的关键,同时注意证明角等的方法之一:利用等式的性质,等量加等量,还是等量.举一反三:【变式】(2014•房县三模)如图,C 是线段AB 的中点,CD 平分∠ACE ,CE 平分∠BCD ,CD=CE .求证:△ACD ≌△BCE .【答案】证明:∵C 是线段AB 的中点,∴AC=BC ,∵CD 平分∠ACE ,CE 平分∠BCD ,∴∠ACD=∠ECD ,∠BCE=∠ECD ,∴∠ACD=∠BCE ,在△ACD 和△BCE 中,∴△ACD ≌△BCE (SAS ).3、如图,将两个一大、一小的等腰直角三角尺拼接 (A 、B 、D 三点共线,AB =CB ,EB =DB ,∠ABC =∠EBD =90°),连接AE 、CD ,试确定AE 与CD 的位置与数量关系,并证明你的结论.【答案与解析】AE =CD ,并且AE ⊥CD证明:延长AE 交CD 于F ,∵△ABC 和△DBE 是等腰直角三角形∴AB =BC ,BD =BE在△ABE 和△CBD 中90AB BC ABE CBD BE BD =⎧⎪∠=∠=︒⎨⎪=⎩∴△ABE≌△CBD(SAS)∴AE=CD,∠1=∠2又∵∠1+∠3=90°,∠3=∠4(对顶角相等)∴∠2+∠4=90°,即∠AFC=90°∴AE⊥CD【总结升华】通过观察,我们也可以把△CBD看作是由△ABE绕着B点顺时针旋转90°得到的.尝试着从变换的角度看待全等.举一反三:【变式】已知:如图,AP平分∠BAC,且AB=AC,点Q在PA上,求证:QC=QB【答案】证明:∵ AP平分∠BAC∴∠BAP=∠CAP在△ABQ与△ACQ中∵∴△ABQ≌△ACQ(SAS)∴ QC=QB类型三、全等三角形判定的实际应用4、(2014秋•兰州期末)如图,点D为码头,A,B两个灯塔与码头的距离相等,DA,DB为海岸线.一轮船离开码头,计划沿∠ADB的角平分线航行,在航行途中C点处,测得轮船与灯塔A和灯塔B的距离相等.试问:轮船航行是否偏离指定航线?请说明理由.【思路点拨】只要证明轮船与D点的连线平分∠ADB就说明轮船没有偏离航线,也就是证明∠ADC=∠BDC.要证明角相等,常常通过把角放到两个三角形中,利用题目条件证明这两个三角形全等,从而得出对应角相等.【答案与解析】解:此时轮船没有偏离航线.理由:由题意知:DA=DB,AC=BC,在△ADC和△BDC中,,∴△ADC≌△BDC(SSS),∴∠ADC=∠BDC,即DC为∠ADB的角平分线,∴此时轮船没有偏离航线.【总结升华】本题考查了全等三角形的应用,解答本题的关键是:根据条件设计三角形全等,巧妙地借助两个三角形全等,寻找对应角相等.要学会把实际问题转化为数学问题来解决.举一反三:【变式】工人师傅经常利用角尺平分一个任意角,如图所示,∠AOB是一个任意角,在边OA,边OB上分别取OD=OE,移动角尺,使角尺两边相同的刻度分别与D、E重合,这时过角尺顶点P的射线OP就是∠AOB的平分线,你能先说明△OPE与△OPD全等,再说明OP平分∠AOB吗?【答案】证明:在△OPE与△OPD中∵OE OD OP OP PE PD=⎧⎪=⎨⎪=⎩∴△OPE≌△OPD (SSS)∴∠EOP=∠DOP(全等三角形对应角相等) ∴ OP平分∠AOB.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D
D
C
C
已知AC=FE,BC=DE,点A,D,B,F在 一条直线上,AD=FB(如图),要用“边边 边”证明△ABC ≌△ FDE,除了已知中的 AC=FE,BC=DE以外,还应该有什么条件? 怎样才能得到这个条件? 解:要证明△ABC ≌△ FDE, 还应该有AB=DF这个条件 ∵ DB是AB与DF的公共部分,
B
A
D C
∴ ∠B =∠C (全等三角形的对应角相等)
已知:AC=AD,BC=BD, 求证:AB是∠DAC的平分线. 证明:在△ABC和△ABD中 ∵ AC=AD( 已知 ) BC=BD( 已知 ) A ) 1 2
C B
AB=AB( 公共边
∴△ABC≌△ABD( SSS ) D ∴∠1=∠2 (全等三角形的对应角相等) ∴AB是∠DAC的平分线 (角平分线定义)
用数学语言表述:
在△ABC和△ DEF中 AB=DE BC=EF
B
A
D
C
CA=FD ∴ △ABC ≌△ DEF(SSS)
E

判断两个三角形全等的推理过程,叫做证明三角 形全等。
思考:你能用“边边边”解释三角形具 有稳定性吗?
例1. 如下图,△ABC是一个钢架,
AB=AC,AD是连接A与BC中点D的支架。 求证:△ ABD≌ △ ACD 分析:要证明△ ABD≌ △ACD, 证明: ∵D是BC中点, 首先要看这两个三角形的三条边 ∴BD=CD. 是否对应相等。 在△ABD和△ ACD中,

△ ABC≌ △ FDE (SSS).
分析:移动角尺,使角尺两边相同的刻度分别与M、N重合, 则 CM=CN. 证明:在 △OMC和△ ONC中, OM= ON, OC=OC, CM=CN, ∴ △OMC≌ △ONC (SSS). ∴ ∠MOC=∠NOC (全等三角形的对应角相等) 即 OC 是∠AOB的平分线
工人师傅常用角尺平分一个任意角, 做法 如下:如图,∠AOB是一个任意角,在边OA,OB 上分别取OM=ON,移动角尺,使角尺两边相同的刻 度分别与M、N重合,过角尺顶点C的射线OC便是 ∠AOB的平分线。为什么?
如图,AB=AC,AE=AD,BD=CE, 求证:△AEB ≌ △ ADC。 A
证明:∵BD=CE, ∴ BD-ED=CE-ED,
丽星中学初二数学
1、 全等三角形的定义
2、 全等三角形有什么性质?
A D
能够完全重合的两个三角形叫全等三角形。
B
C
E
F
如图,已知△ABC≌△DEF
问题1:其中相等的边有: AB=DE, BC=EF, AC=DF
问题2:其中相等的角有: (全等三角形的对应边相等)
∠A=∠D, ∠B=∠E, ∠C=∠F(全等三角形的对应角相等)
且AD=FB ∴ AD+DB=FB+DB 即 AB=FD
已知AC=FE,BC=DE,点A,D,B,F在 一条直线上,AD=FB(如图),要用“边边 边”证明△ABC ≌△ FDE,除了已知中的 AC=FE,BC=DE以外,还应该有什么条件? 怎样才能得到这个条件?
证明:∵AD=FB, ∴ AD+DB=FB +DB , 即AB= FD. 在 △ ABC和△ FDE中, AC=FE, AB=FD, BC=DE,
C
AC = DB
△ABC ≌ △DCB( SSS ) A
=
BC = CB
(2)如图,D、F是线段BC上的两点,
AB=CE,AF=DE,要使△ABF≌△ECD , 还需要条件 BF=CD
E
× ×
=
或 BD=FC
B
D
F
C
已知:如图1 ,AC=FE,AD=FB,BC=DE 求证:△ABC≌△FDE , 求证:∠C=∠E 求证:AC∥EF;DE∥BC 证明:∵ AD=FB ∴AB=FD(等式性质) 在△ABC和△FDE 中 AC=FE(已知) BC=DE(已知) AB=FD(已证) ∴△ABC≌△FDE(SSS)
AB=AC,
BD=CD, AD=AD, ∴ △ABD ≌△ ACD(SSS).
例2 如图,已知点B、E、C、F在同一条直线上, AB=DE,AC=DF,BE=CF.求证:∠A=∠D.
A 证明:∵BE=CF(已知) D
∴ BE+EC=CF+EC 即 BC=EF 在△ABC和△DEF中 AB=DE(已知) BC=EF(已证) AC=BF(已知) ∴△ABC≌△DEF(SSS)
B
E
C
F
∴∠A=∠D(全等三角形对应角相等)
小结:欲证角相等,转化为证三角形全等.
例3 如图,已知AB=CD,AD=CB,求证:∠B=∠D
小结:四边形问题转化为三角形 问题解决.
问:此题添加辅助线,若连结BD行吗? 在原有条件下,还能推出什么结论? 答:∠ABC=∠ADC,AB∥CD,AD∥BC
证明:连结AC, A 在△ABC和△ ADC中 AB=CD(已知) BC=AD(已知) B AC=AC(公用边) A ∴ △ ABC≌ △ CDA(SSS) ∴ ∠B=∠D(全等三角形对应角相等) B
即BE=CD。 在 △ AEB和△ ADC中, AB=AC
B E D C
AE=AD
BE=CD
∴ △AEB ≌ △ ADC (SSS)
1、填空题: (1)如图,AB=CD,AC=BD,△ABC和△DCB是否全等? 试说明理由。 A D 解: △ABC≌△DCB 理由如下: AB = DC
=
Ⅴ Ⅴ
=
B
C 变式 B D

△ ABC≌ △ FDE (SSS).
E
F
已知AC=FE,BC=DE,点A,B,D,F 在一条直线上,AD=FB(如图),要用“边 边边”证明△ABC ≌△ FDE,除了已知中的 AC=FE,BC=DE以外,还应该有什么条件? 怎样才能得到这个条件?
证明:∵AD=FB, A ∴ AD-BD=FB-BD, 即AB=FD. 在 △ ABC和△ FDE中, AC=FE, AB=FD, BC=DE,
证明三角形全等的步骤:
(1)准备条件:证全等时要用的间接条件要先证好; (2)证明三角形全等书写三步骤: ①写出在哪两个三角形中 结论: ②摆出三个条件用大括号括起来 ③写出全等结论
小结
通过本节课的学习,你有哪些收获? 1.知道三角形三条边的长度怎样画三角形, 2. 三边对应相等的两个三角形全等 (边边边或SSS); 3.书写格式:①准备条件; ②三角形全等书写的三步骤。
A
D =

E ?
?
c
= B F

图1
(2)∵ △ABC≌△FDE(已证) ∴ ∠C=∠E (全等三角形的对应角相等)
已知:如图,AB=AC,DB=DC, 请说明∠B =∠C成立的理由

解:连接AD 在△ABD和△ACD中, AB=AC (已知) DB=DC (已知) AD=AD (公共边) ∴△ABD≌△ACD (SSS)
相关文档
最新文档