《软件无线电》作业总结资料讲解

合集下载

软件无线电复习资料

软件无线电复习资料

复习与思考题第1 章1.什么是软件无线电?其主要特征是什么?2.无线电技术经历或正在经历哪几个阶段?各有什么特征?3.软件无线电产生的背景是什么?要解决什么问题?4.什么是SCA?其与SDR 有什么关系?5.软件无线电的实现技术有哪些?其发展的技术瓶颈有哪些?6.为什么软件无线电一定要采用“硬件通用化”的设计准则?在软件无线电中是如何体现“硬件通用化”这一设计思路的,请按照射频前端和信号处理单元分别加以解释。

7.你是如何理解软件无线电“功能软件化”这一本质特征的?为什么软件无线电的功能可以采用软件来实现?8.理想软件无线电跟实际软件无线电的主要区别是什么?Joseph Mitola 博士提出的理想软件无线电的重要意义是什么?9.软件无线电的结构如何?各部分的作用是什么?第2 章1.低通采样定理以及计算方法。

2.带通采样定理以及计算方法。

3.信号采样在软件无线电中的作用以及采样方式对软件无线电接收机结构的影响是什么?4.什么叫超外差体制?软件无线电中的超外差体制与常规的超外差有哪些不同?软件无线电超外差体制的最大特点是什么?(提示:从软件无线电的射频宽开化、中频宽带化要求考虑。

)5.什么是抽取?其作用是什么?6.什么是内插?其作用是什么?7.为什么不能直接进行抽取或内插操作?应该怎么办?8.什么叫射频直接带通采样?它跟带通采样相比较有哪些特点?射频直接带通采样为什么需要设置一个跟踪滤波器?它有什么作用?9.射频直接带通采样主要由哪些关键部件组成?为什么说射频直接带通采样非常接近于理想软件无线电结构?10. 当抽取倍数很高时,采用多级级联抽取有什么好处?11.什么叫多相滤波?在软件无线电中采用多相滤波的意义何在?12.什么是半带滤波器?为什么要叫这样的滤波器为“半带”滤波器?半带滤波器有些什么特点?13.什么是积分梳状滤波器?有哪些特点?在抽取/ 内插中为什么要使用积分梳状滤波器?14.对一个信号进行正交分解的意义是什么?无线电信号的三大瞬时特征是什么?作为通信信号分别有什么含义和作用?如何通过正交分解提取这三大瞬时特征?15.什么是射频信号的正交基带分量?请写出正交基带分量的数学表达式,及其提取正交基带分量的数学运算过程。

软件无线电资料整理收集

软件无线电资料整理收集

FPGA及动态可重构技术在软件无线电中的应用摘要:介绍了将现场可编程门阵列(FPGA)专用硬件处理器集成到软件通信体系结构">软件通信体系结构(SCA)中的机制,实现了动态部分可重构技术在软件无线电(SDR)硬件平台中的应用,有效地缩短系统开发周期,提高了硬件资源的利用率。

SDR是使用一个简单的终端设备通过软件重配置来支持不同种类的无线系统和服务(包括2G、3G移动通信系统和WLAN)的新技术。

它具有较强的开放性和灵活性,硬件采用标准化、模块化结构,可以随着器件和技术的发展而更新和扩展;软件模块可以进行加载和更改,根据需要不断升级。

软件无线电的结构如图1所示,主要分为实时信道数据处理部分、环境管理部分、系统分析和功能强化部分。

实时信道数据处理部分包括A/D、D/A、变频、信道分离、调制解调以及码流处理等数据模块。

SDR的核心是联合战术无线电系统JTRS(Joint Tactical Radio System)的SCA规范,它对模块化可编程无线通信系统的硬件体系结构、软件体系结构和安全体系结构以及应用程序接口(API)规范进行了描述,同时引入了嵌入式微处理器系统、总线、操作系统、公共对象请求代理体系(CORBA)、面向对象的软件和硬件设计等一系列计算机技术,并采用了“波形应用”和“资源”可裁剪、可扩充的设计思想,从而保证了软件和硬件的可移植性和可配置性。

以接收机为例,SDR中A/D模块之后的部分通过软件来实现。

本文在FPGA平台上实现信号的调制解调,以满足高速数字信号处理发展的需求。

在Xilinx Virtex2Pro FPGA硬件平台上实现了美国军方短波通信系统标准MIL-STD-188-110B调制解调器,其中引入了动态部分可重构技术,提高了配置速度和硬件资源的利用率。

满足SCA规范的波形组件之间通过CORBA总线通信,而FPGA平台的专用处理器要实现对CORBA 的支持比较困难。

软件无线电的原理与应用pdf

软件无线电的原理与应用pdf

软件无线电的原理与应用1. 简介软件无线电(Software-Defined Radio,简称SDR)是一种通过软件控制而不是硬件电路来实现无线电通信的技术。

通过使用软件无线电技术,可以实现对无线电信号的灵活处理和调整,极大地提升了无线通信系统的灵活性和适应性。

2. 软件无线电原理软件无线电的原理是基于数字信号处理的技术,通过将无线电信号转换为数字信号进行处理。

具体步骤如下:2.1 信号采集软件无线电使用无线电频率下的天线将无线电信号转换为电信号,并通过模拟到数字转换器(ADC)将其转换为数字信号。

2.2 数字信号处理经过信号采集后,信号被传输到数字信号处理单元。

在数字信号处理单元中,信号进行解调、滤波、调制等操作,以提取出所需的信息内容。

2.3 软件控制软件无线电技术的核心是通过软件控制对信号进行处理。

软件控制可以灵活地调整无线电通信系统的参数和功能,以适应不同的应用需求。

3. 软件无线电的应用3.1 无线电通信软件无线电技术广泛应用于无线电通信领域。

与传统的硬件无线电相比,软件无线电可以实现更灵活的通信方式和更高的通信效率。

软件无线电还可以应用于频谱监测、频率跳变通信等特殊通信场景。

3.2 网络安全软件无线电技术在网络安全领域也有重要应用。

通过使用软件无线电,可以实现对无线通信的安全监测和加密处理,有效防止无线通信受到黑客攻击和信息窃取。

3.3 物联网软件无线电技术在物联网领域具有广泛应用前景。

通过软件无线电,可以实现对物联网设备的远程监控和管理,提升物联网系统的可靠性和灵活性。

3.4 天文学软件无线电技术在天文学研究中也有重要应用。

通过软件无线电,可以接收和处理来自宇宙的微弱无线电信号,帮助科学家研究宇宙起源、星系演化等重要问题。

4. 软件无线电的优势4.1 灵活性软件无线电技术可以通过改变软件的配置和参数来实现不同的无线电通信功能,极大地提高了系统的灵活性和适应性。

4.2 可升级性通过软件控制,软件无线电系统可以进行远程升级和更新,无需更换硬件部件,提高了系统的可升级性和维护性。

软件无线电技术

软件无线电技术

第四代移动通信技术之软件无线电技术【摘要】软件无线电是目前无线通信领域在固定至移动、模拟至数字之后的最新革命,其正朝着产业化、全球化的方向发展,将在4G系统中得到广泛应用。

本文主要研究软件无线电技术对通信传输的改善以及4G系统中软件无线技术的应用特点等。

一、引言软件无线电提供了一条满足未来个人通信需要的思路。

软件无线电突破了传统的无线电台以功能单一、可扩展性差的硬件为核心的设计局限性,强调以开放性的最简硬件为通用平台,尽可能地用可升级、可重配置不同的应用软件来实现各种无线电功能的设计新思路。

其中心思想是:构造一个具有开放性、标准化、模块化的通用硬件平台,将各种功能,如工作频段、调制解调类型、数据格式、加密模式、通信协议等用软件来完成,并使宽带A/D和D/A转换器尽可能靠近天线,以研制出具有高度灵活性、开放性的新一代无线通信系统。

图一、软件无线电原理框图 1二、简介软件无线电(SWR)技术是近年来提出的一种实现无线通信的新的体系结构,它的基本概念是把硬件作为无线通信的基本平台,而把尽可能多的无线通信及个人通信功能用软件实现。

1、WLAN与蓝牙融入广域网近年来各国都在积极进行4G的技术研究,从欧盟的WINNER项目到我国的“FuTURE计划”都是直接面向4G的研究。

日本对4G技术的研究在全球范围内一直处于领先地位,早在2004年,运营商NTTdocomo就进行了1Gbit/s传输速率的试验。

目前还没有4G的确切定义,但比较认同的解释是:4G采用全数字技术,支持分组交换,将WLAN、蓝牙技术等局域网技术融入广域网中,具有非对称的和超过100Mbit/s的数据传输能力,同时,因为采用高度分散的IP网络结构,使得终端具有智能和可扩展性。

4G系统将融合现有的各种无线接入技术,包括蜂窝、卫星、WLAN、蓝牙、Ad-hoc、DAB/DVB(数字音频和视频广播)、WAP等。

这些技术的融合将使4G成为一个无缝连接的统一系统,实现跨系统的全球漫游及业务的可携带性。

软件无线电知识综合

软件无线电知识综合

软件无线电的采样结构基本上可以分为三种:射频全宽带低通采样结构:这种结构的软件无线电,结构简洁,把模拟电路的数量减少到最低程度。

优缺点优点:对射频信号直接采样,符合软件无线电概念的定义。

缺点:(1)需要的采样频率太高,特别还要求采用大动态、多位数的A/D/A 时,显然目前的器件水平无法实现。

(2)前端超宽的接收模式会对整个结构的动态范围有很高的要求,工程实现极为困难。

所以这种结构只实用于工作带宽不太宽的场合。

射频直接带通采样结构:射频带通采样结构的软件无线电可以较好地解决上述射频低通采样软件无线电结构对A/D 转换器、高速DSP 等要求过高,以致无法实现的问题。

优点:与射频全宽带低通采样结构相比最大的不同就是采用的前置滤波器的差异;另外还有A/D 的采样速率不同;最后就是对DSP 的处理速度要求不同。

实现可行性较强。

缺点:前置窄带电调滤波器和高工作带宽的A/D (高性能采样保持放大器)实现起来还是有相当的难度。

另外,本结构需要多个采样频率,增加了系统实现复杂度。

宽带中频带通采样结构:的软件无线电结构与目前的中频数字化接收机的结构是类似的,都采用了多次混频体制或叫超外差体制。

这种宽带中频带通采样软件无线电结构的主要特点是中频带宽更宽(比如20MHz ),所有调制解调等功能全部由软件加以实现。

中频带宽更宽是这种软件无线电与普通超外差中频数字化接收机的本质区别。

本结构类似于超外差无线电台,但常规电台的中频带宽为窄带结构,而本结构为宽带中频结构。

本结构使前端电路设计得以简化,信号经过接收通道后的失真也小,而且通过后续的数字化处理,本结构具有更好的波形适应,信号带宽适应性以及可扩展性。

本结构的射频前端比较复杂,它的功能是将射频信号转换为适合于A/D 采样的宽带中频或把D/A 输出的宽带中频信号变换为射频信号。

数控振荡器(NCO )相乘实现数字混频,NCO 的频率为所需通道的中心频率,使信号的中心频率移至零频,信号由中频变换到基带,并作低通滤波和抽取,从而实现对实值带通信号的复包络正交采样。

软件无线电

软件无线电

软件无线电软件无线电技术是指利用计算机软件技术实现无线电设备的控制、信号处理和通讯操作。

它的出现对无线电通讯技术的发展起到了重大的推动作用,使得无线电通讯技术向着数字化、智能化、高效化的方向不断发展。

软件无线电技术的起源可以追溯到20世纪80年代,当时计算机技术的发展以及数字信号处理技术的进步为软件无线电技术的兴起提供了技术基础。

1983年,美国开发了第一套软件无线电系统——软件电台(Software Radio),该系统通过DSP芯片实现了数字信号的采集、处理和发送。

这套系统的出现标志着软件无线电技术进入了实用化阶段。

软件无线电技术的主要特点是可编程性、可重构性和灵活性。

这些特点使得软件无线电可以符合不同的使用场景和应用需求。

比如,可以根据不同的频段、不同的调制方式以及不同的传输速率进行定制,实现智能化控制和自适应调整。

软件无线电技术的应用领域非常广泛,其中最主要的包括:航空航天、国防军事、广播电视、移动通信等。

在航空航天领域,软件无线电技术可以用于卫星通信、飞行控制、导航等方面,提高了通信的可靠性和精度;在国防军事领域,软件无线电技术可以用于军事通信、雷达和电子战等方面,提高了作战效率和战场指挥的精度;在广播电视领域,软件无线电技术可以用于数字电视、数字音频广播等方面,提高了广播电视的质量和体验;在移动通信领域,软件无线电技术可以用于3G、4G、5G等无线通信标准,提高了通信速率和网络容量。

软件无线电技术的发展趋势主要是数字化、网络化和智能化。

数字化是指数字信号处理技术的不断发展,使得传输速率和信道利用率不断提高;网络化是指软件无线电技术不断向网络化方向发展,构建起基于IP网络的无线电通信系统;智能化是指软件无线电技术逐步引入人工智能和机器学习技术,实现了更智能的调制方式、自适应调整和故障预测等功能。

当然,在软件无线电技术发展的过程中也会遇到很多挑战,如信号干扰、频谱管理问题、网络安全和隐私问题等。

软件无线电重点

软件无线电重点

1、软件无线电的核心思想:可重配置性。

采用开放的、标准化的通用平台构造无线电系统,使宽带ADC/DAC尽可能的靠近天线,用软件实现尽可能多的无线电功能,并通过软件实现功能的设定和升级,使通信系统具有多频带、多模式的通信能力。

2、软件无线电的定义:(1)、软件无线电是多频带无线电,它具有宽带的天线、射频转换、模/数和数/模转换,能够支持多个空中接口和协议,在理想状态下,所有方面(包括物理空中接口)都可以通过软件定义。

(2)软件无线电是一种新型的无线体系结构,它通过硬件与软件的结合使无线网络和用户终端具有可重配置能力。

软件无线电提供了一种建立多模式、多频段、多功能无线设备的有效而且相当经济的解决方案,可以通过软件的升级实现功能提高。

软件无线电可以使整个系统(包括用户终端和网络)采用动态的软件编程对设备特性进行重配置。

3、软件无线电的特点:(1)、可多频带/多模式/多功能工作。

(2)、具有可重配置、可重编程能力。

4、硬件体系结构的分类:1按照物理介质划分:第一种是以通用处理器GPP为基础的结构。

第二种是以DSP为基础进行数字信号处理的体系结构。

第三种是以FPGA为基础进行数字信号处理的体系结构。

2按照系统中各功能模块的连接方式划分的硬件体系结构:1流水式结构2总线式结构3交换式结构4基于计算机和网络式结构5、比较DSP和FPGA的性能:1硬件结构,DSP采用哈佛结构 FPGA器件由大量的逻辑宏单元组成 2 灵活性 DSP处理器软件更易改变,而硬件个管脚是固定的.FPGA则需通过改变FPGA中构成DSO系统的硬件结构来改变硬件功能。

3 适用场合 DSP适用于状态复杂的操作 FPGA适用于简单重复的操作和需要并行处理的操作。

4处理能力 DSP处理速度慢 FPGA 处理速度快 5开发流程 DSP的仿真必须有合适的硬件平台 FPGA有多个层次的仿真测试和硬件调试环节 6开发技术标准化不同的DSP处理器结构有较大区别,需选择不同的汇编语言机仿真开发工具和编码软件 FPGA则采用开发技术的标准化和规范化。

第二章 软件无线电综述

第二章 软件无线电综述


2.1 软件无线电的定义
软件无线电的定义

软件无线电论坛的定义:软件无线电一种新 型的无线体系结构,它通过硬件和软件的结 合使无线网络和用户终端具有可重配置能力。 软件无线电提供了一种建立多模式、多频段、 多功能无线设备的有效而且相当经济的解决 方案,可以通过软件升级实现功能提升。
18
2.1 软件无线电的定义
23
2.1 软件无线电的定义
软件无线电的特点

4、结构的开放性
软件无线电的结构分为硬件和软件两大部
分。这两大部分都具有模块化和标准化的 特点,是一种开放式的体系结构,使得研 制、生产和使用各环节可以共享已有成果, 共同推进软件无线电技术的发展。
24
2.1 软件无线电的定义
硬件无线电

所谓硬件无线电,是指无线电设备的功能由 硬件结构确定,系统的工作没有软件参与或 只有很少一部分有软件参与,它们在功能上 是固定的。

1、可多频带/多模式/多功能工作:(M3, Multiband/Multimode/Multirole)。
多频带是指软件无线电可以工作在很宽的
频带范围内;
多模式是指软件无线电能够使用多种类型
的空中接口,其调制方式、编码、帧结构、 压缩算法、协议等可以选择;
20
2.1 软件无线电的定义
软件无线电的特点
软件无线电终端通过软件下载方式就可以进 行重新配置,适应不同体制、不同标准的通 信需求,获得新的服务。因此,软件无线电 将是一个解决全球无线通信需求的最佳方案, 将成为未来无线通信设备设计的核心。 42
15
2.1 软件无线电的定义
无线电发展过程的困扰

其中心思想是:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《软件无线电》作业
总结
第一章
1、影响天线效率的因素有哪些(答出至少三条)?
答:工作频率,天线长度,天线形状,天线架设的高度等
2、语音频率范围是300~3400Hz,当取f=3000Hz时,天线长度为多少时,
天线效率最高?
3、如何解决最简结构中天线效率低和无法多路传输的问题?
答:在其他参数相同的条件下,输入激励电流的频率越高,基本振子天线的电磁波越强,即天线的效率越高。

实际的天线电系统都采用了调制/解调技术,即在发射端用一个可选择的高频率的正弦波信号去调制需要传输的频率较低的调制信号,这个高频正弦波信号成为载波;在接收端采用解调技术再将调制的信号从载波上解出来,从而完成了信号的无线传输过程。

这也是解决不能多路传输的方法。

4、请画出无线电系统的实用结构。

5、常见的收/发双工技术
答:时分双工、频分双工和环形器双工
6、画出无线数字通信系统框图
发射端:
接收端:
7、画出无线电系统的实用结构图,并指出基带信号、中频信号和射频信号
的位置
答:同第4题
8、简述外差技术和超外差技术的概念,并画出超外差技术的框图:
答:外差技术:中频频率fIF固定不变,通过混频器本振频率fL和选频滤波器中心频率f0 = fRF同步改变来实现;超外差技术:当取中频频率fIF低于射频频率fRF且高于信号带宽B时
9、软件无线电的特点
答:功能的灵活性,结构的开放性,成本的集中性。

多功能、多频带、多模式。

具有可重编程、可重配置能力。

10、画出理想的软件无线电体系结构,并简述结构核心和构造思想
结构核心:使模拟信号转换为数字信号的部分尽可能接近天线
构造思想:不可能采用数字器件实现的部分放在模拟子系统中其他部分放在数字子系统中,例如载以获得最大程度的软件可编程性。

11、软件无线电的研究热点和难点
答:宽带/多频段天线、智能天线;灵活的射频前端设计;高速数模和模数变换器;高速信号处理器;软件无线电的信号处理算法;软件下载和软件重配置技术。

第二章
1、模数变换的主要步骤包括哪些?起作用是什么?
答:采样:连续时间信号的离散化;量化和编码:采样值的有限精度处理2、画出下面信号经采样后的频谱图(考虑两种情况:失真或非失真)。

3、低通采样定理是什么?
4、正交采样的基本结构
5、正交采样的实现结构
6、ADC和DAC在软件无线电系统中可能的位置
答:基带、中频和射频
7、ADC的基本结构
8、几种主要的ADC类型
答:并行比较式、子区式、双积分式、
9、ADC的主要性能指标
答:分辨率、转换时间和采样速率、转换误差、量化信噪比、孔径误差、无杂散动态范围、有效转换位数。

10、DAC的基本结构
11、几种主要的DAC类型,并指出下图为何种DAC,并指出其输入部分,输出部分,电阻网络,参考电压,模拟开关。

推导输出与输入的关系表达式
12、DAC 的主要性能指标
答:分辨率、转换误差、转换输出建立时间、转换速率。

第三章
1、画出内插器的结构图,给出相应滤波器的频谱特性。

画出如图信号波形在I=2
时的信号频域和时域输出波形,及经过滤波后的波形。

()
x n n
π

π
-2π
-x
ω()
x
j X e ω
2画出抽取器的结构图,给出相应滤波器的频谱特性。

画出如图信号波形在
D=2时的信号频域输出波形,及经过滤波后的波形。

3、画出实用的分数率采样结构图,并给出滤波器的频谱特性。

4、为降低数字滤波器的要求,通常采用哪两种方法?
答:采用多相滤波器实现、采用多级级联方式实现。

5、请分别说出FIR滤波器的优缺点
FIR滤波器的缺点:1、FIR滤波器只有零点,而没有极点,因此不像IIR 滤波器那样容易取得比较好的通带和阻带衰减特性2、对FIR滤波器而言,要得到较好的衰减特性,一般要求较高的滤波器。

FIR滤波器的优点:1、由于没有极点,因而系统总是稳定的,在设计时可以省略对字长效应的估计与控制,以及对系统稳定性的反复验证。

2、容易实现
线性相位,这对软件无线电这种宽带甚至超宽带的系统尤为重要。

3、允许设计多通带滤波器。

6、半带滤波器的特性
第四章
1、基于采样方式的不同,软件无线电的组成结构哪几种,并分别画出框图:
答:1)射频全宽带低通采样软件无线电结构
2)射频直接带通采样软件无线电结构
3)宽带中频带通采样软件无线电结构。

2、数字变频器主要包含哪些结构?
答:1、数控振荡器(NCO numeric control oscillator)2、数字混频器3、数字滤波器
3、画出外差式接收机结构(画出数字混频,模拟混频),并说明该种结构的优缺点
优点:灵敏度高、选择性好、接收机增益分散于工作在不同频率的放大器上、中频部分可标准化,易于实现、整个系统性能良好。

缺点:需要高中频设置、需要高性能模拟滤波器,不能单片集成实现、由于是多变换结构,系统复杂度高、需要两个或两个以上的本振。

4、画出零中频接收机结构(画出数字混频,模拟混频),并说明该种结构的优缺点
优点:消除了中频部分,简化了接收机的结构,易于单片集成实现、大部分信号处理工作在较低的速率上,对处理器、的要求降低,并有助于降低系统的功耗、消除了相邻信道引起的镜像干扰问题,不再需要、由分立元件实现的模拟高Q值滤波器、只需要一个本振。

缺点:零频附近很不安全(直流失调、1/f 噪声、二阶失真)、需要高精度、宽带的正交变频设置、只有一级AGC,信号的动态范围相对较小。

5、对于直流失调采用的补偿手段有哪些?
答:1、频率调整(从本振泄漏角度入手)2、电容耦合(从消除直流信号角度入手)3、直流校准(从消除直流信号角度入手)。

6、画出两种低中频接收机结构,并指出其优点
优点:解决了零中频接收机的直流失调问题、减小了本振泄漏的影响、复杂度适中,比外差式低,比零中频高、同样具有模拟正交混频和数字正交混频两种结构形式、由于存在中频,因此需要抑制镜像信号,镜像信号抑制可以在正交下变频后,在较低的频率上完成,尽管镜像抑制能力要求仍较高,但总体实现难度比外差式接收机大幅降低了
7、图为哈特雷镜像抑制接收机,请分别写出AB点信号表达式,并分析哈特雷接收机是如何抑制镜像信号的。

A:
B:
8、在正交变频时,同相和正交两个支路的失配为什么会降低正交变频在防止原信号与镜像信号在变频后出现混叠方面的能力。

给出一种正交失配的补偿方案并简要说明其原理。

答:当失配现象出现时,原来单正频率的本振信号会分裂成对称的正、负频率本振信号,不难看到,这个负频率的镜像本振信号会造成正交变频结构镜像信号抑制能力的下降。

第五章
一、软件无线电体系结构包括哪些部分。

答:软件无线电体系结构是实现软件无线电概念的具体设计结构,包括硬件、软件和接口协议等部分,是软件无线电技术的核心软件无线电体系结构具。

二、硬件体系结构按各功能模块连接方式划分为哪几种结构?
答:流水式结构、总线式结构、交换式结构、计算机和网络式结构
三、对常用数字处理器,请分别按照可重编程能力、处理速度快慢来排序。

四、影响数字信号处理能力的度量有哪些?
答:1、时钟频率:时钟频率越高,运算速度就越快
2、指令执行速度:以一条指令的执行时间(ns)或每秒钟执行的指令数目来度量
3、操作执行速度:以每秒钟进行的操作数目来度量。

操作可分为定点和浮点,其单位有MOPS,MFLOPS和BOPS
4、乘法运算(MAC,乘法累加器)执行速度:以一次乘法运算的时间(ns)或每秒钟执行的乘加运算数目来度量
5、FFT运算执行速度:以运行一个N点FFT程序所需的时间来度量
五、软件无线电的软件部分应具有以下特点
答:具有良好的开放性,采用模块化结构、软件可重用:可以实现软件的“即插即用”
六、软件体系结构都包括哪些?
答:硬件特定的软件结构、开放的软件结构、面向过程的软件设计方法、面向对象的软件设计方法。

七、软件无线电可用的编程语言
答:汇编语言:可充分发挥硬件的性能优势,代码执行效率高、可读性、可修改性、可移植性和可重用性差,开发效率低、一般用于特殊场合,如对运算速度及实时性要求极高的场合。

高级软件语言:C语言:面向过程、C++ / Java语言:面向对象。

硬件描述语言:一种用形式化方法来描述数字电路和数字逻辑系统的语言、目前最主要的硬件描述语言有:VHDL和Verilog HDL。

相关文档
最新文档