(完整版)2018年衡阳县创新实验班招生数学试卷及答案,推荐文档

合集下载

【高三】湖南衡阳市2018届高三《数学》上学期第二次月考试题实验班文(含答案)

【高三】湖南衡阳市2018届高三《数学》上学期第二次月考试题实验班文(含答案)

2017年下期高三年级第二次月考试卷文数(试题卷)注意事项:1.本卷为衡阳八中高三年级实验班第二次月考试卷,分两卷。

其中共22题,满分150分,考试时间为120分钟。

2.考生领取到试卷后,应检查试卷是否有缺页漏页,重影模糊等妨碍答题现象,如有请立即向监考老师通报。

开考15分钟后,考生禁止入场,监考老师处理余卷。

3.请考生将答案填写在答题卡上,选择题部分请用2B铅笔填涂,非选择题部分请用黑色0.5mm 签字笔书写。

考试结束后,试题卷与答题卡一并交回。

★预祝考生考试顺利★第I卷选择题(每题5分,共60分)本卷共12题,每题5分,共60分,在每题后面所给的四个选项中,只有一个是正确的。

1.已知集合M={x|﹣2x+1>0},N={x|x<a},若M⊆N,则a的范围是()A.B.C.D.2.在复平面内,复数(i是虚数单位)对应的点位于()A.第四象限 B.第三象限 C.第二象限 D.第一象限3.已知a=8.10.51,b=8.10.5,c=log30.3,则()A.b<a<c B.a<b<c C.b<c<a D.c<b<a4.某工厂对一批产品进行了抽样检测.如图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是()A.90 B.75 C.60 D.455.在△ABC中,角A,B,C所对的边分别为a,b,c,若A,B,C成等差数列,2a,2b,2c成等比数列,则sinAcosBsinC=( )A .B .C .D .6.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.下图是源于其思想的一个程序框图,若输入的a ,b 分别为5,2,则输出的n=( )A .2B .3C .4D .57.大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和.是中华传统文化中隐藏着的世界数学史上第一道数列题.其前10项依次是0、2、4、8、12、18、24、32、40、50…,则此数列第20项为( ) A .180 B .200 C .128 D .1628.某几何体的三视图如图所示,则其侧面积为( )A .B .C .D .9.函数y=e x x 2﹣1的部分图象为( )A.B.C.D.10.动点P(x,y)满足,点Q为(1,﹣1),O为原点,λ||=,则λ的最大值是()A.﹣1 B.1 C.2 D.11.已知椭圆E: +=1(a>b>0)的右焦点为F,短轴的一个端点为M,直线l:3x﹣4y=0交椭圆E于A,B两点,若|AF|+|BF|=4,点M到直线l的距离不小于,则椭圆E的离心率的取值范围是()A.(0,] B.(0,]C.[,1) D.[,1)12.若存在两个正实数x,y,使得等式3x+a(2y﹣4ex)(lny﹣lnx)=0成立,其中e为自然对数的底数,则实数a的取值范围是()A.(﹣∞,0)B.C.D.第II卷非选择题(共90分)二.填空题(每题5分,共20分)13.若数列{a n}是等差数列,首项a1>0,a2003+a2004>0,a2003•a2004<0,则使前n项和S n>0成立的最大自然数n是.14.在△ABC中,角A,B,C所对的边分别为a,b,c,且2bcosC﹣3ccosB=a,则tan(B﹣C)的最大值为.15.已知四棱锥P﹣ABCD的五个顶点都在球O的球面上,底面ABCD是矩形,平面PAD垂直于平面ABCD,在△PAD中,PA=PD=2,∠APD=120°,AB=4,则球O的表面积等于.16.已知椭圆与直线,,过椭圆上一点P作l1,l2的平行线,分别交l1,l2于M,N两点.若|MN|为定值,则的值是.三.解答题(共6题,共70分)17.(本题满分12分)在△ABC中,内角A,B,C的对边分别为a,b,c,已知,且,(Ⅰ)求△ABC的面积.(Ⅱ)已知等差数列{a n}的公差不为零,若a1cosA=1,且a2,a4,a8成等比数列,求{}的前n项和S n.18.(本题满分12分)某市调研考试后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的2×2列联表,(1)根据列联表的数据,若按99.9%的可靠性要求,能否认为“成绩与班级有关系”;(2)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到9号或10号的概率.参考公式与临界值表:K2=.19.(本题满分12分)如图,已知四棱锥P﹣ABCD中,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点.(1)证明:AE⊥平面PAD;(2)取AB=2,在线段PD上是否存在点H,使得EH与平面PAD所成最大角的正切值为,若存在,请求出H点的位置,若不存在,请说明理由.20.(本题满分12分)如图,椭圆C1: =1(a>0,b>0)和圆C2:x2+y2=b2,已知圆C2将椭圆C1的长轴三等分,且圆C2的面积为π,椭圆C1的下顶点为E,过坐标原点O且与坐标轴不重合的任意直线l与圆C2相交于点A、B,直线EA、EB与椭圆C1的另一个交点分别是点P、M.(1)求椭圆C1的方程;(2)求△EPM面积最大值.21.(本题满分12分)已知函数.(Ⅰ)若p=2,求曲线f(x)在点(1,f(1))处的切线方程;(Ⅱ)若函数f(x)在其定义域内为增函数,求正实数p的取值范围;(Ⅲ)设函数,若在[1,e]上至少存在一点x0,使得f(x0)>g(x0)成立,求实数p的取值范围.选做题请考生从22、23两题中任选一题作答,并将选择的题号填涂在答题卡上,共10分。

湖南省衡阳八中2018届高三(实验班)第一次模拟数学(理)试卷(含答案)

湖南省衡阳八中2018届高三(实验班)第一次模拟数学(理)试卷(含答案)

衡阳八中2018届高三年级实验班第一次模拟考试试卷理科数学注意事项:1.本卷为衡阳八中高三年级实验班第一次模拟考试试卷,分两卷。

其中共23题,满分150分,考试时间为120分钟。

2.考生领取到试卷后,应检查试卷是否有缺页漏页,重影模糊等妨碍答题现象,如有请立即向监考老师通报。

开考15分钟后,考生禁止入场,监考老师处理余卷。

3.请考生将答案填写在答题卡上,选择题部分请用2B 铅笔填涂,非选择题部分请用黑色0.5mm 签字笔书写。

考试结束后,试题卷与答题卡一并交回。

★预祝考生考试顺利★第I 卷 选择题(每题5分,共60分)本卷共12题,每题5分,共60分,在每题后面所给的四个选项中,只有一个是正确的。

1.已知集合2{40}A x x x =-<,{}B x x a =<,若A B ⊆,则实数a 的取值范围( ) A .(0,4] B .(8,4)- C .[4,)+∞ D .(4,)+∞ 2.已知i 是虚数单位,(1+2i )z 1=﹣1+3i ,,z 1、z 2在复平面上对应的点分别为A 、B ,则|AB|=( )A .31B .33C .D .3.已知实数b a ,满足⎪⎩⎪⎨⎧≤-+≥+-≥-+06302023b a a b b a ,则当]4,0[πθ∈时,2cos cos sin 2b b a -+θθθ的最大值是A. 5B. 2C.210 D. 22 4.已知定义在[0,+∞)上的函数f (x )满足f (x )=3f (x+2),当x ∈[0,2)时,f (x )=﹣x 2+2x .设f (x )在[2n ﹣2,2n )上的最大值为a n (n ∈N *),且{a n }的前n 项和为S n ,则S n 的取值范围是( ) A .[1,) B .[1,] C .[,2) D .[,2]5.定义运算:12142334a a a a a a a a =-,将函数()()3sin 01cos xf x xωωω=>的图象向左平移23π个单位,所得图象对应的函数为偶函数,则ω的最小值是 ( ) A .14 B .34 C. 74 D .546.已知等差数列{a n}的前n项和为S n,且S10=,则a5+a6=()A.B.12 C.6 D.7.如图是某四棱锥的三视图,则该几何体的表面积等于()A.34+6B.6+6+4C.6+6+4 D.17+68.若函数y=f(x)(x∈R)满足f(x+1)=﹣f(x),且当x∈[﹣1,0)时,,则函数y=f(x)的图象与函数y=log3|x|的图象的交点的个数是()A.2 B.3 C.4 D.59.执行右边的程序框图,若p=0.8,则输出的n=()A.3 B.4 C.5 D.610.已知函数f (x )=⎩⎨⎧>≤+0x |,x log |0x |,1x |2,若方程f (x )=a 有四个不同的解x 1,x 2,x 3,x 4,且x 1<x 2<x 3<x 4,则x 3(x 1+x 2)+423x x 1的取值范围是( ) A .(﹣1,+∞) B .(﹣1,1] C .(﹣∞,1)D .[﹣1,1)11.已知F 1、F 2是椭圆+=1(a >b >0)的左、右焦点,过F 2且垂直于x 轴的直线与椭圆交于A 、B 两点,若△ABF 1是锐角三角形,则该椭圆离心率e 的取值范围是( ) A .e >﹣1 B .0<e <﹣1 C .﹣1<e <1 D .﹣1<e <+112.如果函数满足:对于任意的x 1,x 2∈[0,1],都有|f (x 1)﹣f (x 2)|≤1恒成立,则a 的取值范围是( ) A .B .C .D .第II 卷 非选择题(共90分)二.填空题(每题5分,共20分)13.919x ⎛⎫- ⎪⎝⎭的二项展开式中的常数项的值为______. 14.平面直角坐标系xOy 中,双曲线C 1:﹣=1(a >0,b >0)的渐近线与抛物线C 2:x 2=2py (p>0)交于点O ,A ,B ,若△OAB 的垂心为C 2的焦点,则C 1的离心率为 .15.我国南宋著名数学家秦九韶发现了从三角形三边求三角形面积的“三斜公式”,设△ABC 三个内角A 、B 、C 所对的边分别为a 、b 、c ,面积为S ,则“三斜求积”公式为.若a 2sinC=4sinA ,(a+c )2=12+b 2,则用“三斜求积”公式求得△ABC 的面积为 . 16.体积为的正三棱锥A ﹣BCD 的每个顶点都在半径为R 的球O 的球面上,球心O 在此三棱锥内部,且R :BC=2:3,E 为线段BD 上一点,且DE=2EB ,过点E 作球O 的截面,则所得截面圆面积的取值范围是 .三.解答题(共8题,共70分) 17.(本题满分12分)△ABC 的内角为A ,B ,C 的对边分别为a ,b ,c ,已知cos sin sin cos a b cC B B C=+. (1)求()()sin sin cos cos A B A A A B +++-的最大值; (2)若2b =ABC 的面积最大时,△ABC 的周长;18.(本题满分12分)交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为a 元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如表:交强险浮动因素和浮动费率比率表 浮动因素浮动比率 A 1 上一个年度未发生有责任道路交通事故 下浮10% A 2 上两个年度未发生有责任道路交通事故 下浮20% A 3 上三个及以上年度未发生有责任道路交通事故 下浮30% A 4 上一个年度发生一次有责任不涉及死亡的道路交通事故 0% A 5 上一个年度发生两次及两次以上有责任道路交通事故 上浮10% A 6上一个年度发生有责任道路交通死亡事故上浮30%某机构为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了80辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:类型 A 1 A 2 A 3 A 4 A 5 A 6 数量20101020155以这80辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:(1)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定,950 a .某同学家里有一辆该品牌车且车龄刚满三年,记X 为该品牌车在第四年续保时的费用,求的分布列与数学期望值;(数学期望值保留到个位数字)(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车.假设购进一辆事故车亏损4000元,一辆非事故车盈利8000元:①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率; ②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.19.(本题满分12分)在如图所示的五面体中,面ABCD 为直角梯形, 2BAD ADC π∠=∠=,平面平面ABCD ,244EF DC AB ===, ADE ∆是边长为2的正三角形.(1)证明: BE ⊥平面ACF ; (2)求二面角A BC F --的余弦值.20.(本题满分12分)如图,椭圆()22122:10x y C a b a b +=>>的左右焦点分别为12F F 、,离心率为32;过抛物线22:4C x by =焦点F 的直线交抛物线于M N 、两点,当74MF =时,M 点在x 轴上的射影为1F ,连结,NO MO 并延长分别交1C 于A B 、两点,连接AB ;OMN ∆与OAB ∆的面积分别记为,OMN OAB S S ∆∆,设OMNOABS S λ∆∆=.(1)求椭圆1C 和抛物线2C 的方程; (2)求λ的取值范围.21.(本题满分12分)已知函数2g(x)=(2a)lnx,h(x)=lnx+ax (a R)∈-,令f(x)=g(x)h (x)'+,其中h (x)'是函数h(x)的导函数.(Ⅰ)当a=0时,求f(x)的极值;(Ⅱ)当8<a<2--时,若存在12x ,x [1,3] ,使得122|f(x )f(x )|>(m+ln3)a 2ln3+ln(a)3---恒成立,求m 的取值范围.选做题:考生从22、23题中任选一题作答,共10分。

2018年XXX第二批次自主招生(实验班)考试数学学科试卷和答案

2018年XXX第二批次自主招生(实验班)考试数学学科试卷和答案

2018年XXX第二批次自主招生(实验班)考试数学学科试卷和答案2018年XXX第二批次自主招生(实验班)数学考试试卷考试时间:90分钟,满分100分一、选择题(本大题共10小题,每小题3分,共30分。

每小题只有一个正确答案)1.化简 (2-m)/(m-2) 的结果是:A。

m-2B。

2-mC。

-m-2D。

-2/(m-2)2.表达式 abc+abc+abc 的所有可能值的个数是:A。

2个B。

3个C。

4个D。

无数个3.某班50名学生可在音乐、美术、体育三门选修课中选择,每位学生至少选择一门。

选择音乐的有21人,选择美术的有28人,选择体育的有16人,既选择音乐又选择美术的有7人,既选择美术又选择体育的有6人,既选择体育又选择音乐的有5人,则三项都参加的人数是:A。

2B。

3C。

4D。

54.已知二次函数 y=x^2-2x-6,当m≤x≤4 时,函数的最大值为2,最小值为-7,则满足条件的 m 的取值范围是:A。

m≤1B。

-2<m<1C。

-2≤m<1D。

-2≤m≤15.适合不等式 2/(3x-y) ≤ 1,且满足方程 3x+y=1 的 x 的取值范围是:A。

x≤1/3B。

-1≤x<1/3C。

x≤1D。

-1≤x≤16.已知 A、B 两点在一次函数 y=x 的图像上,过 A、B 两点分别作 y 轴的平行线交双曲线 y=1/x (x>0) 于 M、N 两点,O 为坐标原点。

若 BN=3AM,则 9OM^2-ON^2 的值为:A。

8B。

16C。

32D。

367.在直角三角形 ABC 中,∠BAC=90°,M、N 是 BC 边上的点,BM=MN=CN/2,如果 AM=8,AN=6,则 MN 的长为:A。

4√3B。

2√3C。

10D。

10/38.将正奇数按如图所示的规律排列下去,若有序实数对(n,m) 表示第 n 排,从左到右第 m 个数,如 (4,2) 表示奇数 15,则表示奇数 2017 的有序实数对是:A。

2018年衡阳市中考数学试卷含答案解析word版

2018年衡阳市中考数学试卷含答案解析word版

2018年湖南省衡阳市中考数学试卷(解析版)一、选择题(本题共12小题,每小题3分,共36分) 1.( 3分)-4的相反数是( )A. 4B.— 4C. —D.44【解答】解:-4的相反数是4. 故选:A .2. (3分)2018年我市财政计划安排社会保障和公共卫生等支出约 1800000000 元支持民生幸福工程,数1800000000用科学记数法表示为( )A. 18X 108 B . 1.8X 108C. 1.8X 109D . 0.18X 1010 【解答】 解:1800000000=1.8X 109, 故选:C.3. (3分)下列生态环保标志中,是中心对称图形的是(【解答】解:A 、不是中心对称图形,故本选项错误; B 、 是中心对称图形,故本选项正确; C 、 不是中心对称图形,故本选项错误; D 、 不是中心对称图形,故本选项错误. 故选:B.4. (3分)如图是由5个大小相同的小正方体摆成的立体图形,它的主视图是D .B.A .【解答】解:从正面看易得第一层有3个正方形,第二层有1个正方形,且位于中间.故选:A.5. (3分)已知抛一枚均匀硬币正面朝上的概率为',下列说法错误的是()2A. 连续抛一枚均匀硬币2次必有1次正面朝上B. 连续抛一枚均匀硬币10次都可能正面朝上C. 大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次D. 通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的【解答】解:A、连续抛一均匀硬币2次必有1次正面朝上,不正确,有可能两次都正面朝上,也可能都反面朝上,故此选项错误;B、连续抛一均匀硬币10次都可能正面朝上,是一个有机事件,有可能发生,故此选项正确;C、大量反复抛一均匀硬币,平均100次出现正面朝上50次,也有可能发生,故此选项正确;D、通过抛一均匀硬币确定谁先发球的比赛规则是公平的,概率均为■,故此选项正确.故选:A.6. (3分)下列各式中正确的是()A、=±3 B. ' - = - 3C.匕;=3 D. :一- 「;=「;【解答】解:A、原式=3,不符合题意;B、原式=| - 3| =3,不符合题意;C、原式不能化简,不符合题意;D、原式=2 :=「;,符合题意,故选:D.7. (3分)下面运算结果为a6的是()A、a3+a3 B. a8十a2 C. a2?a3 D. (- a2)3【解答】解:A、a3+a3=2a3,此选项不符合题意;B、a8* a2=a,此选项符合题意;C、a2?a3=a5,此选项不符合题意;D、(—a)3 = —a[此选项不符合题意;故选:B.8. (3分)衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x万千克,根据题意,列方程为()A 30 36 =10 B30 30 =10A,三-吋=9 10 B•三-两=10C. ^L—竺=10D.竺^^-=105K x x 1.【解答】解:设原计划每亩平均产量x万千克,则改良后平均每亩产量为 1.5x 万千克,根据题意列方程为:-'=10.X 1. DX故选:A.9(3分)下列命题是假命题的是()A. 正五边形的内角和为540°B•矩形的对角线相等C•对角线互相垂直的四边形是菱形D.圆内接四边形的对角互补【解答】解:正五边形的内角和=(5-2)X 180°=540°, A是真命题; 矩形的对角线相等,B是真命题;对角线互相垂直的平行四边形是菱形,C是假命题;圆内接四边形的对角互补,D是真命题;故选:C.10. (3分)不等式组(x+1>0的解集在数轴上表示正确的是()[2x-6<0解①得X >- 1 , 解②得x <3, 所以不等式组的解集为-1v x < 3. 故选:C.11. (3分)对于反比例函数y=-丄,下列说法不正确的是()z A. 图象分布在第二、四象限 B. 当x > 0时,y 随x 的增大而增大 C. 图象经过点(1,- 2)D. 若点 A (X 1, y 1), B (x 2, y 2)都在图象上,且 X 1<X 2,则 y 1< y 2 【解答】解:A 、k=- 2< 0,.••它的图象在第二、四象限,故本选项正确; B 、 k=- 2<0,当x >0时,y 随x 的增大而增大,故本选项正确;9C 、 :-'上-2,.点(1,- 2)在它的图象上,故本选项正确;D 、 点A (X 1, y 1)、B (X 2、y 2)都在反比例函数y=-2的图象上,若x 〔<X 2<0,x 则y 1<y 2,故本选项错误. 故选:D .12. (3分)如图,抛物线y=a«+bx+c 与x 轴交于点A (- 1, 0),顶点坐标(1 ,【解答】解: {恣n)与y轴的交点在(0, 2), (0, 3)之间(包含端点),则下列结论:①3a+b v 0;②-1 < a w-巴:③对于任意实数m, a+b > am2+bm总成立;④关于x的3方程ax2+bx+c=n- 1有两个不相等的实数根.其中结论正确的个数为()A. 1个B. 2个C. 3个D. 4个【解答】解:•••抛物线y=a£+bx+c与x轴交于点A (- 1, 0),二x=- 1 时,y=0,即卩a- b+c=0,而抛物线的对称轴为直线x=- :=1,即b=- 2a,2a••• 3a+c=0,所以①错误;v 2< c<3,而c=- 3a,•2<- 3a< 3,••- 1 w a w ---,所以②正确;3v抛物线的顶点坐标(1, n),•x=1时,二次函数值有最大值n,2•a+b+c> am +bm+c,即a+b> am2+bm,所以③正确;v抛物线的顶点坐标(1, n),•抛物线y=ax+bx+c与直线y=n- 1有两个交点,•关于x的方程ax2+bx+c=n- 1有两个不相等的实数根,所以④正确. 故选:C.二、填空题(本题共6小题,每小题3分,共18分)13. (3分)如图,点A、B、C、D、O都在方格纸的格点上,若△ COD是由△AOB 绕点O按顺时针方向旋转而得到的,则旋转的角度为90° .1 1…:丄4 4!h? 9- ■■■■ -r■■ ■■ f ▼ hF —— ■P ~ —|i|i iII ■■z…Ol4■II ■FD! s ■-■■■■■■I*【解答】解:•••△ COD 是由厶AOB 绕点O 按顺时针方向旋转而得,••• OB=OD•••旋转的角度是/ BOD 的大小,vZ BOD=90,•旋转的角度为90° 故答案为:90°14. (3分)某公司有10名工作人员,他们的月工资情况如表,根据表中信息, 该公司工作人员的月工资的众数是0.6万元、0.4万元 . 职务 经理 副经理 A 类职员B 类职员C 类职员人数1 2 2 4 4 月工资(万元/人)21.20.80.60.4【解答】解:由表可知0.6万元和0.4万元出现次数最多,有4次, 所以该公司工作人员的月工资的众数是 0.6万元和0.4万元, 故答案为:0.6万元、0.4万元.=X- 1 .故答案为:X- 1 .16. (3分)将一副三角板如图放置,使点 A 落在DE 上,若BC// DE,则Z AFC 的度数为 75°.15. (3分)计算: X — 1【解答】解:x+1 x+1x+1 x+1【解答】解::BC// DE,A ABC为等腰直角三角形,•••/ FBC玄EAB丄(180°—90° =45°,2vZ AFC>^ AEF的外角,•••/ AFC=Z FAEV E=45+30°=75°.故答案为:75°17. (3分)如图,?ABCD的对角线相交于点O,且AD M CD,过点O作OM丄AC, 交AD于点M .如果△ CDM的周长为8,那么?ABCD的周长是16 .【解答】解:v ABCD是平行四边形,••• OA=OCv OM 丄AC,••• AM=MC.•••△CDM 的周长二AD+CD=8,•••平行四边形ABCD的周长是2X 8=16.故答案为16.18. (3分)如图,在平面直角坐标系中,函数y=x和y=-二x的图象分别为直线11, 12,过点A1 (1,-二)作x轴的垂线交11于点A2,过点A2作y轴的垂线交£12于点A3,过点A3作X轴的垂线交11于点A4,过点A作y轴的垂线交12于点A5,… 依次进行下去,则点A2018的横坐标为1009 .【解答】解:由题意可得,A i (1, —£), A2 (1, 1), A3 (- 2, 1))A4 (-2, - 2), A5 (4,- 2),…,2••• 2018- 4=504…2, 2018- 2=1009,•••点A2018的横坐标为:1009,故答案为:1009.三、解答题(本题共8个小题,19-20题每题6分,21-24题每题8分,25题10 分,26题12分)19. (6 分)先化简,再求值:(x+2) (x-2) +x (1-x),其中x=- 1.【解答】解:原式=«- 4+x - x2=x - 4,当x=- 1时,原式=-5.20. (6分)如图,已知线段AC, BD相交于点E, AE=DE BE=CE(1) 求证:△ ABE^A DCE【解答】(1)证明:在厶AEB ftA DEC中,+ ZAEB=ZDEC,艇二EC• △AEB^A DEC(SAS .2018年中考真题(2) 解::△ AEB^A DEC ••• AB=CD ••• AB=5, ••• CD=521. (8分)赏中华诗词,寻文化基因,品生活之美”,某校举办了首届 中国诗(成绩都不低于 50 分)(1) 将频数分布直方图补充完整人数;(2) 若测试成绩不低于80分为优秀,则本次测试的优秀率是多少;(3) 现将从包括小明和小强在内的 4名成绩优异的同学中随机选取两名参加市 级比赛,求小明与小强同时被选中的概率.请根据图中信息完成下列各题.(4+8+15+12) =11 人,2018年中考真题100(2)本次测试的优秀率是^-X 100%=54%50(3) 设小明和小强分别为 A 、B,另外两名学生为:C 、D , 则所有的可能性为:AB 、AC AD BC BD 、CD, 所以小明和小强分在一起的概率为22. (8分)一名徒步爱好者来衡阳旅行,他从宾馆 C 出发,沿北偏东30°勺方向 行走2000米到达石鼓书院A 处,参观后又从A 处沿正南方向行走一段距离,到 达位于宾馆南偏东45°方向的雁峰公园B 处,如图所示.(1) 求这名徒步爱好者从石鼓书院走到雁峰公园的途中与宾馆之间的最短距离; (2)若这名徒步爱好者以100米/分的速度从雁峰公园返回宾馆,那么他在 15分钟内能否到达宾馆?【解答】解:(1)作CP 丄AB 于P , 由题意可得出:/ A=30°,AP=2000米, 则 Cp = AC=10°。

(2020精编)湖南省衡阳市2018年中考数学试题(含答案).doc

(2020精编)湖南省衡阳市2018年中考数学试题(含答案).doc

2018年衡阳市初中学业水平考试试卷数学一、选择题(本大题共12个小题,每小题3分,满分36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.-4的相反数是( )A .4B .-4C .14-D .142.2018年我市财政计划安排社会保障和公共卫生等支出约1800000000元支持民生幸福工程,数1800000000用科学记数法表示为( )A .81810⨯ B .81.810⨯ C .91.810⨯ D .100.1810⨯ 3.下列生态环保标志中,是中心对称图形的是( )A .B .C .D .4.如图是由5个大小相同的小正方体摆成的立体图形,它的主视图是( )A .B .C .D . 5.已知抛一枚均匀硬币正面朝上的概率为12,下列说法错误..的是( ) A .连续抛一枚均匀硬币2次必有1次正面朝上 B .连续抛一枚均匀硬币10次都可能正面朝上C .大量反复抛一枚均匀硬币,平均每100次有50次正面朝上D .通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的 6.下列各式中正确的是( )A .93=±B .2(3)3-=-C .393=D .1233-=7.下面运算结果为6a 的是( )A .33a a +B .82a a ÷C .23a a ⋅ D .23()a -8.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x 万千克,根据题意,列方程为( ) A .3036101.5x x -= B .3030101.5x x -= C .3630101.5x x -= D .3036101.5x x+= 9.下列命题是假命题...的是( ) A .正五边形的内角和为540oB .矩形的对角线相等C .对角线互相垂直的四边形是菱形D .圆内接四边形的对角互补10.不等式组10260x x +>⎧⎨-≤⎩的解集在数轴上表示正确的是( )A .B .C .D . 11.对于反比例函数2y x=-,下列说法不正确...的是( ) A .图象分布在第二、四象限 B .当0x >时,y 随x 的增大而增大 C .图象经过点(1,2)-D .若点11(,)A x y ,22(,)B x y 都在图象上,且12x x <,则12y y <12.如图,抛物线2y ax bx c =++与x 轴交于点(1,0)A -,顶点坐标(1,)n ,与y 轴的交点在(0,2),(0,3)之间(包含端点),则下列结论: ①30a b +<;②213a -≤≤-;③对于任意实数m ,2a b am bm +≥+总成立;④关于x 的方程21ax bx c n ++=-有两个不相等的实数根.其中结论正确的个数为( )A .1个B .2个C .3个D .4个二、填空题(本大题共6个小题,每小题3分,满分18分.)13.如图,点A 、B 、C 、D 、O 都在方格纸的格点上,若COD ∆是由AOB ∆绕点O 按顺时针方向旋转而得到的,则旋转的角度为 .14.某公司有10名工作人员,他们的月工资情况如下表,根据表中信息,该公司工作人员的月工资的众数是 .职务 经理 副经理 A 类职员B 类职员C 类职员人数1 2 2 4 1 月工资/(万元/人)21.20.80.60.415.计算:2111x x x -=++ . 16.将一副三角板如图放置,使点A 落在DE 上,若//BC DE ,则AEC ∠的度数为 .17.如图,ABCD Y 的对角线相交于点O ,且AD CD ≠,过点O 作OM AC ⊥,交AD 于点M .如果CDM ∆的周长为8,那么ABCD Y 的周长是 .18.如图,在平面直角坐标系中,函数y x =和12y x =-的图象分别为直线1l ,2l ,过点11(1,)2A -作x 轴的垂线交1l 于点2A ,过点2A 作y 轴的垂线交2l 于点3A ,过点3A 作x 轴的垂线交1l 于点4A ,过点4A 作y 轴的垂线交2l 于点5A ,…依次进行下去,则点2018A 的横坐标为 .三、解答题(本大题共8小题,19~20题每题6分,21~24题每题8分,25题10分,26题12分,满分66分.解答应写出文字说明、证明过程或演算步骤.)19.先化简,再求值:(2)(2)(1)x x x x +-+-,其中1x =-.20.如图,已知线段AC ,BD 相交于点E ,AE DE =,BE CE =.(1)求证:ABE DCE ∆≅∆; (2)当5AB =时,求CD 的长.21.“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,根据测试成绩(成绩都不低于50分)绘制出如图所示的部分频数分布直方图. 请根据图中信息完成下列各题:(1)将频数分布直方图补充完整;(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?(3)现将从包括小明和小强在内的4名成绩优异的同学中随机选取两名参加市级比赛,求小明与小强同时被选中的概率.22.一名徒步爱好者来衡阳旅行,他从宾馆C 出发,沿北偏东30o的方向行走2000米到达石鼓书院A 处,参观后又从A 处沿正南方向行走一段距离,到达位于宾馆南偏东45o方向的雁峰公园B 处,如图所示.(1)求这名徒步爱好者从石鼓书院走到雁峰公园的途中与宾馆之间的最短距离;(2)若这名徒步爱好者以100米/分的速度从雁峰公园返回宾馆,那么他在15分钟内能否到达宾馆? 23.如图,O e 是ABC ∆的外接圆,AB 为直径,BAC ∠的平分线交O e 于点D ,过点D 作DE AC ⊥分别交AC 、AB 的延长线于点E 、F .(1)求证:EF 是O e 的切线;(2)若4AC =,2CE =,求»BD的长度.(结果保留π) 24.一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价为10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y (件)与销售价x (元/件)之间的函数关系如图所示.(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)求每天的销售利润W (元)与销售价x (元/件)之间的函数关系式.并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?25.如图,已知直线24y x =-+分别交x 轴、y 轴于点A 、B ,抛物线经过A ,B 两点,点P 是线段AB 上一动点,过点P 作PC x ⊥轴于点C ,交抛物线于点D .(1)若抛物线的解析式为2224y x x =-++,设其顶点为M ,其对称轴交AB 于点N . ①求点M 、N 的坐标;②是否存在点P ,使四边形MNPD 为菱形?并说明理由;(2)当点P 的横坐标为1时,是否存在这样的抛物线,使得以B 、P 、D 为顶点的三角形与AOB ∆相似?若存在,求出满足条件的抛物线的解析式;若不存在,请说明理由.26.如图,在Rt ABC ∆中,90C ∠=o,4AC BC cm ==,动点P 从点C 出发以1/cm s 的速度沿CA 匀速运动,同时动点Q 从点A 出发以2/cm s 的速度沿AB 匀速运动,当点P 到达点A 时,点P 、Q 同时停止运动.设运动时间为()t s .(1)当t 为何值时,点B 在线段PQ 的垂直平分线上?(2)是否存在某一时刻t ,使APQ ∆是以PQ 为腰的等腰三角形?若存在,求出t 的值;若不存在,请说明理由;(3)以PC 为边,往CB 方向作正方形CPMN ,设四边形QNCP 的面积为S ,求S 关于t 的函数关系式.。

湖南省衡阳市第八中学2018届高三(实验班)上学期第三次月考数学(理)试题+Word版含答案

湖南省衡阳市第八中学2018届高三(实验班)上学期第三次月考数学(理)试题+Word版含答案

衡阳八中2017年下期高三年级第三次月考试卷理数(试题卷)注意事项:1.本卷为衡阳八中高三年级实验班第三次月考试卷,分两卷。

其中共22题,满分150分,考试时间为120分钟。

2.考生领取到试卷后,应检查试卷是否有缺页漏页,重影模糊等妨碍答题现象,如有请立即向监考老师通报。

开考15分钟后,考生禁止入场,监考老师处理余卷。

3.请考生将答案填写在答题卡上,选择题部分请用2B铅笔填涂,非选择题部分请用黑色0.5mm签字笔书写。

考试结束后,试题卷与答题卡一并交回。

第I卷选择题(每题5分,共60分)本卷共12题,每题5分,共60分,在每题后面所给的四个选项中,只有一个是正确的。

1.在n元数集S={a1,a2,…a n}中,设X(S)=,若S的非空子集A满足X (A)=X(S),则称A是集合S的一个“平均子集”,并记数集S的k元“平均子集”的个数为f s(k),已知集合S={1,2,3,4,5,6,7,8,9},T={﹣4,﹣3,﹣2,﹣1,0,1,2,3,4},则下列说法错误的是()A.f s(4)=f s(5)B.f s(4)=f T(5)C.f s(1)+f s(4)=f T(5)+f T(8)D.f s(2)+f s(3)=f T(4)2.复数在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知a=,b=log2,c=log,则()A.a>b>c B.a>c>b C.c>a>b D.c>b>a4.现有语文、数学、英语、物理和化学共5本书,从中任取1本,取出的是理科书的概率为()A.B.C.D.5.已知{a n}为等比数列且满足a6﹣a2=30,a3﹣a1=3,则数列{a n}的前5项和S5=()A.15 B.31 C.40 D.1216.函数的图象可由函数的图象至少向右平移()个单位长度得到.A. B. C.D.7.设变量X,Y满足约束条件,且目标函数Z=+(1,b为正数)的最大值为1,则a+2b的最小值为()A.3 B.6 C.4 D.3+28.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.下图是源于其思想的一个程序框图,若输入的a,b 分别为5,2,则输出的n=()A.2 B.3 C.4 D.59.某几何体的三视图如图所示,则其侧面积为()A.B.C.D.10.已知函数f(x)=(其中e为自对数的底数),则y=f(x)的图象大致为()A.B.C.D.11.椭圆x2+=1(0<b<1)的左焦点为F,上顶点为A,右顶点为B,若△FAB的外接圆圆心P(m,n)在直线y=﹣x的左下方,则该椭圆离心率的取值范围为()A.(,1)B.(,1)C.(0,)D.(0,)12.设函数f(x)在R上存在导函数f′(x),对于任意的实数x,都有f(x)=4x2﹣f(﹣x),当x∈(﹣∞,0)时,f′(x)+<4x,若f(m+1)≤f(﹣m)+4m+2,则实数m的取值范围是()A.[﹣,+∞)B.[﹣,+∞)C.[﹣1,+∞)D.[﹣2,+∞)第II卷非选择题(共90分)二.填空题(每题5分,共20分)13.已知向量,的夹角为45°,||=,||=3,则|2﹣|= .14.在二项式(1+)8的展开式中,x3的系数为m,则(mx+)dx= .15.抛物线y2=8x的准线与x轴相交于点P,过点P作斜率为k(k>0)的直线交抛物线于A、B两点,F为抛物线的焦点,若|FA|=2|FB|,则k= .16.表面积为60π的球面上有四点S、A、B、C,且△ABC是等边三角形,球心O到平面ABC的距离为,若平面SAB⊥平面ABC,则棱锥S﹣ABC体积的最大值为.三.解答题(共6题,共70分)17.(本题满分12分)设函数f(x)=sinx(cosx﹣sinx).(1)求函数f(x)在[0,π]上的单调递增区间;(2)设△ABC的三个角A、B、C所对的边分别为a、b、c,且f(B)=0,a、b、c成公差大于零的等差数列,求的值.18.(本题满分12分)如图,在直四棱柱ABCD﹣A1B1C1D1中,AB=AD=2,DC=2,AA1=,AD⊥DC,AC⊥BD,垂足为E,(Ⅰ)求证:BD⊥A1C;(Ⅱ)求二面角A1﹣BD﹣C1的大小.19.(本题满分12分)如图,在平面直角坐标系xoy中,椭圆C : =1(a>b>0)的离心率为,直线l 与x轴交于点E,与椭圆C交于A、B两点.当直线l垂直于x轴且点E为椭圆C的右焦点时,弦AB的长为.(1)求椭圆C的方程;(2)是否存在点E,使得为定值?若存在,请指出点E的坐标,并求出该定值;若不存在,请说明理由.20.(本题满分12分)某学校高三年级学生某次身体素质体能测试的原始成绩采用百分制,已知所有这些这些学生的原始成绩均分布在[50,100]内,发布成绩使用等级制,各等级划分标准见表,规定:A,B,C三级为合格等级,D为不合格等级.为了解该校高三年级学生身体素质情况,从中抽取了n名学生的原始成绩作为样本进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图如图所示,样本中分数在80分及以上的所有数据的茎叶图如图所示.(1)求n和频率分布直方图中的x,y的值;(2)根据样本估计总体的思想,以事件发生的频率作为相应事件发生的概率,若在该校高三学生中任选3人,求至少有1人成绩是合格等级的概率;(3)在选取的样本中,从A,C两个等级的学生中随机抽取了3名学生进行调研,记ξ表示抽取的3名学生中为C等级的学生人数,求随机变量ξ的分布列及数学期望.21.(本题满分12分)已知函数f(x)=lnx﹣,g(x)=﹣ax+b.(I)讨论函数h(x)=f(x)﹣g(x)单调区间;(II)若直线g(x)=﹣ax+b是函数f(x)=lnx﹣图象的切线,求b﹣a的最小值.选做题请从22、23题中任选一题作答,共10分。

2018年湖南省衡阳市中考真题数学试卷(word版含答案)

2018年湖南省衡阳市初中学业水平暨高级中等学校招生考试试卷数 学注意事项:1.本试卷共8页,三大题,满分100分,考试时间100分钟。

请用钢笔或圆珠笔直接答在试卷上。

参考公式:y=a x 2+bx+c(a ≠0)图像的一选择题(每小题3分,共18分)下列各小题均有四个答案,其中只有一个正确答案,请把正确答案写在题后的括号内。

1.21-的绝对值是A. 2-B. 2C. 21-D. 212.从n 个苹果和3个雪梨中,任选1个,若选中苹果的概率是12,则n 的值是( ) A . 6 B . 3 C . 2 D . 13.如图,将三角尺的直角顶点放在直尺的一边上,130250∠=∠=°,°,则3∠的度数等于( ) A .50° B .30° C .20° D .15°4.如图,已知⊙O 的两条弦AC ,BD 相交于点E ,∠A=70o ,∠c=50o , 那么sin ∠AEB 的值为( ) A. 21 B.33 C.22 D. 23第3题 第4题1235.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份 平均每月的增长率为x ,那么x 满足的方程是( ) A 、182)1(502=+x B .182)1(50)1(50502=++++x x C 、50(1+2x)=182D .182)21(50)1(5050=++++x x6.如图6,在ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,BG ⊥AE ,垂足为G ,BG=24,则ΔCEF 的周长为( ) A.8 B.9.5 C.10 D.11.5二填空题(每空3分,共27分)7.3的绝对值是8.1若523m x y +与3n x y 的和是单项式,则m n = .。

9.据统计,去年我国粮食产量达10570亿斤,这个数用科学记数法可表示为 亿斤.10.某校九年级(2)班(1)组女生的体重(单位:kg )为:38,40,35,36,65,42,42,则这组数据的中位数是 .11.如图所示,AB ∥CD ,∠ABE =66°,∠D =54°,则∠E 的度数为_______________.12.如图,已知双曲线)0k (xk y >=经过直角三角形OAB 斜边OB 的中点D ,与直角边AB 相交于点C .若△OBC 的面积为3,则k =____________.第11题 第12题13.如图,已知零件的外径为25mm ,现用一个交叉卡钳(两条尺长AC 和BD相等,OC=OD )量零件的内孔直径AB .若OC ∶OA=1∶2,量得CD =10mm ,则零件的厚度_____x mm =.第13题 第14题14.如图7,在Rt ABC △中,9042C AC BC ===∠°,,,分别以AC .BC 为直径画半圆,则图中阴影部分的面积为 .(结果保留π)15.如下图是一组有规律的图案,第1个 图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n (n 是正整数)个图案中由 个基础图形组成. -8个小题,共75分) 16.(8分) 先化简再求值:244()33x x x x x ---÷--5x =.17.(9分)已知:如图,在等边三角形ABC 的AC D ,BC 的延长线上取一点E ,使 CE = CD .求证:BD = DE(1) (2) (3) …… C AB18.(9分)在“首届中国西部(银川)房·车生活文化节”期间,某汽车经销商推出A B C D 、、、四种型号的小轿车共1000辆进行展销.C 型号轿车销售的成交率为50%,其它型号轿车的销售情况绘制在图1和图2两幅尚不完整的统计图中. (1)参加展销的D 型号轿车有多少辆? (2)请你将图2的统计图补充完整;(3)通过计算说明,哪一种型号的轿车销售情况最好?(4)若对已售出轿车进行抽奖,现将已售出A B C D 、、、四种型号轿车的发票(一车一票)放到一起,从中随机抽取一张,求抽到A 型号轿车发票的概率.19.(9分)为申办2018年冬奥会,须改变哈尔滨市的交通状况。

湖南省衡阳市2018年中考数学试题(含答案)【精品】.doc

12018年衡阳市初中学业水平考试试卷数学一、选择题(本大题共12个小题,每小题3分,满分36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.-4的相反数是( )A .4B .-4C .14-D .142.2018年我市财政计划安排社会保障和公共卫生等支出约1800000000元支持民生幸福工程,数1800000000用科学记数法表示为( )A .81810⨯ B .81.810⨯ C .91.810⨯ D .100.1810⨯ 3.下列生态环保标志中,是中心对称图形的是( )A .B .C .D .4.如图是由5个大小相同的小正方体摆成的立体图形,它的主视图是( )A .B .C .D . 5.已知抛一枚均匀硬币正面朝上的概率为12,下列说法错误..的是( ) A .连续抛一枚均匀硬币2次必有1次正面朝上 B .连续抛一枚均匀硬币10次都可能正面朝上C .大量反复抛一枚均匀硬币,平均每100次有50次正面朝上D .通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的 6.下列各式中正确的是( )A3=± B3=- C3= D=7.下面运算结果为6a 的是( )2A .33a a +B .82a a ÷C .23a a ⋅ D .23()a -8.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x 万千克,根据题意,列方程为( ) A .3036101.5x x -= B .3030101.5x x -= C .3630101.5x x -= D .3036101.5x x+= 9.下列命题是假命题...的是( ) A .正五边形的内角和为540 B .矩形的对角线相等 C .对角线互相垂直的四边形是菱形 D .圆内接四边形的对角互补10.不等式组10260x x +>⎧⎨-≤⎩的解集在数轴上表示正确的是( )A .B .C .D . 11.对于反比例函数2y x=-,下列说法不正确...的是( ) A .图象分布在第二、四象限 B .当0x >时,y 随x 的增大而增大 C .图象经过点(1,2)-D .若点11(,)A x y ,22(,)B x y 都在图象上,且12x x <,则12y y <12.如图,抛物线2y ax bx c =++与x 轴交于点(1,0)A -,顶点坐标(1,)n ,与y 轴的交点在(0,2),(0,3)之间(包含端点),则下列结论: ①30a b +<;②213a -≤≤-;③对于任意实数m ,2a b am bm +≥+总成立;④关于x 的方程21ax bx c n ++=-有两个不相等的实数根.其中结论正确的个数为( )A .1个B .2个C .3个D .4个3 二、填空题(本大题共6个小题,每小题3分,满分18分.)13.如图,点A 、B 、C 、D 、O 都在方格纸的格点上,若COD ∆是由AOB ∆绕点O 按顺时针方向旋转而得到的,则旋转的角度为 .14.某公司有10名工作人员,他们的月工资情况如下表,根据表中信息,该公司工作人员的月工资的众数是 .15.计算:2111x x x -=++ . 16.将一副三角板如图放置,使点A 落在DE 上,若//BC DE ,则AEC ∠的度数为 .17.如图,ABCD 的对角线相交于点O ,且AD CD ≠,过点O 作OM AC ⊥,交AD 于点M .如果CDM ∆的周长为8,那么ABCD 的周长是 .18.如图,在平面直角坐标系中,函数y x =和12y x =-的图象分别为直线1l ,2l ,过点11(1,)2A -作x 轴的垂线交1l 于点2A ,过点2A 作y 轴的垂线交2l 于点3A ,过点3A 作x 轴的垂线交1l 于点4A ,过点4A 作y 轴的垂线交2l 于点5A ,…依次进行下去,则点2018A 的横坐标为 .4三、解答题(本大题共8小题,19~20题每题6分,21~24题每题8分,25题10分,26题12分,满分66分.解答应写出文字说明、证明过程或演算步骤.)19.先化简,再求值:(2)(2)(1)x x x x +-+-,其中1x =-.20.如图,已知线段AC ,BD 相交于点E ,AE DE =,BE CE =.(1)求证:ABE DCE ∆≅∆; (2)当5AB =时,求CD 的长.21.“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,根据测试成绩(成绩都不低于50分)绘制出如图所示的部分频数分布直方图. 请根据图中信息完成下列各题:(1)将频数分布直方图补充完整;(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?(3)现将从包括小明和小强在内的4名成绩优异的同学中随机选取两名参加市级比赛,求小明与小5强同时被选中的概率.22.一名徒步爱好者来衡阳旅行,他从宾馆C 出发,沿北偏东30的方向行走2000米到达石鼓书院A 处,参观后又从A 处沿正南方向行走一段距离,到达位于宾馆南偏东45方向的雁峰公园B 处,如图所示.(1)求这名徒步爱好者从石鼓书院走到雁峰公园的途中与宾馆之间的最短距离;(2)若这名徒步爱好者以100米/分的速度从雁峰公园返回宾馆,那么他在15分钟内能否到达宾馆? 23.如图,O 是ABC ∆的外接圆,AB 为直径,BAC ∠的平分线交O 于点D ,过点D 作DE AC ⊥分别交AC 、AB 的延长线于点E 、F.(1)求证:EF 是O 的切线;(2)若4AC =,2CE =,求BD 的长度.(结果保留π)24.一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价为10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y (件)与销售价x (元/件)之间的函数关系如图所示.6(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)求每天的销售利润W (元)与销售价x (元/件)之间的函数关系式.并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?25.如图,已知直线24y x =-+分别交x 轴、y 轴于点A 、B ,抛物线经过A ,B 两点,点P 是线段AB 上一动点,过点P 作PC x ⊥轴于点C ,交抛物线于点D.(1)若抛物线的解析式为2224y x x =-++,设其顶点为M ,其对称轴交AB 于点N . ①求点M 、N 的坐标;②是否存在点P ,使四边形MNPD 为菱形?并说明理由;(2)当点P 的横坐标为1时,是否存在这样的抛物线,使得以B 、P 、D 为顶点的三角形与AOB ∆相似?若存在,求出满足条件的抛物线的解析式;若不存在,请说明理由.26.如图,在Rt ABC ∆中,90C ∠=,4AC BC cm ==,动点P 从点C 出发以1/cm s 的速度沿CA 匀速运动,同时动点Q 从点A/s 的速度沿AB 匀速运动,当点P 到达点A 时,点P 、Q 同时停止运动.设运动时间为()t s.(1)当t 为何值时,点B 在线段PQ 的垂直平分线上?(2)是否存在某一时刻t ,使APQ ∆是以PQ 为腰的等腰三角形?若存在,求出t 的值;若不存在,请说明理由;(3)以PC 为边,往CB 方向作正方形CPMN ,设四边形QNCP 的面积为S ,求S 关于t 的函数关系式.78910111213。

湖南省衡阳市第八中学2018届高三(实验班)上学期第三次月考数学(文)试题+Word版含答案

湖南省衡阳市第⼋中学2018届⾼三(实验班)上学期第三次⽉考数学(⽂)试题+Word版含答案衡阳⼋中2017年下期⾼三年级第三次⽉考试卷⽂数(试题卷)注意事项:1.本卷为衡阳⼋中⾼三年级实验班第三次⽉考试卷,分两卷。

其中共22题,满分150分,考试时间为120分钟。

2.考⽣领取到试卷后,应检查试卷是否有缺页漏页,重影模糊等妨碍答题现象,如有请⽴即向监考⽼师通报。

开考15分钟后,考⽣禁⽌⼊场,监考⽼师处理余卷。

3.请考⽣将答案填写在答题卡上,选择题部分请⽤2B铅笔填涂,⾮选择题部分请⽤⿊⾊0.5mm签字笔书写。

考试结束后,试题卷与答题卡⼀并交回。

★预祝考⽣考试顺利★第I卷选择题(每题5分,共60分)本卷共12题,每题5分,共60分,在每题后⾯所给的四个选项中,只有⼀个是正确的。

1.函数f(x)=x2+2x,集合A= {(x,y)|f(x)+f(y)≤2},B={(x,y)|f(x)≤f(y)},则由A∩B的元素构成的图形的⾯积是()A.πB.2πC.3πD.4π2.若复数z满⾜=i,其中i为虚数单位,则z=()A.1﹣i B.1+i C.﹣1﹣i D.﹣1+i3.等差数列{a n}的前n项和为S n,且S5=﹣15,a2+a5=﹣2,则公差d等于()A.5 B.4 C.3 D.24.已知实数x,y满⾜,若z=2x﹣2y﹣1,则z的取值范围为()A.(﹣,5)B.(﹣,0)C.[0,5]D.[﹣,5]5.随机掷两枚质地均匀的骰⼦,它们向上的点数之和不超过5的概率记为p1,点数之和⼤于5的概率记为p2,点数之和为偶数的概率记为p3,则()A.p1<p2<p3B.p2<p1<p3C.p1<p3<p2D.p3<p1<p26.已知a,b,c∈R,且满⾜2a<2b<2c<1,则()A.log(ab)<log(bc)<log(ac)B.log(ab)<log(ac)<log(bc)C.log(bc)<log(ac)<log(ab)D.log(ac)<log(ab)<log(bc)7.函数y=1+x+的部分图象⼤致为()A.B.C.D.8.将函数f(x)=cos(πx)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把图象上所有的点向右平移1个单位长度,得到函数g(x)的图象,则函数g(x)的单调区间是()A.[4k+1,4k+3](k∈Z) B.[2k+1,2k+3](k∈Z)C.[2k+1,2k+2](k∈Z)D.[2k ﹣1,2k+2](k∈Z)9.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)⼈,他在所著的《数学九章》中提出的多项式求值的秦九韶算法,f(x)=a n x n+a n﹣1x n﹣1+…+a1x+a0改写成如下形式f(x)=(…((a n x+a n﹣1)x+a n﹣2)x+…a1)x+a0.⾄今仍是⽐较先进的算法,特别是在计算机程序应⽤上,⽐英国数学家取得的成就早800多年.如图所⽰的程序框图给出了利⽤秦九韶算法求某多项式值的⼀个实例,若输⼊n,x的值分别为5,2,则输出v的值为()A.130 B.120 C.110 D.10010.已知矩形tanA=3tanC,E、F分别是BC、AD的中点,且BC=2AB=2,现沿EF将平⾯ABEF 折起,使平⾯ABEF⊥平⾯EFDC,则三棱锥A﹣FEC的外接球的体积为()A.B.C.D.11.已知F1,F2是两个定点,点P是以F1和F2为公共焦点的椭圆和双曲线的⼀个交点,并且PF1⊥PF2,e1和e2分别是上述椭圆和双曲线的离⼼率,则有()A. +=4 B. +=212.已知函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,若f(x1)=x1<x2,则关于x的⽅程3(f(x))2+2af(x)+b=0的不同实根个数为()A.3 B.4 C.5 D.6第II卷⾮选择题(共90分)⼆.填空题(每题5分,共20分)13.已知,为单位向量,且夹⾓为60°,若=+3, =2,则在⽅向上的投影为.14.抛物线 M:y2=2px(p>0)与椭圆有相同的焦点F,抛物线M与椭圆N交于A,B,若F,A,B共线,则椭圆N的离⼼率等于.15.已知数列{a n}满⾜a1=2,且,则{a n}的通项公式为.16.若奇函数f(x)在其定义域R上是减函数,且对任意的x∈R,不等式f(cos2x+sinx)三.解答题(共6题,共70分)17.(本题满分12分)已知函数f (x )=sin 2wx ﹣sin 2(wx ﹣)(x ∈R ,w 为常数且<w <1),函数f (x )的图象关于直线x=π对称.(I )求函数f (x )的最⼩正周期;(Ⅱ)在△ABC 中,⾓A ,B ,C 的对边分别为a ,b ,c ,若a=1,f (A )=.求△ABC ⾯积的最⼤值.18.(本题满分12分)如图(1)在直⾓梯形ABCD 中,AD ∥BC ,∠BAD=,AB=BC=AD=a ,E 是AD 的中点,O 是AC 与BE 的交点,将△ABE 沿BE 折起到图(2)中△A 1BE 的位置,得到四棱锥A 1﹣BCDE .(Ⅰ)求证:CD ⊥平⾯A 1OC ;(Ⅱ)当平⾯A1BE⊥平⾯BCDE时,若a=2,求四棱锥A1﹣BCDE的体积.19.(本题满分12分)微信是腾讯公司推出的⼀种⼿机通讯软件,⼀经推出便风靡全国,甚⾄涌现出⼀批在微信的朋友圈内销售商品的⼈(被称为微商).为了调查每天微信⽤户使⽤微信的时间,某经销化妆品的微商在⼀⼴场随机采访男性、⼥性⽤户各50名,其中每天玩微信超过6⼩时的⽤户为“A组”,否则为“B组”,调查结果如下:(Ⅰ)根据以上数据,能否有60%的把握认为“A组”⽤户与“性别”有关?(Ⅱ)现从调查的⼥性⽤户中按分层抽样的⽅法选出5⼈赠送营养⾯膜1份,求所抽取5⼈中“A组”和“B组”的⼈数;(Ⅲ)从(Ⅱ)中抽取的5⼈中再随机抽取3⼈赠送200元的护肤品套装,求“这3⼈中既有A 组⼜有B 组”的概率.参考公式:K 2=,其中n=a+b+c+d 为样本容量.参考数据:20.(本题满分12分)已知椭圆W :1by a x 2222=+(a >b >0)的左右两个焦点为F 1,F 2,且|F 1F 2|=2,椭圆上⼀动点P 满⾜|PF 1|+|PF 2|=23.(Ⅰ)求椭圆W 的标准⽅程及离⼼率;(Ⅱ)如图,过点F 1作直线l 1与椭圆W 交于点A ,C ,过点F 2作直线l 2⊥l 1,且l 2与椭圆W 交于点B ,D ,l 1与l 2交于点E ,试求四边形ABCD ⾯积的最⼤值.21.(本题满分12分)已知函数f(x)=ax2+bx+clnx(a,b,c∈R).(1)当a=﹣1,b=2,c=0时,求曲线y=f(x)在点(2,0)处的切线⽅程;(2)当a=1,b=0时,求函数f(x)的极值;(3)当b=﹣2a,c=1时,是否存在实数a,使得0<x≤2时,函数y=f(x)图象上的点都在所表⽰的平⾯区域内(含边界)?若存在,求出a的取值范围;若不存在,请说明理由.选做题请考⽣从22、23两题中任选⼀题作答,并将选择的题号填涂在答题卡上,共10分。

2018年湖南省衡阳八中实验班高考一模数学试卷(文科)【解析版】

2018年湖南省衡阳八中实验班高考数学一模试卷(文科)一、选择题本卷共12题,每题5分,共60分,在每题后面所给的四个选项中,只有一个是正确的.1.(5分)已知集合M={x|﹣1<x<2},N={x|x2﹣4x<0},则M∩N=()A.(0,4)B.(﹣1,4)C.(﹣1,2)D.(0,2)2.(5分)若复数z满足iz=1+2i,其中i为虚数单位,则在复平面上复数z对应的点的坐标为()A.(﹣2,﹣1)B.(﹣2,1)C.(2,1)D.(2,﹣1)3.(5分)设,则a,b,c的大小关系为()A.a>b>c B.a>c>b C.b>a>c D.c>b>a 4.(5分)已知公差不为0的等差数列{a n}满足a1,a3,a4成等比数列,S n为数列{a n}的前n项和,则的值为()A.2B.3C.﹣2D.﹣35.(5分)将函数f(x)=sin2x+cos2x的图象上的所有点向右平移个单位长度,得到函数g(x)的图象,则g(x)图象的一个对称中心是()A.(,0)B.(,0)C.(﹣,0)D.(,0)6.(5分)设实数x,y满足,则的取值范围为()A.B.C.D.7.(5分)程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作.它问世后不久便风行宇内,成为明清之际研习数学者必读的教材,而且传到朝鲜、日本及东南亚地区,对推动汉字文化圈的数学发展起了重要的作用.卷八中第33问是:“今有三角果一垛,底阔每面七个.问该若干?”如图是解决该问题的程序框图.执行该程序框图,求得该垛果子的总数S为()A.28B.56C.84D.1208.(5分)记集合A={(x,y)|x2+y2≤16},集合B={(x,y)|x+y﹣4≤0,(x,y)∈A}表示的平面区域分别为Ω1,Ω2.若在区域Ω1内任取一点P(x,y),则点P落在区域Ω2中的概率为()A.B.C.D.9.(5分)某几何体的三视图如图所示,其中俯视图中六边形ABCDEF是边长为1的正六边形,点G为AF的中点,则该几何体的外接球的表面积是()A.B.C.D.10.(5分)函数f(x)=的图象大致形状是()A.B.C.D.11.(5分)已知双曲线﹣=1(a>0,b>0)的左、右焦点分别为F1、F2,点P在双曲线的右支上,且|PF1|=4|PF2|,则此双曲线的离心率e的最大值为()A.B.C.D.12.(5分)已知f(x)是定义在(0,+∞)上的非负可导函数,且满足xf'(x)+f(x)≤0,对任意的0<a<b,则必有()A.af(b)≤bf(a)B.bf(a)≤af(b)C.af(a)≤f(b)D.bf(b)≤f(a)二.填空题(每题5分,共20分)13.(5分)已知向量,.若,则k=.14.(5分)已知椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,过F1且与x轴垂直的直线交椭圆于A、B两点,直线AF2与椭圆的另一个交点为C,若S=3S,则椭圆的离心率为.△ABC15.(5分)已知A,B是求O的球面上两点,且∠AOB=120°,C为球面上的动点,若三棱锥O﹣ABC体积的最大值为,则求O的表面积为.16.(5分)若函数f(x),g(x)满足:∀x∈(0,+∞),均有f(x)>x,g(x)<x成立,则称“f(x)与g(x)关于y=x分离”.已知函数f(x)=a x与g (x)=log a x(a>0,且a≠1)关于y=x分离,则a的取值范围是.三.解答题(共8题,共70分)17.(12分)在锐角△ABC中,角A,B,C的对边分别为a,b,c,向量,向量,且.(Ⅰ)求角B的大小;(Ⅱ)若sin A sin C=sin2B,求a﹣c的值.18.(12分)如图:三棱柱ABC﹣A1B1C1的所有棱长均相等,AA1⊥平面ABC,E为AA1的中点.(1)求证:平面BC1E⊥平面BCC1B1;(2)求直线BC1与平面BB1A1A所成角的正弦值.19.(12分)交强险是车主必须为机动车购买的险种.若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为a元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如表:某机构为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:(Ⅰ)求一辆普通6座以下私家车在第四年续保时保费高于基本保费的频率;(Ⅱ)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车.假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元,且各种投保类型车的频率与上述机构调查的频率一致,完成下列问题:①若该销售商店内有六辆(车龄已满三年)该品牌二手车,某顾客欲在店内随机挑选两辆车,求这两辆车中恰好有一辆为事故车的概率;②若该销售商一次购进120辆(车龄已满三年)该品牌二手车,求一辆车盈利的平均值.20.(12分)如图,在平面平直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率e=,在顶点为A(﹣2,0),过点A作斜率为k(k≠0)的直线l交椭圆C于点D,交y轴于点E.(1)求椭圆C的方程;(2)已知点P为AD的中点,是否存在定点Q,对于任意的k(k≠0)都有OP ⊥EQ?若存在,求出点Q的坐标,若不存在,说明理由;(3)若过点O作直线l的平行线交椭圆C于点M,求的最小值.21.(12分)已知函数.(1)当a=﹣1时,求函数f(x)的单调增区间;(2)若函数f(x)在(0,+∞)上是增函数,求实数a的取值范围;(3)若a>0,且对任意x1,x2∈(0,+∞),x1≠x2,都有|f(x1)﹣f(x2)|>2|x1﹣x2|,求实数a的最小值.选做题请考生从22、23题中任选一题作答,[选修4-4.坐标系与参数方程]共10分.22.(10分)在平面直角坐标系xoy中,以坐标原点为极点,以x轴的非负半轴为极轴,建立极坐标系,已知直线l的参数方程为(t为参数),圆C 的极坐标方程是ρ=1.(1)求直线l与圆C的公共点个数;(2)在平面直角坐标系中,圆C经过伸缩变换得到曲线C′,设M(x,y)为曲线C′上一点,求4x2+xy+y2的最大值,并求相应点M的坐标.[选修4-5.不等式选讲]23.已知函数f(x)=|2x﹣a|+a.(1)当a=3时,求不等式f(x)≤6的解集;(2)设函数g(x)=|2x﹣3|,∀x∈R,f(x)+g(x)≥5,求a的取值范围.2018年湖南省衡阳八中实验班高考数学一模试卷(文科)参考答案与试题解析一、选择题本卷共12题,每题5分,共60分,在每题后面所给的四个选项中,只有一个是正确的.1.(5分)已知集合M={x|﹣1<x<2},N={x|x2﹣4x<0},则M∩N=()A.(0,4)B.(﹣1,4)C.(﹣1,2)D.(0,2)【解答】解:由N中不等式变形得:x(x﹣4)<0,解得:0<x<4,即N=(0,4),∵M=(﹣1,2),∴M∩N=(0,2),故选:D.2.(5分)若复数z满足iz=1+2i,其中i为虚数单位,则在复平面上复数z对应的点的坐标为()A.(﹣2,﹣1)B.(﹣2,1)C.(2,1)D.(2,﹣1)【解答】解:z=,∴在复平面上复数z对应的点的坐标为(2,﹣1).故选:D.3.(5分)设,则a,b,c的大小关系为()A.a>b>c B.a>c>b C.b>a>c D.c>b>a【解答】解:∵,>20160=1,0=log 20161>b=>=,c=<=,∴a>b>c.a,b,c的大小关系为a>b>c.故选:A.4.(5分)已知公差不为0的等差数列{a n}满足a1,a3,a4成等比数列,S n为数列{a n}的前n项和,则的值为()A.2B.3C.﹣2D.﹣3【解答】解:设等差数列的公差为d,首项为a1,所以a3=a1+2d,a4=a1+3d.因为a1、a3、a4成等比数列,所以(a1+2d)2=a1(a1+3d),解得:a1=﹣4d.所以==2,故选:A.5.(5分)将函数f(x)=sin2x+cos2x的图象上的所有点向右平移个单位长度,得到函数g(x)的图象,则g(x)图象的一个对称中心是()A.(,0)B.(,0)C.(﹣,0)D.(,0)【解答】解:将函数f(x)=sin2x+cos2x=2(sin2x+sin2x)=2sin(2x+)图象上所有点向右平移个单位长度,得到函数g(x)=2sin2x的图象,令2x=kπ,求得x=,k∈Z,令k=1,可得g(x)图象的一个对称中心为(,0),故选:D.6.(5分)设实数x,y满足,则的取值范围为()A.B.C.D.【解答】解:画出可行域:设k=表示可行域中的点与点(0,0)连线的斜率,由图知k∈[,2]∴∈[,2]∴=k﹣取值范围为故选:D.7.(5分)程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作.它问世后不久便风行宇内,成为明清之际研习数学者必读的教材,而且传到朝鲜、日本及东南亚地区,对推动汉字文化圈的数学发展起了重要的作用.卷八中第33问是:“今有三角果一垛,底阔每面七个.问该若干?”如图是解决该问题的程序框图.执行该程序框图,求得该垛果子的总数S为()A.28B.56C.84D.120【解答】解:模拟程序的运行,可得i=0,n=0,S=0执行循环体,i=1,n=1,S=1不满足条件i≥7,执行循环体,i=2,n=3,S=4不满足条件i≥7,执行循环体,i=3,n=6,S=10不满足条件i≥7,执行循环体,i=4,n=10,S=20不满足条件i≥7,执行循环体,i=5,n=15,S=35不满足条件i≥7,执行循环体,i=6,n=21,S=56不满足条件i≥7,执行循环体,i=7,n=28,S=84满足条件i≥7,退出循环,输出S的值为84.故选:C.8.(5分)记集合A={(x,y)|x2+y2≤16},集合B={(x,y)|x+y﹣4≤0,(x,y)∈A}表示的平面区域分别为Ω1,Ω2.若在区域Ω1内任取一点P(x,y),则点P落在区域Ω2中的概率为()A.B.C.D.【解答】解:由题意,两个区域对应的图形如图,其中,,由几何概型的公式可得点P落在区域Ω2中的概率为;故选:B.9.(5分)某几何体的三视图如图所示,其中俯视图中六边形ABCDEF是边长为1的正六边形,点G为AF的中点,则该几何体的外接球的表面积是()A.B.C.D.【解答】解:如图,可得该几何体是六棱锥P﹣ABCDEF,底面是正六边形,有一P AF侧面垂直底面,且P在底面的投影为AF中点,过底面中心N作底面垂线,过侧面P AF的外心M作面P AF的垂线,两垂线的交点即为球心O,设△P AF的外接圆半径为r,,解得r=,∴,则该几何体的外接球的半径R=,∴表面积是则该几何体的外接球的表面积是S=4πR2=.故选:C.10.(5分)函数f(x)=的图象大致形状是()A.B.C.D.【解答】解:函数f(x)=是奇函数,排除A,C,当x→+∞时,f(x)>0,排除D,故选:B.11.(5分)已知双曲线﹣=1(a>0,b>0)的左、右焦点分别为F1、F2,点P在双曲线的右支上,且|PF1|=4|PF2|,则此双曲线的离心率e的最大值为()A.B.C.D.【解答】解:∵P在双曲线的右支上,∴由双曲线的定义可得|PF1|﹣|PF2|=2a,∵|PF1|=4|PF2|,∴4|PF2|﹣|PF2|=2a,即|PF2|=a,根据点P在双曲线的右支上,可得|PF2|=a≥c﹣a,∴a≥c,即e≤,此双曲线的离心率e的最大值为,故选:C.12.(5分)已知f(x)是定义在(0,+∞)上的非负可导函数,且满足xf'(x)+f(x)≤0,对任意的0<a<b,则必有()A.af(b)≤bf(a)B.bf(a)≤af(b)C.af(a)≤f(b)D.bf(b)≤f(a)【解答】解:xf′(x)+f(x)≤0⇒[xf(x)]′≤0⇒函数F(x)=xf(x)在(0,+∞)上为常函数或递减,又0<a<b且f(x)非负,于是有:af(a)≥bf(b)≥0①>>0②,①②两式相乘得:≥≥0⇒af(b)≤bf(a),故选:A.二.填空题(每题5分,共20分)13.(5分)已知向量,.若,则k=2.【解答】解:向量,.若,则k cos﹣2sin=0,即﹣k﹣2×(﹣)=0,解得k=2.故答案为:2.14.(5分)已知椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,过F1且与x轴垂直的直线交椭圆于A、B两点,直线AF2与椭圆的另一个交点为C,=3S,则椭圆的离心率为.若S△ABC【解答】解:如图所示,=3S,∵S△ABC∴|AF2|=2|F2C|.A,直线AF2的方程为:y﹣0=(x﹣c),化为:y=(x﹣c),代入椭圆方程+=1(a>b>0),可得:(4c2+b2)x2﹣2cb2x+b2c2﹣4a2c2=0,∴x C×(﹣c)=,解得x C=.∵,∴c﹣(﹣c)=2(﹣c).化为:a2=5c2,解得.=3S,则,可得C的坐标为另解:设A(﹣c,2m),由S△ABC(2c,﹣m),代入椭圆方程,消去m即可得出.故答案为:.15.(5分)已知A,B是求O的球面上两点,且∠AOB=120°,C为球面上的动点,若三棱锥O﹣ABC体积的最大值为,则求O的表面积为64π.【解答】解:如图所示,当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,设球O的半径为R,此时V O﹣ABC =V C﹣AOB==,故R=4,则球O的表面积为4πR2=64π,故答案为:64π.16.(5分)若函数f(x),g(x)满足:∀x∈(0,+∞),均有f(x)>x,g(x)<x成立,则称“f(x)与g(x)关于y=x分离”.已知函数f(x)=a x与g (x)=log a x(a>0,且a≠1)关于y=x分离,则a的取值范围是(,+∞).【解答】解:由题意,a>1.故问题等价于a x>x(a>1)在区间(0,+∞)上恒成立.构造函数f(x)=a x﹣x,则f′(x)=a x lna﹣1,由f′(x)=0,得x=log a(log a e),x>log a(log a e)时,f′(x)>0,f(x)递增;0<x<log a(log a e),f′(x)<0,f(x)递减.则x=log a(log a e)时,函数f(x)取到最小值,故有﹣log a(log a e)>0,解得a>.故答案为:(,+∞).三.解答题(共8题,共70分)17.(12分)在锐角△ABC中,角A,B,C的对边分别为a,b,c,向量,向量,且.(Ⅰ)求角B的大小;(Ⅱ)若sin A sin C=sin2B,求a﹣c的值.【解答】解:(I)∵,∴2sin(A+C)﹣cos2B=0,∴﹣2sin B cos B=cos2B,即sin2B=﹣cos2B,解得tan2B=,∵,∴2B∈(0,π),∴,解得B=.(II)∵sin A sin C=sin2B,由正弦定理可得:ac=b2,由余弦定理可得:b2=a2+c2﹣2ac cos B,∴ac=a2+c2﹣2ac cos,化为(a﹣c)2=0,解得a﹣c=0.18.(12分)如图:三棱柱ABC﹣A1B1C1的所有棱长均相等,AA1⊥平面ABC,E为AA1的中点.(1)求证:平面BC1E⊥平面BCC1B1;(2)求直线BC1与平面BB1A1A所成角的正弦值.【解答】证明:(1)如图1,连接CB1交BC1于点O,则O为CB1与BC1的中点,连接EC,EB1,依题意有;EB=EC1=EC=EB1,…(2分)∴EO⊥CB1,EO⊥BC1,∵CB1∩BC1=O,∴EO⊥平面BCC1B1,∵OE⊆平面BC1E,∴平面EBC1⊥平面BCC1B1.…(5分)解:(2)如图2,取A1B1的中点为H,连接C1H、BH,∵AA1⊥平面ABC,∴平面A1B1C1⊥平面BB1A1A,平面A1B1C1∩平面BB1A1A=A1B1,又∵A1C1=B1C1,H为A1B1的中点,∴C1H⊥A1B1,∴C1H⊥平面BB1A1A,则∠C1BH为直线BC1与平面BB1A1A所成的角.…(8分)令棱长为2a,则C1H=,BC1=,∴所以直线BC1与平面BB1A1A 所成角的正弦值为.…(12分)19.(12分)交强险是车主必须为机动车购买的险种.若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为a元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如表:某机构为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:(Ⅰ)求一辆普通6座以下私家车在第四年续保时保费高于基本保费的频率;(Ⅱ)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车.假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元,且各种投保类型车的频率与上述机构调查的频率一致,完成下列问题:①若该销售商店内有六辆(车龄已满三年)该品牌二手车,某顾客欲在店内随机挑选两辆车,求这两辆车中恰好有一辆为事故车的概率;②若该销售商一次购进120辆(车龄已满三年)该品牌二手车,求一辆车盈利的平均值.【解答】解:(Ⅰ)一辆普通6座以下私家车第四年续保时保费高于基本保费的频率为p=.…(4分)(Ⅱ)①由统计数据可知,该销售商店内的六辆该品牌车龄已满三年的二手车有两辆事故车,设为b1,b2,四辆非事故车设为a1,a2,a3,a4.从六辆车中随机挑选两辆车共有(b1,b2),(b1,a1),(b1,a2),(b1,a3),(b1,a4),(b2,a1),(b2,a2),(b2,a3),(b2,a4),(a1,a2),(a1,a3),(a1,a4),(a2,a3),(a2,a4),(a3,a4),总共15种情况.…(6分)其中两辆车恰好有一辆事故车共有(b1,a1),(b1,a2),(b1,a3),(b1,a4),(b2,a1),(b2,a2),(b2,a3),(b2,a4),总共8种情况.所以该顾客在店内随机挑选的两辆车恰好有一辆事故车的概率为p=.…(8分)②由统计数据可知,该销售商一次购进120辆该品牌车龄已满三年的二手车有事故车40辆,非事故车80辆,…(10分)所以一辆车盈利的平均值为[(﹣5000)×40+10000×80]=5000元.…(12分)20.(12分)如图,在平面平直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率e=,在顶点为A(﹣2,0),过点A作斜率为k(k≠0)的直线l交椭圆C于点D,交y轴于点E.(1)求椭圆C的方程;(2)已知点P为AD的中点,是否存在定点Q,对于任意的k(k≠0)都有OP ⊥EQ?若存在,求出点Q的坐标,若不存在,说明理由;(3)若过点O作直线l的平行线交椭圆C于点M,求的最小值.【解答】解:(1)由椭圆的左顶点A(﹣2,0),则a=2,又e==,则c =,又b2=a2﹣c2=1,∴椭圆的标准方程为:;(2)由直线l的方程为y=k(x+2),由,整理得:(4k2+1)x2+16k2x+16k2﹣4=0,由x=﹣2是方程的根,由韦达定理可知:x1x2=,则x2=,当x2=,y2=k(+2)=,∴D(,),由P为AD的中点,∴P点坐标(,),直线l的方程为y=k(x+2),令x=0,得E(0,2k),假设存在顶点Q(m,n),使得OP⊥EQ,则⊥,即•=0,=(,),=(m,n﹣2k),∴×m+×(n﹣2k)=0即(4m+2)k﹣n=0恒成立,∴,即,∴顶点Q的坐标为(﹣,0);(3)由OM∥l,则OM的方程为y=kx,,则M点横坐标为x=±,OM∥l,可知=,=,=,=,=+≥2,当且仅当=,即k=±时,取等号,∴当k=±时,的最小值为2.21.(12分)已知函数.(1)当a=﹣1时,求函数f(x)的单调增区间;(2)若函数f(x)在(0,+∞)上是增函数,求实数a的取值范围;(3)若a>0,且对任意x1,x2∈(0,+∞),x1≠x2,都有|f(x1)﹣f(x2)|>2|x1﹣x2|,求实数a的最小值.【解答】解:(1)当a=﹣1时,f(x)=﹣lnx+x2+1.则f′(x)=﹣+x.令f′(x)>0,得,即,解得:x<0或x>1.因为函数的定义域为{x|x>0},所以函数f(x)的单调增区间为(1,+∞).(2)由函数.因为函数f(x)在(0,+∞)上是增函数,所以f′(x)===≥0对x∈(0,+∞)恒成立.即x+a≥0对x∈(0,+∞)恒成立.所以a≥0.即实数a的取值范围是[0,+∞).(3)因为a>0,由(2)知函数f(x)在(0,+∞)上是增函数.因为x1,x2∈(0,+∞),x1≠x2,不妨设x1>x2,所以f(x1)>f(x2).由|f(x1)﹣f(x2)|>2|x1﹣x2|恒成立,可得f(x1)﹣f(x2)>2(x1﹣x2),即f(x1)﹣2x1>f(x2)﹣2x2恒成立.令g(x)=f(x)﹣2x=,则g(x)在(0,+∞)上应是增函数.所以g′(x)=+x+(a+1)﹣2=≥0对x∈(0,+∞)恒成立.即x2+(a﹣1)x+a≥0对x∈(0,+∞)恒成立.即a≥﹣对x∈(0,+∞)恒成立因为﹣=﹣(x+1+﹣3)≤3﹣2(当且仅当x+1=即x=﹣1时取等号),所以a≥3﹣2.所以实数a的最小值为3﹣2.选做题请考生从22、23题中任选一题作答,[选修4-4.坐标系与参数方程]共10分.22.(10分)在平面直角坐标系xoy中,以坐标原点为极点,以x轴的非负半轴为极轴,建立极坐标系,已知直线l的参数方程为(t为参数),圆C 的极坐标方程是ρ=1.(1)求直线l与圆C的公共点个数;(2)在平面直角坐标系中,圆C经过伸缩变换得到曲线C′,设M(x,y)为曲线C′上一点,求4x2+xy+y2的最大值,并求相应点M的坐标.【解答】解:(Ⅰ)直线l的参数方程(t为参数)化为普通方程是x﹣y﹣=0,圆C的极坐标方程ρ=1化为普通方程是x2+y2=1;∵圆心(0,0)到直线l的距离为d==1,等于圆的半径r,∴直线l与圆C的公共点的个数是1;(Ⅱ)圆C的参数方程是,(0≤θ<2π);∴曲线C′的参数方程是,(0≤θ<2π);∴4x2+xy+y2=4cos2θ+cosθ•2sinθ+4sin2θ=4+sin2θ;当θ=或θ=时,4x2+xy+y2取得最大值5,此时M 的坐标为(,)或(﹣,﹣).[选修4-5.不等式选讲]23.已知函数f(x)=|2x﹣a|+a.(1)当a=3时,求不等式f(x)≤6的解集;(2)设函数g(x)=|2x﹣3|,∀x∈R,f(x)+g(x)≥5,求a的取值范围.【解答】解:(1)a=3时,f(x)≤6等价于|2x﹣3|+3≤6,即|2x﹣3|≤3,解得:0≤x≤3,故不等式的解集是{x|0≤x≤3};(2)x∈R时,f(x)+g(x)=|2x﹣3|+|2x﹣a|+a≥5,故2|x﹣|+2|x﹣|+a≥5,故|﹣|+≥,故|a﹣3|+a≥5①,a≤3时,3﹣a+a≥5,无解,a>3时,a﹣3+a≥5,解得:a≥4,故a的范围是[4,+∞).第31页(共31页)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年衡阳县创新实验班招生数学试卷及答案满分:120分时量:100分钟姓名:___________准考证号:____________________一、选择题(本大题共6道小题,每题5分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1、在平面直角坐标系中,若一点的横坐标与纵坐标互为相反数,则该点一定不在.直线上 .抛物线上A x y =B 2x y =.直线上 .双曲线上C x y -=D 1=xy 2、若,将这四个数按从小到大的顺序排列,则从左数起01<<-a a a a a 1,,,33第个数应为2 a A .3.a B 3.a C aD 1.3、如图是一个无盖正方体盒子的表面展开图,A ,B ,C 为图上三点,则在正方体盒子中,∠ABC 的度数为A. 150°B .120°C .90°D .60°4、已知是一元二次方程的两个根,则b a ,0732=-+x x =-+b a a 22 10.A 11.B 12.C 13.D 5、若一直角三角形的斜边长为,内切圆半径是,则内切圆的面积与三角形c r 面积之比是rc rA 2.+πrc rB +π.rc rC +2.π22.r c rD +π6、反比例函数的图象过面积等于的长方形的顶点,为)0(>=x xky 1OABC B P 函数图象上任意一点,则的最小值为OP 1.A 2.B 3.C 2.D二、填空题(本大题共7道小题,每题5分,满分35分)7、化简所得的结果为__________.144)2(|2|22+---+-x x x x 8、同时抛掷两枚质地均匀的色子,(色子为六个面分别标有1,2,3,4,5,6点的正方体),朝上的两个面的点数之和能被3整除的概率为_________.9、若抛物线中不管取何值时,它的图象都通过定点,则122+-+=p px x y p 该定点的坐标为__________.10、如图, 边长为2的正方形ABCD 绕点A 逆时针旋转300到正方形AB’C’D’,则图中阴影部分的面积为_________.11、已知为正实数,且,则的值为__________.x 2)2(2322=+-+x x xx x12、已知不等式的解都能使不等式成立,则的取值范围63<x 5)1(->-a x a a 是_________.13、有一张矩形纸片,,将纸片折叠使两点重合,那ABCD 5,12==AD AB C A ,么折痕长是________.三、解答题(本大题共6道小题,满分55分,解答应写出文字说明、证明过程或演算步骤.)14、(本小题满分8分) 已知关于的一元二次方程的两个不相等的实数根都在x )0(0122≠=+-a x ax 和之间(不包括和),求实数的取值范围.0202a 15、(本小题满分9分)某企业近期决定购买台机器用于生产一种零件,现有甲、乙两种机器供6选择,其中每种机器的价格和每台机器日生产零件数如下表所示。

经预算,本次购买机器的总资金数不能超过万元.20(1)按该企业的要求,可以有几种购买方案?(2)若该企业购进的台机器的日生产零件数不少于个,为了节约资金,6250应选择怎样的方案购买机器?16、(本小题满分8分)设实数满足,求的值.y x ,y x x y y x ≠=+=+,52,5222yxx y +甲乙价格(万元/台)43每台日产量(个)604017、(本小题满分8分)如图,四边形是正方形,点是边的中点,点是边上不ABCD N CD M AD 同于点的点,且,求证:.D A ,31tan =∠ABM MBC BMN ∠=∠18、(本小题满分12分)已知二次函数()的图象与轴交于两点,其顶c bx ax y ++=20≠a x B 、A 点为.C (1)若为直角三角形,求的值;ABC ∆ac b 42-(2)设二次函数的图象与轴交于两点,35)22(22++++-=m m x m x y x F 、E 与一次函数的图象也交于两点,且其中纵坐标较小的点记为点.13-=x y G (i )用含有的式子表示点的坐标;m G (ii )若为直角三角形,求的值.EFG ∆m 19、(本小题满分10分)若干个1与2排成一行:1,2,1,2,2,1,2,2,2,1,2,2,2,2,1,2,…… ,规则是:第1个数是1,其后写1个2,第3个数是1,其后写2个2,……,一般地,先写一行1,再在第k 个1与第k +1个1之间插入k 个2(k =1,2,3,……).试问:(1)第2017个数是1还是2?(2)前2017个数的和是多少?前2017个数的平方和是多少?(3)前2017个数两两乘积的和是多少?2018年数学试卷答案满分:120分时量:100分钟姓名:___________准考证号:____________________一、选择题(本大题共6道小题,每题5分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1、在平面直角坐标系中,若一点的横坐标与纵坐标互为相反数,则该点一定不在.直线上 .抛物线上A x y =B 2x y =.直线上 .双曲线上C x y -=D 1=xy 答案:D2、若,将这四个数按从小到大的顺序排列,则从左数起01<<-a a a a a 1,,,33第个数应为2 a A .3.a B 3.a C aD 1.答案:C3、如图是一个无盖正方体盒子的表面展开图,A ,B ,C 为图上三点,则在正方体盒子中,∠ABC 的度数为A. 150°B .120°C .90°D .60°答案:D4、已知是一元二次方程的两个根,则b a ,0732=-+x x =-+b a a 22 10.A 11.B 12.C 13.D 答案:A6、若一直角三角形的斜边长为,内切圆半径是,则内切圆的面积与三角形c r 面积之比是rc rA 2.+πrc rB +π.rc rC +2.π22.r c rD +π答案:B6、反比例函数的图象过面积等于的长方形的顶点,为)0(>=x xky 1OABC B P 函数图象上任意一点,则的最小值为OP 1.A 2.B 3.C 2.D答案:B二、填空题(本大题共7道小题,每题5分,满分35分)7、化简所得的结果为__________.144)2(|2|22+---+-x x x x 答案:-39、同时抛掷两枚质地均匀的色子,(色子为六个面分别标有1,2,3,4,5,6点的正方体),朝上的两个面的点数之和能被3整除的概率为_________.答案:319、若抛物线中不管取何值时,它的图象都通过定点,则122+-+=p px x y p 该定点的坐标为__________.答案:)5,2(10、如图, 边长为2的正方形ABCD 绕点A 逆时针旋转300到正方形AB’C’D’,则图中阴影部分的面积为_________. 3344-11、已知为正实数,且,则的值为__________.x 2)2(2322=+-+x x xx x 答案:12-12、已知不等式的解都能使不等式成立,则的取值范围63<x 5)1(->-a x a a 是_________.答案:13≤≤-a 13、有一张矩形纸片,,将纸片折叠使两点重合,那ABCD 5,12==AD AB C A ,么折痕长是________.答案:1265三、解答题(本大题共5道小题,满分55分,解答应写出文字说明、证明过程或演算步骤.)14、(本小题满分10分) 已知关于的一元二次方程的两个不相等的实数根都在x )0(0122≠=+-a x ax 和之间(不包括和),求实数的取值范围.0202a 解:经分析,依题意可得:0>a8分143143012100)2(0)0(210<<⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧<>>>⇒⎪⎪⎩⎪⎪⎨⎧>∆>><<a a a a f f a 15、(本小题满分10分)某企业近期决定购买台机器用于生产一种零件,现有甲、乙两种机器供选择,6其中每种机器的价格和每台机器日生产零件数如下表所示。

经预算,本次购买机器的总资金数不能超过万元.20(3)按该企业的要求,可以有几种购买方案?(4)若该企业购进的台机器的日生产零件数不少于个,为了节约资金,6250应选择怎样的方案购买机器?答:(1)设购买甲机器x 台,则乙机器6-x 台,依题意有220)6(34≤⇒≤-⨯+x x x 故有三种方案,分别为购买0台甲机器,6台乙机器;购买1台甲机器,5台乙机器;购买2台甲机器,4台乙机器; 4分(2)若用方案1,所需资金万元,生产零件数为,生产数1863=⨯240640=⨯未达要求,故方案1不能选择;若用方案2,所需资金万元,生产零件数为;195314=⨯+⨯260540160=⨯+⨯若用方案3,所需资金万元,生产零件数为;204324=⨯+⨯280440260=⨯+⨯方案2和方案3都达到生产要求,但是方案2在达到生产要求的前提下比方案3节约了一万元,故该企业选择方案2进行购买机器比较好。

9分16、(本小题满分12分)设实数满足,求的值.y x ,y x x y y x ≠=+=+,52,5222yxx y +甲乙价格(万元/台)43每台日产量(个)6040解:① ②522=+y x 522=+x y ①+②得10)(22)(10)(2222=++-+⇒=+++y x xy y x y x y x ①-②得2)(),(222=+⇒≠-=-y x y x y x y x 把代入上式中可以得到2=+y x 1-=xy 又62)(222=-+=+xy y x y x 故 8分622-=+=+xyy x y x x y 17、(本小题满分10分)如图,四边形是正方形,点是边的中点,点是边上不同于ABCD N CD M AD 点的点,且,求证:.D A ,31tan =∠ABM MBC BMN ∠=∠证明:延长MN 和BC 交于点E ,过点M 作MM’垂直BC 交BC 于M’点设正方形边长为,,所以,a 331tan =∠ABM a AM =aMD 2=,ECN MDN ∆≅∆aCE BC BE 5=+=aEM MM ME 5''22=+= 8分是等腰三角形,即故BEM BE ME ∆=∴MBC BMN ∠=∠18、(本小题满分13分)已知二次函数()的图象与轴交于两点,其顶点为c bx ax y ++=20≠a x B 、A .C (3)若为直角三角形,求的值;ABC ∆ac b 42-(4)设二次函数的图象与轴交于两点,35)22(22++++-=m m x m x y x F 、E 与一次函数的图象也交于两点,且其中纵坐标较小的点记为点.13-=x y G (i )用含有的式子表示点的坐标;m G (ii )若为直角三角形,求的值.EFG ∆m 答:(1)由已知得,042>-ac b 令,||4||,24,0222,1a acb AB a ac b b x y -=-+-==则顶点C 到x 轴的距离为,由对称性及为直角三角形知|44|2ab ac -ABC ∆,两边平方得. 4分|44|2||422ab ac a ac b -=-442=-ac b (2)(i )由图象与轴有两个交点得,x 0)35(4)22(22>++-+=∆m m m ,32-<m 23)]1([35)22(222+++-=++++-=m m x m m x m x y 其顶点坐标为(),)23,1(++m m 32-<m 易观察出顶点坐标在一次函数的图象上,13-=x y 故点的坐标为.8分G )23,1(++m m (ii )若为直角三角形,由(1)的结论知EFG ∆.12分4)35(4)22(22=++-+m m m 14812-=⇒=--⇒m m 19解:(1)把该列数如下分组:1 第1组2 1 第2组第 11 页 共 11 页2 2 1 第3组2 2 2 1 第4组2 2 2 2 1 第5组-------2 2 2 2 2 1 第n 组 (有n -1个2)易得,第2017个数为第64组的第1个数,是2;---------3分(2)前2017个数的和为,---------------------------5分631195423971⨯+⨯=前2017个数的平方和是-----------------------7分22631195427879⨯+⨯=(3)记这2017个数为12122017122017122017222201712131201723242201720162017222221220172,397178792()()39717879a a a R a a a T a a a S a a a a a a a a a a a a a a S a a a a a a R T=+++==+++==+++++++++∴=+++-+++=-=- ,,记--------------------------------------10分21(39717879) 78804812S =-=。

相关文档
最新文档