高一物理机械能守恒定律练习试题及答案解析
高中物理机械能守恒定律100题(带答案)

一、选择题1.有一质量m=2kg 的带电小球沿光滑绝缘的水平面只在电场力的作用下,以初速度v 0=2m/s 在x 0=7m 处开始向x 轴负方向运动。
电势能E P 随位置x 的变化关系如图所示,则小球的运动范围和最大速度分别为( )A. 运动范围x≥0B. 运动范围x≥1mC. 最大速度v m =2m/sD. 最大速度v m =3m/s 【答案】BC 【解析】试题分析:根据动能定理可得W 电=0−12mv 02=−4J ,故电势能增大4J ,因在开始时电势能为零,故电势能最大增大4J ,故运动范围在x≥1m ,故A 错误,B 正确;由图可知,电势能最大减小4J ,故动能最大增大4J ,根据动能定理可得W =12mv 2−12mv 02;解得v=2√2m/s ,故C 正确,D 错误;故选:BC 考点:动能定理;电势能.2.如图所示,竖直平面内光滑圆弧轨道半径为R ,等边三角形ABC 的边长为L ,顶点C 恰好位于圆周最低点,CD 是AB 边的中垂线.在A 、B 两顶点上放置一对等量异种电荷.现把质量为m 带电荷量为+Q 的小球由圆弧的最高点M 处静止释放,到最低点C 时速度为v 0.不计+Q 对原电场的影响,取无穷远处为零电势,静电力常量为k ,则( )A. 小球在圆弧轨道上运动过程机械能守恒B. C 点电势比D 点电势高C. M 点电势为(mv 02﹣2mgR )D. 小球对轨道最低点C 处的压力大小为mg+m +2k【答案】C 【解析】试题分析:此题属于电场力与重力场的复合场,根据机械能守恒和功能关系即可进行判断.解:A、小球在圆弧轨道上运动重力做功,电场力也做功,不满足机械能守恒适用条件,故A错误;B、CD处于AB两电荷的等势能面上,且两点的电势都为零,故B错误;C、M点的电势等于==,故C正确;D、小球对轨道最低点C处时,电场力为k,故对轨道的压力为mg+m+k,故D错误;故选:C【点评】此题的难度在于计算小球到最低点时的电场力的大小,难度不大.3.如图,平行板电容器两极板的间距为d,极板与水平面成45°角,上极板带正电。
高一物理机械能及其守恒条件试题答案及解析

高一物理机械能及其守恒条件试题答案及解析1.在下列所述实例中,若不计空气阻力,机械能守恒的是A.石块自由下落的过程B.在竖直面内做匀速圆周运动的物体C.电梯加速上升的过程D.木箱沿粗糙斜面匀速下滑的过程【答案】A【解析】物体机械能守恒的条件是只有重力或者是弹力做功,根据机械能守恒的条件逐个分析物体的受力的情况,即可判断物体是否是机械能守恒.石块自由下落的过程,只受重力,所以石块机械能守恒,故A正确。
在竖直面内做匀速圆周运动过程中动能不变,重力势能在变化,所以机械能不守恒,B错误。
电梯加速上升的过程,动能增加,重力势能增加,故机械能增加,故C错误。
木箱沿粗糙斜面匀速下滑的过程,动能不变,重力势能减小,所以机械能减小,故D错误。
【考点】考查了机械能守恒2.下列说法正确的是()A.物体机械能守恒时,一定只受重力作用B.物体处于平衡状态时机械能一定守恒C.若物体除受重力外还受到其他力作用,物体的机械能也可能守恒D.物体的动能和重力势能之和增大,必定有重力以外的其他力对物体做功【答案】CD【解析】物体机械能守恒的条件是受重力与弹力,故A中说一定只受重力作用是不对的;物体处于平衡状态时也可能是竖直向上或向下做匀速直线运动,我们知道此时的机械能是不守恒的,故B也不对;物体除受重力外,如果还受弹力的作用,则它的机械能也是守恒的,故C是正确的;如果物体的动能与重力势能的和增大,则必定有重力以外的其他力对物体做功是正确的,故D也对。
【考点】机械能守恒的条件。
3.神舟号载人飞船在发射至返回的过程中,以下哪些阶段返回舱的机械能是守恒的A.飞船升空的阶段B.飞船在椭圆轨道上绕地球运行的阶段C.返回舱在大气层外向着地球做无动力飞行阶段D.降落伞张开后,返回舱下降的阶段【答案】BC【解析】根据机械能守恒的条件,只有重力(或引力)做功时机械能守恒。
飞船升空的阶段,燃料要对火箭产生动力,对火箭做正功,火箭的机械能增加;飞船在椭圆轨道上绕地球运行的阶段,只有地球引力做功所以机械能守恒;返回舱在大气层外向着地球做无动力飞行阶段,也是只有地球引力做功,机械能守恒;降落伞张开后,返回舱下降的阶段,除重力做功外还有空气阻力做功,所以机械能减少。
(完整版)机械能守恒定律练习题及其答案

机械能守恒定律专题练习姓名:分数:专项练习题第一类问题:双物体系统的机械能守恒问题例1. (2007·江苏南京)如图所示,A 物体用板托着,位于离地面处,轻质细绳通过光滑定滑轮与A、B相连,绳子处于绷直状态,已知A 物体质量,B 物体质量,现将板抽走,A将拉动B上升,设A与地面碰后不反弹,B上升过程中不会碰到定滑轮,问:B 物体在上升过程中离地的最大高度为多大?(取)(例1)(例2)例2. 如图所示,质量分别为2m、m的两个物体A、B可视为质点,用轻质细线连接跨过光滑圆柱体,B着地A恰好与圆心等高,若无初速度地释放,则B上升的最大高度为多少?第二类问题:单一物体的机械能守恒问题例3. (2005年北京卷)是竖直平面内的四分之一圆弧形轨道,在下端B点与水平直轨道相切,如图所示,一小球自A点起由静止开始沿轨道下滑,已知圆轨道半径,不计各处摩擦,求:为R,小球的质量为m(1)小球运动到B点时的动能;(2)小球下滑到距水平轨道的高度为R时速度的大小和方向;(3)小球经过圆弧形轨道的B点和水平轨道的C点时,所受轨道支持力各是多大。
例4. (2007·南昌调考)如图所示,O点离地面高度为H,以O点为圆心,制作点等高的圆弧最高点滚下后水平抛出,试求:四分之一光滑圆弧轨道,小球从与O(1)小球落地点到O点的水平距离;(2)要使这一距离最大,R应满足何条件?最大距离为多少?第三类问题:机械能守恒与圆周运动的综合问题例5. 把一个小球用细线悬挂起来,就成为一个摆(如图所示),摆长为l ,最大偏角为,小球运动到最低位置时的速度是多大?(例5)(例6)例6. (2005·沙市)如图所示,用一根长为L 的细绳,一端固定在天花板上的O点,另一端系一小球A ,在O 点的正下方钉一钉子B ,当质量为m 的小球由水平位置静止释放后,小球运动到最低点时,细线遇到钉子B ,小球开始以B 为圆心做圆周运动,恰能过B 点正上方C ,求OB 的距离。
机械能守恒定律典型例题精析(附答案)

机械能守恒定律一、选择题1.某人用同样的水平力沿光滑水平面和粗糙水平面推动一辆相同的小车,都使它移动相同的距离。
两种情况下推力做功分别为W1和W2,小车最终获得的能量分别为E1和E2,则下列关系中正确的是()。
A、W1=W2,E1=E2B、W1≠W2,E1≠E2C、W1=W2,E1≠E2D、W1≠W2,E1=E22.物体只在重力和一个不为零的向上的拉力作用下,分别做了匀速上升、加速上升和减速上升三种运动.在这三种情况下物体机械能的变化情况是( )A.匀速上升机械能不变,加速上升机械能增加,减速上升机械能减小B.匀速上升和加速上升机械能增加,减速上升机械能减小C.由于该拉力与重力大小的关系不明确,所以不能确定物体机械能的变化情况D.三种情况中,物体的机械能均增加3.从地面竖直上抛一个质量为m的小球,小球上升的最大高度为H.设上升过程中空气阻力F阻恒定.则对于小球的整个上升过程,下列说法中错误的是( )A.小球动能减少了mgHB.小球机械能减少了F阻HC.小球重力势能增加了mgHD.小球的加速度大于重力加速度g4.如图所示,一轻弹簧的左端固定,右端与一小球相连,小球处于光滑水平面上.现对小球施加一个方向水平向右的恒力F,使小球从静止开始运动,则小球在向右运动的整个过程中( )A.小球和弹簧组成的系统机械能守恒B.小球和弹簧组成的系统机械能逐渐增加C.小球的动能逐渐增大D.小球的动能先增大后减小二、计算题1.如图所示,ABCD是一条长轨道,其AB段是倾角为的斜面,CD段是水平的,BC是与AB和CD相切的一小段弧,其长度可以略去不计。
一质量为m的物体在A点从静止释放,沿轨道滑下,最后停在D点,现用一沿轨道方向的力推物体,使它缓慢地由D点回到A点,设物体与轨道的动摩擦因数为,A 点到CD 间的竖直高度为h ,CD (或BD )间的距离为s ,求推力对物体做的功W 为多少2.一根长为L 的细绳,一端拴在水平轴O 上,另一端有一个质量为m 的小球.现使细绳位于水平位置并且绷紧,如下图所示.给小球一个瞬间的作用,使它得到一定的向下的初速度.(1)这个初速度至少多大,才能使小球绕O 点在竖直面内做圆周运动(2)如果在轴O 的正上方A 点钉一个钉子,已知AO=2/3L ,小球以上一问中的最小速度开始运动,当它运动到O 点的正上方,细绳刚接触到钉子时,绳子的拉力多大3.如图所示,某滑板爱好者在离地h =1.8m 高的平台上滑行,水平离开A 点后落在水平地面的B 点,其水平位移s 1=3m ,着地时由于存在能量损失,着地后速度变为v =4m/s ,并以此为初速沿水平地面滑行s 2=8m 后停止,已知人与滑板的总质量m =60kg 。
高考物理《机械能守恒定律》真题练习含答案

高考物理《机械能守恒定律》真题练习含答案1.[2024·上海市新中中学月考]如图,将质量为m 的篮球从离地高度为h 的A 处,以初始速度v 抛出,篮球恰能进入高度为H 的篮圈.不计空气阻力和篮球转动的影响,经过篮球入圈位置B 的水平面为零势能面,重力加速度为g .则篮球经过位置B 时的机械能为( )A .12 m v 2B .12 m v 2+mg (h -H )C .12 m v 2+mg (H -h )D .12 m v 2+mgh答案:B解析:不计空气阻力和篮球转动的情况下,篮球运动过程中机械能守恒,篮球经过B 点的机械能等于在A 点的机械能.以B 点所在的水平面为零势能面,篮球在A 点的重力势能E p =-mg (H -h )=mg (h -H ),则机械能E =E k +E p =12m v 2+mg (h -H ),B 正确.2.如图所示,一根轻质弹簧左端固定,现使滑块沿光滑水平桌面滑向弹簧,在滑块接触到弹簧直到速度减为零的过程中,弹簧的( )A .弹力越来越大,弹性势能越来越大B .弹力越来越小,弹性势能越来越小C .弹力先变小后变大,弹性势能越来越小D .弹力先变大后变小,弹性势能越来越大 答案:A解析:滑块接触到弹簧直到速度减为零的过程中,弹簧形变量越来越大,根据F =kx 得弹力越来越大,滑块接触到弹簧直到速度减为零的过程中,弹簧弹力一直做负功,物块的动能逐渐转化为弹簧的弹性势能,弹簧的弹性势能越来越大,A 正确.3.利用双线可以稳固小球在竖直平面内做圆周运动而不易偏离竖直面,如一根长为2L 的细线系一质量为m 的小球,两线上端系于水平横杆上,A 、B 两点相距也为L ,若小球恰能在竖直面内做完整的圆周运动,则小球运动到最低点时,每根线承受的张力为( )A .6mgB .23 mgC .5mgD .533 mg答案:B解析:小球恰好过最高点时有mg =m v 21R,解得v 1=32gL ,由机械能守恒定律得mg ×3 L =12 m v 22 -12 m v 21 ,由牛顿第二定律得3 F -mg =m v 22 32L ,联立以上各式解得F =23 mg ,B 正确.4.[2024·河北省张家口市张垣联盟联考]有一条均匀金属链条,一半长度在光滑的足够高斜面上,斜面顶端是一个很小的圆弧,斜面倾角为30°,另一半长度竖直下垂,由静止释放后链条滑动,已知重力加速度g =10 m/s 2,链条刚好全部滑出斜面时的速度大小为522 m/s ,则金属链条的长度为( )A .0.6 mB .1 mC .2 mD .2.6 m 答案:C解析:设链条的质量为2m ,以开始时链条的最高点所在水平面为零势能面,链条的机械能为E =E p +E k =-12 ×2mg ×L 4 sin θ-12 ×2mg ×L 4 +0=-14 mgL (1+sin θ),链条全部滑出后,动能为E ′k =12 ×2m v 2,重力势能为E ′p =-2mg L2 ,由机械能守恒可得E =E ′k +E ′p ,即-14mgL (1+sin θ)=m v 2-mgL ,解得L =2 m ,C 正确.5.[2024·山东省济宁市期中考试]有一竖直放置的“T”形架,表面光滑,滑块A 、B 分别套在水平杆与竖直杆上,A 、B 用一根不可伸长的轻细绳相连,A 、B 质量相等,且可看做质点,如图所示,开始时细绳水平伸直,A 、B 静止.由静止释放B 后,已知当细绳与竖直方向的夹角为60°时,滑块B 沿着竖直杆下滑的速度为v ,则连接A 、B 的绳长为( )A .4v 2gB .3v 2gC .2v 23gD .4v 23g答案:D解析:如图所示,将A 、B 的速度分解为沿绳的方向和垂直于绳的方向,两物体沿绳子的方向速度大小相等,则有v B cos 60°=v A cos 30°,解得v A =33v ,由于A 、B 组成的系统只有重力做功,所以系统机械能守恒,B 减小的重力势能全部转化为A 和B 的动能,有mgh =12 m v 2A +12 m v 2B ,解得h =2v 23g ,绳长L =2h =4v 23g,D 正确.6.(多选)如图所示,轻弹簧的一端固定在O 点,另一端与质量为m 的小球连接,小球套在光滑的斜杆上,初始时小球位于A 点,弹簧竖直且长度为原长L .现由静止释放小球,当小球运动至B 点时弹簧水平,且长度再次变为原长.关于小球从A 点运动到B 的过程,以下说法正确的是( )A .小球的机械能守恒B .小球运动到B 点时的速度最大 C.小球运动到B 点时的速度为0D .小球运动到B 点时的速度为2gL答案:BD解析:在小球向下运动的过程中,弹簧的弹力做功,并不是只有重力做功,小球的机械能不守恒,A 错误;从A 到B 的过程中,弹簧弹力做功为零,小球的重力做正功最多,由动能定理得小球的速度最大,B 正确,C 错误;小球运动到B 点时,弹簧为原长,由系统的机械能守恒定律得mgL =12m v 2,解得v =2gL ,D 正确.7.(多选)在竖直平面内,一根光滑金属杆弯成如图所示形状,相应的曲线方程为y =2.5cos (kx +23 π)(单位:m),式中k =1 m -1,将一光滑小环套在该金属杆上,并从x =0处以v 0=5m/s 的初速度沿杆向下运动,取重力加速度g =10 m/s 2,则下列说法正确的是( )A.当小环运动到x =π3 时的速度大小v 1=52 m/sB.当小环运动到x =π3 时的速度大小v 1=5 m/sC .该小环在x 轴方向最远能运动到x =56 π处D .该小环在x 轴方向最远能运动到x =76 π处答案:AC解析:当x =0时,y 0=-1.25 m ;当 x =π3 时,y 1=-2.5 m .由机械能守恒定律得mg (y 0-y 1)=12 m v 21 -12 m v 20 ,解得v 1=52 m/s ,A 正确,B 错误;设小球速度为零时上升的高度为h ,由机械能守恒定律得mgh =12 m v 20 ,解得h =1.25 m ,即y =0,代入曲线方程可得x =56π,C 正确,D 错误.8.如图所示,在竖直平面内有一半径为R 的四分之一圆弧轨道BC ,与竖直轨道AB 和水平轨道CD 相切,轨道均光滑.现有长也为R 的轻杆,两端固定质量为m 的小球a 、质量为2m 的小球b (均可视为质点),用某装置控制住小球a ,使轻杆竖直且小球b 与B 点等高,然后由静止释放,杆将沿轨道下滑.设小球始终与轨道接触,重力加速度为g .则( )A .下滑过程中a 球机械能增大B .下滑过程中b 球机械能守恒C .小球a 滑过C 点后,a 球速度大于26mgR3D .从释放至a 球到滑过C 点的过程中,轻杆对b 球做正功为23 mgR答案:D解析:下滑过程中,若以两球为整体,只有重力做功,则有系统的机械能守恒,若分开单独分析,杆对a 球做负功,a 球的机械能减小,杆对b 球做正功,b 球的机械能增加,A 、B 错误;若以两球为整体,只有重力做功,则有系统的机械能守恒,则有mg ·2R +2mgR =12(m +2m )v 2,解得v =26gR 3 ,C 错误;对b 球分析,由动能定理可得W +2mgR =12 ·2m v 2,W =12 ·2m v 2-2mgR =23 mgR ,杆对b 球做正功为23mgR ,D 正确.9.[2024·浙江1月]类似光学中的反射和折射现象,用磁场或电场调控也能实现质子束的“反射”和“折射”.如图所示,在竖直平面内有三个平行区域Ⅰ、Ⅱ和Ⅲ,Ⅰ区宽度为d ,存在磁感应强度大小为B 、方向垂直平面向外的匀强磁场,Ⅱ区的宽度很小.Ⅰ区和Ⅲ区电势处处相等,分别为φⅠ和φⅢ,其电势差U =φⅠ-φⅢ.一束质量为m 、电荷量为e 的质子从O 点以入射角θ射向Ⅰ区,在P 点以出射角θ射出,实现“反射”;质子束从P 点以入射角θ射入Ⅱ区,经Ⅱ区“折射”进入Ⅲ区,其出射方向与法线夹角为“折射”角.已知质子仅在平面内运动,单位时间发射的质子数为N ,初速度为v 0,不计质子重力,不考虑质子间相互作用以及质子对磁场和电势分布的影响.(1)若不同角度射向磁场的质子都能实现“反射”,求d 的最小值;(2)若U =m v 20 2e,求“折射率”n (入射角正弦与折射角正弦的比值);(3)计算说明如何调控电场,实现质子束从P 点进入Ⅱ区发生“全反射”(即质子束全部返回Ⅰ区);(4)在P 点下方距离3m v 0eB 处水平放置一长为4m v 0eB的探测板CQD (Q 在P 的正下方),CQ 长为m v 0eB ,质子打在探测板上即被吸收中和.若还有另一相同质子束,与原质子束关于法线左右对称,同时从O 点射入Ⅰ区,且θ=30°,求探测板受到竖直方向力F 的大小与U 之间的关系.答案:(1)2m v 0Be (2)2 (3)U ≤-m v 20 cos 2θ2e(4)见解析解析:(1)根据牛顿第二定律 Be v 0=m v 20r不同角度射向磁场的质子都能实现“反射”,d 的最小值为 d min =2r =2m v 0Be(2)设水平方向为x 方向,竖直方向为y 方向,x 方向速度不变,y 方向速度变小,假设折射角为θ′,根据动能定理Ue =12 m v 21 -12 m v 20 解得 v 1=2 v 0 根据速度关系 v 0sin θ=v 1sin θ′ 解得n =sin θsin θ′ =v 1v 0=2 (3)全反射的临界情况:到达Ⅲ区的时候y 方向速度为零,即 Ue =0-12 m (v 0cos θ)2可得U =-m v 20 cos 2θ2e即应满足U ≤-m v 20 cos 2θ2e(4)临界情况有两个:1、全部都能打到,2、全部都打不到的情况,根据几何关系可得 ∠CPQ =30°所以如果U ≥0的情况下,折射角小于入射角,两边射入的粒子都能打到板上,分情况讨论如下:①当U ≥0时 F =2Nm v y 又eU =12 m v 2y-12 m (v 0cos θ)2 解得 F =2Nm34v 20 +2eUm②全部都打不到板的情况,根据几何知识可知当从Ⅱ区射出时速度与竖直方向夹角为60°时,粒子刚好打到D 点,水平方向速度为v x =v 02所以v y =v x tan 60° =36 v 0又eU =12 m v 2y-12 m (v 0cos θ)2 解得 U =-m v 20 3e即当U <-m v 203e 时F =0③部分能打到的情况,根据上述分析可知条件为(-m v 203e ≤U <0),此时仅有O 点右侧的一束粒子能打到板上,因此F =Nm v y 又eU =12 m v 2y-12 m (v 0cos θ)2 解得 F =Nm 34v 20 +2eUm。
高中物理(机械能守恒定律)习题训练与答案解析

基础知识一.功1.一个物体受到力的作用,并在上发生了位移,我们就说这个力对物体须知了功,做功的两个必不可少的因素是的作用,在力的。
2.功的计算公式:W= ,式中θ是的夹角,此式主要用于求作功,功是标量,当θ=90°时,力对物体;当θ<90°时,力对物体;当θ>90°时,力对物体。
3.合力的功等于各个力做功的,即W合=W1+W2+W3+W4+……4.功是过程量,与能量的转化相联系,功是能量转化的,能量转化的过程一定伴随着二.功率1.功跟的比值叫功率,它是表示的物理量。
2.计算功率的公式有、,若求瞬时功率,则要用。
3.两种汽车启动问题中得功率研究:三.动能1.物体由于而具有的能量叫动能,公式是,单位是,符号是。
2.物体的动能的变化,指末动能与初动能之差,即△Ek=Ekt一Eko,若△Ek>0,表示物体的动能;若△Ek<0,表示物体的动能。
四.重力势能1.概念:物体由于被举高而具有的能量叫 ,表达式:Ep= ,它是,但有正负,正负的意义是表示比零势能参考面上的势能大还是小,重力势能的变化与重力做功的关系:重力对物体做多少正功,物体的重力势能就多少;重力对物体做多少负功,物体的重力势能就多少。
重力对物体所做的功等于物体的减小量。
即W G=一△Ep=一(Ep2一Ep1)=Ep1一Ep2.2.弹性势能:定义:物体由于发生而具有的能量叫。
大小:弹性势能的大小与及有关,弹簧的形变量越大,劲度系数越大,弹簧的弹性势能就越大。
习题练习1.下列说法正确的是( )A.当作用力做正功时,反作用力一定做负功B.当作用力不做功时,反作用力也不做功C.作用力与反作用力的功,一定大小相等,正负符号相反D.作用力做正功,反作用力也可能做正功2.如图所示,小物块A位于光滑的斜面上,斜面位于光滑的水平面上,从地面上看,小物块沿斜面下滑的过程中,斜面对小物块的作用力( )A.垂直于接触面,做功为零B.垂直于接触面,做功不为零C.不垂直于接触面,做功为零D.不垂直于接触面,做功不为零3.如图所示,质量为m的物体静止在倾角为θ的斜面上,物体与斜面间的动摩擦因数为μ,现使斜面水平向左匀速移动距离L.(1)摩擦力对物体做的功为(物体与斜面相对静止)()A.0B.μmglcosθC.-mglcosθsinθD.mglsinθcosθ(2)斜面对物体的弹力做的功为 ( )A.0B.mglsinθcos2θC.-mglcos2θD.mglsinθcosθ(3)重力对物体做的功( )A.0B.mglC.mgltan θD.mglcos θ(4)斜面对物体做的总功是多少? 各力对物体所做的总功是多少? 4.如图所示,物体沿弧形轨道滑下后进入足够长的水平传送带,传送带以图示方向匀速运转,则传送带对物体做功情况可能是( ) A.始终不做功 B.先做负功后做正功 C.先做正功后不做功 D.先做负功后不做功5.物体在水平力F 1作用下,在水平面上做速度为v 1的匀速运动,F 1的功率为P;若在斜向上的力F 2作用下,在水平面上做速度为v 2的匀速运动,F 2的功率也是P,则下列说法正确的是( ) A.F 2可能小于F 1, v 1不可能小于v 2 B.F 2可能小于F 1, v 1一定小于v 2 C.F 2不可能小于F 1, v 1不可能小于v 2 D.F 2不可能小于F 1, v 1一定小于v 26.小汽车在水平路面上由静止启动,在前5 s 内做匀加速直线运动,5 s 末达到额定功率,之后保持以额定功率运动.其v -t 图象如图所示.已知汽车的质量为m=2×103kg,汽车受到地面的阻力为车重的0.1倍,则以下说法正确的是( )A.汽车在前5 s 内的牵引力为4×103NB.汽车在前5 s 内的牵引力为6×103N C.汽车的额定功率为60 kW D.汽车的最大速度为30 m/s7.手持一根长为l 的轻绳的一端在水平桌面上做半径为r 、角速度为ω的匀速圆周运动,绳始终保持与该圆周相切,绳的另一端系一质量为m 的木块,木块也在桌面上做匀速圆周运动,不计空气阻力则( ) A.手对木块不做功B.木块不受桌面的摩擦力C.绳的拉力大小等于223r l m +ωD.手拉木块做功的功率等于m ω3r(l 2+r 2)/l8.一根质量为M 的直木棒,悬挂在O 点,有一只质量为m 的猴子抓着木棒,如图所示.剪断悬挂木棒的细绳,木棒开始下落,同时猴子开始沿木棒向上爬.设在一段时间内木棒沿竖直方向下落,猴子对地的高度保持不变,忽略空气阻力,则下列的四个图中能正确反映在这段时间内猴子做功的功率随时间变化的关系的是( )9.机车从静止开始沿平直轨道做匀加速运动,所受的阻力始终不变,在此过程中,下列说法正确的是( ) A.机车输出功率逐渐增大 B.机车输出功率不变C.在任意两相等的时间内,机车动能变化相等D.在任意两相等的时间内,机车动量变化的大小相等10.如图所示,质量为m 的物体A 静止于倾角为θ的斜面体B 上,斜面体B 的质量为M,现对该斜面体施加一个水平向左的推力F,使物体随斜面体一起沿水平方向向左匀速运动的位移为l,则在此运动过程中斜面体B 对物体A 所做的功为( )A.m M Flm +B.Mglcot θC.0D.21mglsin2θ 11.起重机的钢索将重物由地面吊到空中某个高度,其速度图象如图所示,则钢索拉力的功率随时间变化的图象可能是下图中的哪一个( )12.以恒力推物体使它在粗糙水平面上移动一段距离,恒力所做的功为W 1,平均功率为P 1,在末位置的瞬时功率为P t1,以相同的恒力推该物体使它在光滑的水平面上移动相同距离,力所做功为W 2,平均功率为P 2,在末位置的瞬时功率为P t2,则下面结论中正确的是( )A.W 1>W 2B.W 1=W 2C.P 1=P 2D.P t2<P t113.如图所示,滑雪者由静止开始沿斜坡从A 点自由滑下,然后在水平面上前进至B点停下.已知斜坡、水平面与滑雪板之间的动摩擦因数皆为μ,滑雪者(包括滑雪板)的质量为m,A 、B 两点间的水平距离为L.在滑雪者经过AB 段运动的过程中,克服摩擦力做的功( )A.大于μmgLB.小于μmgLC.等于μmgLD.以上三种情况都有可能14.某汽车以额定功率在水平路面上行驶,空载时的最大速度为v 1,装满货物后的最大速度为v 2,已知汽车空车的质量为m 0,汽车所受的阻力跟车重成正比,则汽车后来所装的货物的质量是( )A.0221m v v v - B.0221m v vv + C.m 0 D.021m v v 15.物体在恒力作用下做匀变速直线运动,关于这个恒力做功的情况,下列说法正确的是( ) A.在相等的时间内做的功相等 B.通过相同的路程做的功相等 C.通过相同的位移做的功相等D.做功情况与物体运动速度大小有关16.解放前后,机械化生产水平较低,人们经常通过“驴拉磨”的方式把粮食颗粒加工成粗面来食用,如图所示,假设驴拉磨的平均用力大小为500 N,运动的半径为1 m,则驴拉磨转动一周所做的功为( ) A.0 B.500 J C.500π J D.1 000π J17.如图所示,在倾角为θ的光滑斜面上,木板与滑块质量相等,均为m,木板长为l.一根不计质量的轻绳通过定滑轮分别与木板、滑块相连,滑块与木板间的动摩擦因数为μ,开始时,滑块静止在木板的上端,现用与斜面平行的未知力F,将滑块缓慢拉至木板的下端,拉力做功为( )A.μmglcos θB.2μmglC.2μmglcos θD.21μmgl18.额定功率为80 kW 的汽车,在平直的公路上行驶的最大速度为20 m/s,汽车的质量为2.0 t.若汽车从静止开始做匀加速直线运动,加速度大小为2 m/s 2,运动过程中阻力不变,则:(1)汽车受到的恒定阻力是多大?(2)3 s末汽车的瞬时功率是多大?(3)匀加速直线运动的时间是多长?(4)在匀加速直线运动中,汽车牵引力做的功是多少?答案 (1)4×103 N (2)48 KW (3)5 s (4)2×105 J19.汽车发动机的功率为60 kW,汽车的质量为4 t,当它行驶在坡度为sinα=0.02的长直公路上时,如图所示,所受阻力为车重的0.1倍(g取10 m/s2),求:(1)汽车所能达到的最大速度v m.(2)若汽车从静止开始以0.6 m/s2的加速度做匀加速直线运动,则此过程能维持多长时间?(3)当汽车以0.6 m/s2的加速度匀加速行驶的速度达到最大值时,汽车做功多少?答案 (1)12.5 m/s (2)13.9 s (3)4.16×105 J20.如图甲所示,质量m=2.0 kg的物体静止在水平面上,物体跟水平面间的动摩擦因数μ=0.20.从t=0时刻起,物体受到一个水平力F的作用而开始运动,前8 s内F随时间t变化的规律如图乙所示.g取10m/s2.求:(1)在图丙的坐标系中画出物体在前8 s内的v—t图象.(2)前8 s内水平力F所做的功.答案 (1) v-t图象如下图所示 (2)155 J动能定理.机械能守恒定律一.动能定理1.内容:外力对物体做功的代数和等于。
高中物理机械能守恒定律专题练习(带详解)
高中物理机械能守恒定律专题练习(带详解)一、多选题1.如图所示,轻杆一端固定一小球,绕另一端O 点在竖直面内做匀速圆周运动,则( )A .轻杆对小球的作用力方向始终沿杆指向O 点B .小球在最高点处,轻杆对小球的作用力可能为0C .小球在最低点处,小球所受重力的瞬时功率为0D .小球从最高点到最低点的过程中,轻杆对小球一直做负功2.如图甲所示,在距离地面高为0.18h m =的平台上有一轻质弹簧,其左端固定在竖直挡板上,右端与质量1m kg =的小物块相接触(不粘连),平台与物块间动摩擦因数040μ=.,OA 长度等于弹原长,A 点为BM 中点.物块开始静止于A 点,现对物块施加一个水平向左的外方F ,大小随位移x 变化关系如图乙所示.物块向左运动050x m =.到达B 点,到达B 点时速度为零,随即撤去外力F ,物块被弹回,最终从M 点离开平台,落到地面上N 点,取210/g m s =,则( )A .弹簧被压缩过程中外力F 做的功为78J .B .弹簧被压缩过程中具有的最大弹性势能为60J .C .整个运动过程中克服摩擦力做功为60J .D .MN 的水平距离为036m .3.如图所示,轻弹簧的一端悬挂在天花板上,另一端固定一质量为m 的小物块,小物块放在水平面上,弹簧与竖直方向夹角为θ=30o 。
开始时弹簧处于伸长状态,长度为L ,现在小物块上加一水平向右的恒力F 使小物块向右运动距离L ,小物块与地面的动摩擦因数为μ,重力加速度为g ,弹簧始终在弹性限度内,则此过程中分析正确的是( )A .小物块和弹簧系统机械能改变了(F-μmg )LB .弹簧的弹性势能可能先减小后增大接着又减小再增大C .小物块在弹簧悬点正下方时速度最大D .小物块动能的改变量等于拉力F 和摩擦力做功之和4.一质量为m 的物体,以13g 的加速度减速上升h 高度,不计空气阻力,则( ) A .物体的机械能不变B .物体的动能减少13mghC .物体的机械能增加23mgh D .物体的重力势能增加mgh5.下列说法中正确的是( )A .某种形式的能减少,一定存在其他形式的能增加B .因为能量守恒,所以“能源危机”是不可能的C .能量耗散表明,在能源的利用过程中,能量在数量上并未减少,但在可利用的品质上降低了D .能源的利用受能量耗散的制约,所以能源的利用是有条件的,也是有代价的 6.如图所示,由电动机带动着倾角θ=37°的足够长的传送带以速率v=4m/s 顺时针匀速转动,一质量m=2kg 的小滑块以平行于传送带向下'2v m s =/的速率滑上传送带,已知小滑块与传送带间的动摩擦因数78μ=,取210/g m s =,sin370.60cos370.80︒=︒=,,则小滑块从接触传送带到与传送带相对静止静止的时间内下列说法正确的是A .重力势能增加了72JB .摩擦力对小物块做功为72JC .小滑块与传送带因摩擦产生的内能为252JD.电动机多消耗的电能为386J7.在高台跳水比赛中,质量为m的跳水运动员进入水中后受到水的阻力而做减速运动,设水对他的阻力大小恒为F,那么在他减速下降h的过程中,下列说法正确的是(g为当地的重力加速度)()A.他的重力势能减少了mghB.他的动能减少了FhC.他的机械能减少了(F﹣mg)hD.他的机械能减少了Fh8.如图所示,斜面固定在水平面上,轻质弹簧一端固定在斜面顶端,另一端与物块相连,弹簧处于自然长度时物块位于O点,物块与斜面间有摩擦.现将物块从O点拉至A点,撤去拉力后物块由静止向上运动,经O点到达B点时速度为零,则物块从A运动到B的过程中()A.经过位置O点时,物块的动能最大B.物块动能最大的位置与AO的距离无关C.物块从A向O运动过程中,弹性势能的减少量等于动能与重力势能的增加量D.物块从O向B运动过程中,动能的减少量大于弹性势能的增加量9.航空母舰可提供飞机起降,一飞机在航空母舰的水平甲板上着陆可简化为如图所示模型,飞机钩住阻拦索减速并沿甲板滑行过程中A.阻拦索对飞机做正功,飞机动能增加B.阻拦索对飞机做负功,飞机动能减小C.空气及摩擦阻力对飞机做正功,飞机机械能增加D.空气及摩擦阻力对飞机做负功,飞机机械能减少10.如图所示,质量相等、材料相同的两个小球A、B 间用一劲度系数为k 的轻质弹簧相连组成系统,系统穿过一粗糙的水平滑杆,在作用在B 上的水平外力F 的作用下由静止开始运动,一段时间后一起做匀加速运动,当它们的总动能为4E k 时撤去外力F,最后停止运动.不计空气阻力,认为最大静摩擦力等于滑动摩擦力.则在从撤去外力F 到停止运动的过程中,下列说法正确的是( )A.撤去外力F 的瞬间,弹簧的伸长量为F2kB.撤去外力F 后,球A、B 和弹簧构成的系统机械能守恒C.系统克服摩擦力所做的功等于系统机械能的减少量D.A 克服外力所做的总功等于2E k二、单选题11.长为L的轻绳悬挂一个质量为m的小球,开始时绳竖直,小球与一个倾角θ=45°的静止三角形物块刚好接触,如图所示.现在用水平恒力F向左推动三角形物块,直至轻绳与斜面平行,此时小球的速度速度大小为v,重力加速度为g,不计所有的摩擦.则下列说法中正确的是( )A.上述过程中,斜面对小球做的功等于小球增加的动能B.上述过程中,推力F做的功为FLC.上述过程中,推力F做的功等于小球增加的机械能D.轻绳与斜面平行时,绳对小球的拉力大小为mgsin45°12.市面上出售一种装有太阳能电扇的帽子(如图所示).在阳光的照射下,小电扇快速转动,能给炎热的夏季带来一丝凉爽.该装置的能量转化情况是()A.太阳能→电能→机械能B.太阳能→机械能→电能C.电能→太阳能→机械能D.机械能→太阳能→电能13.自动充电式电动车的前轮装有发电机,发电机与蓄电池连接.骑车者用力蹬车或电动车自动滑行时,发电机向蓄电池充电,将其他形式的能转化成电能储存起来.现使车以500J的初动能在粗糙的水平路面上自由滑行,第一次关闭自充电装置,其动能随位移变化关系如图线①所示;第二次启动自充电装置,其动能随位移变化关系如图线②所示,则第二次向蓄电池所充的电能是()A.500J B.300J C.250J D.200J14.如图所示,一小孩从公园中粗糙的滑梯上自由加速滑下,其能量的变化情况是()A.重力势能减少,动能不变,机械能减少B.重力势能减少,动能增加,机械能减少C.重力势能减少,动能增加,机械能增加D.重力势能减少,动能增加,机械能守恒15.有关功和能,下列说法正确的是( )A.力对物体做了多少功,物体就具有多少能B.物体具有多少能,就一定能做多少功C.物体做了多少功,就有多少能量消失D.能量从一种形式转化为另一种形式时,可以用功来量度能量转化的多少16.如图所示,A、B、C三个一样的滑块从粗糙斜面上的同一高度同时开始运动,Av,C的初速度方向沿斜面水平,大由静止释放,B的初速度方向沿斜面向下,大小为v。
高中物理机械能守恒定律(解析版)
机械能守恒定律目录一.练经典---落实必备知识与关键能力 (1)二.练新题---品立意深处所蕴含的核心价值 (1)一.练经典---落实必备知识与关键能力1.(2022·山东学考)若忽略空气阻力的影响,下列运动过程中物体机械能守恒的是()A.被掷出后在空中运动的铅球B.沿粗糙斜面减速下滑的木块C.随热气球一起匀速上升的吊篮D.随倾斜传送带加速上行的货物【答案】A【解析】:机械能守恒的条件是只有重力做功,被掷出后在空中运动的铅球只有重力做功,机械能守恒;沿粗糙斜面下滑的木块除重力外还有摩擦力做功,机械能不守恒;随热气球一起匀速上升的吊篮在上升过程中动能不变,重力势能随高度增大而增大,机械能不守恒;随倾斜传送带加速上行的货物在上行过程中动能增大,重力势能增大,机械能不守恒。
故A正确。
2.(多选)如图所示,下列关于机械能是否守恒的判断正确的是()A.甲图中,物体A将弹簧压缩的过程中,A机械能守恒B.乙图中,A置于光滑水平面,物体B沿光滑斜面下滑,物体B机械能守恒C.丙图中,不计滑轮质量和任何阻力时A加速下落,B加速上升过程中,A、B组成的系统机械能守恒D.丁图中,小球沿水平面做匀速圆锥摆运动时,小球的机械能守恒【答案】CD【解析】:甲图中重力和弹力做功,物体A和弹簧组成的系统机械能守恒,但物体A机械能不守恒,A错误。
乙图中物体B除受重力外,还受弹力,弹力对B做负功,机械能不守恒,但从能量特点看A、B组成的系统机械能守恒,B错误。
丙图中A、B组成的系统只有重力做功,动能和势能相互转化,总的机械能守恒,C正确。
丁图中动能不变,势能不变,机械能守恒,D正确。
3.(2022·浙江7月学考)如图所示,质量为m的小球从距桌面h1高处的A点由静止释放,自由下落到地面上的B点,桌面离地高为h2。
选择桌面为参考平面,则小球()A.在A点时的重力势能为-mgh1B .在A 点时的机械能为mg (h 1+h 2)C .在B 点时的重力势能为mgh 2D .在B 点时的机械能为mgh 1 【答案】D【解析】: 选择桌面为参考平面,小球在A 点的重力势能为mgh 1,A 错误;小球在A 点的机械能等于重力势能和动能之和,而动能为零,所以在A 点的机械能为mgh 1,B 错误;小球在B 点的重力势能为-mgh 2,小球在B 点的机械能与在A 点的机械能相同,也是mgh 1,C 错误,D 正确。
高一物理机械能守恒定律练习题及答案
机械能守恒定律计算题(基础练习)班别:姓名:1.如图5-1-8所示,滑轮和绳的质量及摩擦不计,用力F起先提升原来静止的质量为m=10kg的物体,以大小为a=2m/s2的加速度匀加速上升,求头3s内力F做的功.(取g=10m/s2)2.汽车质量5t,额定功率为60kW,当汽车在水平路面上行驶时,受到的阻力是车重的0.1倍,:求:(1)汽车在此路面上行驶所能达到的最大速度是多少?(2)若汽车从静止起先,保持以0.5m/s2的加速度作匀加速直线运动,这一过程能维持多长时间?3.质量是2kg的物体,受到24N竖直向上的拉力,由静止图5-2-5图5-1-8图5-3-1起先运动,经过5s ;求:①5s 内拉力的平均功率②5s 末拉力的瞬时功率(g 取10m/s 2)4.一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处对起先运动处的水平距离为S ,如图5-3-1,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦因数相同.求动摩擦因数μ.5.如图5-3-2所示,AB 为1/4圆弧轨道,半径为R =0.8m ,BC 是水平轨道,长S =3m ,BC 处图5-3-2h 1h 2图5-4-4的摩擦系数为μ=1/15,今有质量m =1kg 的物体,自A 点从静止起下滑到C 点刚好停止.求物体在轨道AB 段所受的阻力对物体做的功.6. 如图5-4-4所示,两个底面积都是S 的圆桶, 用一根带阀门的很细的管子相连接,放在水平地面上,两桶内装有密度为ρ的同种液体,阀门关闭时两桶液面的高度分别为h 1和h 2,现将连接两桶的阀门打开,在两桶液面变为相同高度的过程中重力做了多少功?7.如图5-4-2使一小球沿半径为R 的圆形轨道从最低点B 上升,那么需给它最小速度为多大时,才能使它达到轨道的最高点A ?图5-4-28.如图5-4-8所示,光滑的水平轨道与光滑半圆弧轨道相切.圆轨道半径R=0.4m,一小球停放在光滑水平轨道上,现给小球一个v0=5m/s的初速度,求:小球从C 点抛出时的速度(g取10m/s2).9.如图5-5-1所示,光滑的倾斜轨道与半径为R的圆形轨道相连接,质量为m的小球在倾斜轨道上由静止释放,要使小球恰能通过圆形轨道的最高点,小球释放点离圆形轨道最低点多高?通过轨道点最低点时球对轨道压力多大?图5-5-1BRV0图5-4-8HABR图5-5-1110.如图5-5-2长l =80cm 的细绳上端固定,下端系一个质量m =100g 的小球.将小球拉起至细绳与直立方向成60°角的位置,然后无初速释放.不计各处阻力,求小球通过最低点时,细绳对小球拉力多大?取g=10m/s 2.11.质量为m 的小球,沿光滑环形轨道由静止滑下(如图5-5-11所示),滑下时的高度足够大.则小球在最低点时对环的压力跟小球在最高点时对环的压力之差是小球重力的多少倍?12.“验证机械能守恒定律”的试验采纳重物自由下落的方法.(1)用公式mv 2/2=mgh 时,对纸带上起点的要求是 ,为此目的,所选择的纸带一、二两点间距应接近 .(2)若试验中所用的重锤质量M = 1kg ,打点纸带如图5-8-8所示,打点时间间隔为0.02s ,则记录B 点时,重锤的速度v B = ,重锤动能E KB = .从起先下落起至B 点,重锤的重力势能削减量是 ,因此可得结论是 . (3)依据纸带算出相关各点速度V ,量出下落距离h ,则以2v 2为纵轴,以h 为横轴画出的图线应是图5-8-9中的 .答案1.如图5-1-8所示,滑轮和绳的质量及摩擦不计,用力F 起先提升原来静止的质量为m =10kg 的物体,以大小为a =2m /s 2的加速度匀加速上升,求头3s 内力F 做的功.(取g =10m /s 2【解析】利用w =Fs cos a 求力F 的功时,要留意其中的s 必需是力F 作用的质点的位移.可以利用等效方法求功,要分析清晰哪些力所做的功具有等效关系.物体受到两个力的作用:拉力F '和重力mg ,由牛顿其次定律得ma mg F =-'所以=+='ma mg F 10×10+10×2=120N 则力2F F '==60N 物体从静止起先运动,3s 内的位移为221at s ==21×2×32=9m2AB20CD22图5-8-9图5-1-8图5-3-1解法一: 力F 作用的质点为绳的端点,而在物体发生9m 的位移的过程中,绳的端点的位移为s /=2s =18m ,所以,力F 做的功为=='=s F s F W 260×18=1080J解法二 :本题还可用等效法求力F 的功.由于滑轮和绳的质量及摩擦均不计,所以拉力F 做的功和拉力F’对物体做的功相等.即='=='s F W W F F 120×9=1080J2.汽车质量5t ,额定功率为60kW ,当汽车在水平路面上行驶时,受到的阻力是车重的0.1倍,问:(1)汽车在此路面上行驶所能达到的最大速度是多少?(2)若汽车从静止起先,保持以0.5m/s 2的加速度作匀加速直线运动,这一过程能维持多长时间? 【解析】(1) 当汽车达到最大速度时,加速度a=0,此时mg f F μ== ① m Fv P = ②由①、②解得s m mgPv m /12==μ (2) 汽车作匀加速运动,故F 牵-μmg =ma ,解得F 牵=7.5×103N 设汽车刚达到额定功率时的速度为v ,则P = F 牵·v ,得v =8m/s 设汽车作匀加速运动的时间为t ,则v =at 得t =16s3.质量是2kg 的物体,受到24N 竖直向上的拉力,由静止起先运动,经过5s ;求:①5s 内拉力的平均功率②5s 末拉力的瞬时功率(g 取10m/s 2)【解析】物体受力状况如图5-2-5所示,其中F 为拉力,mg 为重力由牛顿其次定律有F -mg=ma 解得 =a 2m/s 2 5s 内物体的位移221at s ==2.5m 所以5s 内拉力对物体做的功 W =FS =24×25=600J 5s 内拉力的平均功率为5600==t W P =120W 5s 末拉力的瞬时功率 P =Fv =Fat =24×2×5=240W4.一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处对起先运动处的水平距离为S ,如图5-3-1,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦因数相同.求动摩擦因数μ. 【解析】 设该斜面倾角为α,斜坡长为l ,则物体沿斜面下滑时,重力和摩擦力在斜面上的功分别为:mgh mgl W G ==αsinαμcos 1mgl W f -=物体在平面上滑行时仅有摩擦力做功,设平面上滑行距离为S 2,则22mgS W f μ-=Fmg图5-2-5h 1h 2图5-4-4对物体在全过程中应用动能定理:ΣW =ΔE k . 所以 mgl sin α-μmgl cos α-μmgS 2=0 得 h -μS 1-μS 2=0.式中S 1为斜面底端与物体初位置间的水平距离.故ShS S h =+=21μ【点拨】 本题中物体的滑行明显地可分为斜面与平面两个阶段,而且运动性质也明显分别为匀加速运动和匀减速运动.依据各阶段中动力学和运动学关系也可求解本题.比较上述两种探讨问题的方法,不难显现动能定理解题的优越性.5.如图5-3-2所示,AB 为1/4圆弧轨道,半径为R =0.8m ,BC 是水平轨道,长S =3m ,BC 处的摩擦系数为μ=1/15,今有质量m =1kg 的物体,自A 点从静止起下滑到C 点刚好停止.求物体在轨道AB 段所受的阻力对物体做的功.【解析】物体在从A 滑到C 的过程中,有重力、AB 段的阻力、BC 段的摩擦力共三个力做功,W G =mgR ,f BC =umg ,由于物体在AB 段受的阻力是变力,做的功不能干脆求.依据动能定理可知:W 外=0,所以mgR -umgS -W AB =0 即W AB =mgR -umgS =1×10×0.8-1×10×3/15=6J【点拨】假如我们所探讨的问题中有多个力做功,其中只有一个力是变力,其余的都是恒力,而且这些恒力所做的功比较简单计算,探讨对象本身的动能增量也比较简单计算时,用动能定理就可以求出这个变力所做的功.6. 如图5-4-4所示,两个底面积都是S 的圆桶,用一根带阀门的很细的管子相连接,放在水平地面上,两桶内装有密度为ρ的同种液体,阀门关闭时两桶液面的高度分别为h 1和h 2,现将连接两桶的阀门打开,在两桶液面变为相同高度的过程中重力做了多少功?【解析】取水平地面为零势能的参考平面,阀门关闭时两桶内液体的重力势能为:2)(2)(22111hsh h sh E P ρρ+= )(212221h h gs +=ρ 阀门打开,两边液面相平常,两桶内液体的重力势能总和为221)(21212h h g h h s E P +⋅⋅+=ρ由于重力做功等于重力势能的削减,所以在此过程中重力对液体做功 22121)(41h h gs E E W P P G -=-=ρ 7.如图5-4-2使一小球沿半径为R 的圆形轨道从最低点B 上升,那么需给它最小速度为多大时,才能使它达到轨道的最高点A ? 【错解】如图5-4-2所示,依据机械能守恒,小球在圆形轨道最高点A 时的势能等于它在圆形轨道最低点B 时的动能(以B 点作为零势能位置),所以为2212B mv R mg =⋅ 图5-3-2图5-4-2从而得gR v B 2=【错因】小球到达最高点A 时的速度v A 不能为零,否则小球早在到达A 点之前就离开了圆形轨道.要使小球到达A 点(自然不脱离圆形轨道),则小球在A 点的速度必需满意Rv m N mg AA 2=+式中,N A 为圆形轨道对小球的弹力.上式表示小球在A 点作圆周运动所须要的向心力由轨道对它的弹力和它本身的重力共同供应.当N A =0时, v A 最小,v A =gR .这就是说,要使小球到大A 点,则应使小球在A 点具有速度v A gR ≥【正解】以小球为探讨对象.小球在轨道最高点时,受重力和轨道给的弹力. 小球在圆形轨道最高点A 时满意方程Rv m N mg AA 2=+ (1)依据机械能守恒,小球在圆形轨道最低点B 时的速度满意方程2221221B A mv R mg mv =+ (2) 解(1),(2)方程组得A B N mRgR v +=5 当N A =0时,v B 为最小,v B =gR 5.所以在B 点应使小球至少具有v B =gR 5的速度,才能使小球到达圆形轨道的最高点A.8.如图5-4-8所示,光滑的水平轨道与光滑半圆弧轨道相切.圆轨道半径R =0.4m ,一小球停放在光滑水平轨道上,现给小球一个v 0=5m/s 的初速度,求:小球从C 点抛出时的速度(g取10m/s 2).【解析】由于轨道光滑,只有重力做功,小球运动时机械能守恒.即 22021221Cmv R mgh mv += 解得 =C v 3m/s9.如图5-5-1所示,光滑的倾斜轨道与半径为R 的圆形轨道相连接,质量为m 的小球在倾斜轨道上由静止释放,要使小球恰能通过圆形轨道的最高点,小球释放点离圆形轨道最低点多高?通过轨道点最低点时球对轨道压力多大?【解析】 小球在运动过程中,受到重力和轨道支持力,轨道支持力对小球不做功,只有重力做功,小球机械能守恒.取轨道最低点为零重力势能面.因小球恰能通过圆轨道的最高点C ,说明此时,轨道对小球作用力为零,只有重力供应向心力,依据牛顿其次定律可列Rv m mg c 2= 得gR m R v m c 2212=在圆轨道最高点小球机械能:mgR mgR E C 221+=图5-5-1BRV 0 图5-4-8HABR图5-5-11在释放点,小球机械能为: mgh E A =依据机械能守恒定律 A C E E = 列等式:R mg mgR mgh 221+= 解得R h 25=同理,小球在最低点机械能 221BB mv E = gR v E E B CB 5==小球在B 点受到轨道支持力F 和重力依据牛顿其次定律,以向上为正,可列mg F Rv mmg F B62==-据牛顿第三定律,小球对轨道压力为6mg .方向竖直向下.10.如图5-5-2长l =80cm 的细绳上端固定,下端系一个质量m =100g 的小球.将小球拉起至细绳与直立方向成60°角的位置,然后无初速释放.不计各处阻力,求小球通过最低点时,细绳对小球拉力多大?取g=10m/s 2.【解析】小球运动过程中,重力势能的改变量)60cos 1(0--=-=∆mgl mgh E p ,此过程中动能的改变量221mv E k=∆.机械能守恒定律还可以表达为0=∆+∆k p E E即0)60cos 1(2102=--mgl mv 整理得)60cos 1(202-=mg l v m 又在最低点时,有lv m mg T 2=-在最低点时绳对小球的拉力大小NN mg mg mg lv m mg T 2101.022)60cos 1(202=⨯⨯==-+=+= 通过以上各例题,总结应用机械能守恒定律解决问题的基本方法.11.质量为m 的小球,沿光滑环形轨道由静止滑下(如图5-5-11所示),滑下时的高度足够大.则小球在最低点时对环的压力跟小球在最高点时对环的压力之差是小球重力的多少倍? 【解析】以小球和地球为探讨对象,系统机械能守恒,即221Amv mgH = ………………………① R mg mv mgH B 2212+=…………② 小球做变速圆周运动时,向心力由轨道弹力和重力的合力供应 在最高点A :Rv m mg F A A2=-…………③在最高点B : Rv m mg F B B 2=+………④由①③解得: RH mg mg F A2+=由②④解得:)52(-=RH mg FBmg F F B A 6=-6=-∴mgF F BA 12.“验证机械能守恒定律”的试验采纳重物自由下落的方法.(1)用公式mv 2/2=mgh 时,对纸带上起点的要求是 ,为此目的,所选择的纸带一、二两点间距应接近 .(2)若试验中所用的重锤质量M = 1kg ,打点纸带如图5-8-8所示,打点时间间隔为0.02s ,则记录B 点时,重锤的速度v B = ,重锤动能E KB = .从起先下落起至B 点,重锤的重力势能削减量是 ,因此可得结论是 .(3)依据纸带算出相关各点速度V ,量出下落距离h ,则以2v 2为纵轴,以h 为横轴画出的图线应是图5-8-9中的 .【解析】(1)初速度为0, 2mm.(2)0.59m/s, 0.174J, 0.176J, 在试验误差允许的范围内机械能守恒.(3)C.。
(完整版)机械能守恒定律练习题含答案
(完整版)机械能守恒定律练习题含答案机械能守恒定律练习题一、选择题(每题6分,共36分)1、下列说法正确的是:(选CD)A、物体机械能守恒时,一定只受重力和弹力的作用。
(是只有重力和弹力做功)B、物体处于平衡状态时机械能一定守恒。
(吊车匀速提高物体)C、在重力势能和动能的相互转化过程中,若物体除受重力外,还受到其他力作用时,物体的机械能也可能守恒。
(受到一对平衡力)D、物体的动能和重力势能之和增大,必定有重力以外的其他力对物体做功。
2、两个质量不同而动能相同的物体从地面开始竖直上抛(不计空气阻力),当上升到同一高度时,它们(选C)A.所具有的重力势能相等(质量不等)B.所具有的动能相等C.所具有的机械能相等(初始时刻机械能相等)D.所具有的机械能不等3、一个原长为L的轻质弹簧竖直悬挂着。
今将一质量为m的物体挂在弹簧的下端,用手托住物体将它缓慢放下,并使物体最终静止在平衡位置。
在此过程中,系统的重力势能减少,而弹性势能增加,以下说法正确的是(选A)A、减少的重力势能大于增加的弹性势能(手对物体的支持力也有做功,根据合外力做功为0)B、减少的重力势能等于增加的弹性势能C、减少的重力势能小于增加的弹性势能D、系统的机械能增加(动能不变,势能减小)4、如图所示,桌面高度为h,质量为m的小球,从离桌面高H处自由落下,不计空气阻力,假设桌面处的重力势能为零,小球落到地面前的瞬间的机械能应为(选B)A、mghB、mgHC、mg(H+h)D、mg(H-h)6、质量为m的子弹,以水平速度v射入静止在光滑水平面上质量为M的木块,并留在其中,下列说法正确的是(选BD)A.子弹克服阻力做的功与木块获得的动能相等(与木块和子弹的动能,还有热能)B.阻力对子弹做的功与子弹动能的减少相等(子弹的合外力是阻力)C.子弹克服阻力做的功与子弹对木块做的功相等D.子弹克服阻力做的功大于子弹对木块做的功(一部分转化成热能)二、填空题(每题8分,共24分)7、从离地面H高处落下一只小球,小球在运动过程中所受到的空气阻力是它重力的k倍,而小球与地面相碰后,能以相同大小的速率反弹,则小球从释放开始,直至停止弹跳为止,所通过的总路程为 H/k 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机械能守恒定律计算题(基础练习)班别:姓名:1.如图5-1-8所示,滑轮和绳的质量及摩擦不计,用力F开始提升原来静止的质量为m=10kg的物体,以大小为a=2m/s2的加速度匀加速上升,求头3s内力F做的功.(取g=10m/s2)图5-1-82.汽车质量5t,额定功率为60kW,当汽车在水平路面上行驶时,受到的阻力是车重的0.1倍,:求:(1)汽车在此路面上行驶所能达到的最大速度是多少?(2)若汽车从静止开始,保持以0.5m/s2的加速度作匀加速直线运动,这一过程能维持多长时间?图5-3-13.质量是2kg 的物体,受到24N 竖直向上的拉力,由静止开始运动,经过5s ;求:①5s 内拉力的平均功率②5s 末拉力的瞬时功率(g 取10m/s 2)4.一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处对开始运动处的水平距离为S ,如图5-3-1,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦因数相同.求动摩擦因数μ.图5-2-5图5-4-45.如图5-3-2所示,AB 为1/4圆弧轨道,半径为R =0.8m ,BC 是水平轨道,长S =3m ,BC 处的摩擦系数为μ=1/15,今有质量m =1kg 的物体,自A 点从静止起下滑到C 点刚好停止.求物体在轨道AB 段所受的阻力对物体做的功.6. 如图5-4-4所示,两个底面积都是S 的圆桶,用一根带阀门的很细的管子相连接,放在水平地面上,两桶内装有密度为ρ的同种液体,阀门关闭时两桶液面的高度分别为h 1和h 2,现将连接两桶的阀门打开,在两桶液面变为相同高度的过程中重力做了多少功?图5-3-27.如图5-4-2使一小球沿半径为R的圆形轨道从最低点B上升,那么需给它最小速度为多大时,才能使它达到轨道的最高点A?8.如图5-4-8所示,光滑的水平轨道与光滑半圆弧轨道相切.圆轨道半径R=0.4m,一小球停放在光滑水平轨道上,现给小球一个v0=5m/s的初速度,求:小球从C点抛出时的速度(g取10m/s2).图5-4-2图5-4-89.如图5-5-1所示,光滑的倾斜轨道与半径为R 的圆形轨道相连接,质量为m的小球在倾斜轨道上由静止释放,要使小球恰能通过圆形轨道的最高点,小球释放点离圆形轨道最低点多高?通过轨道点最低点时球对轨道压力多大?10.如图5-5-2长l=80cm的细绳上端固定,下端系一个质量m=100g的小球.将小球拉起至细绳与竖立方向成60°角的位置,然后无初速释放.不计各处阻力,求小球通过最低点时,细绳对小球拉力多大?取g=10m/s2. 图5-5-1图5-5-1111.质量为m 的小球,沿光滑环形轨道由静止滑下(如图5-5-11所示),滑下时的高度足够大.则小球在最低点时对环的压力跟小球在最高点时对环的压力之差是小球重力的多少倍?12.“验证机械能守恒定律”的实验采用重物自由下落的方法.(1)用公式mv2/2=mgh 时,对纸带上起点的要求是,为此目的,所选择的纸带一、二两点间距应接近 .(2)若实验中所用的重锤质量M = 1kg ,打点纸带如图5-8-8所示,打点时间间隔为0.02s ,则记录B 点时,重锤的速度v B = ,重锤动能E KB = .从开始下落起至B 点,重锤的重力势能减少量是 ,因此可得结论是 . (3)根据纸带算出相关各点速度V ,量出下落距离h ,则以2v 2为纵轴,以h 为横轴画出的图线应是图5-8-9中的 .2 AB20CD22图5-8-9答案1.如图5-1-8所示,滑轮和绳的质量及摩擦不计,用力F 开始提升原来静止的质量为m =10kg 的物体,以大小为a =2m /s 2的加速度匀加速上升,求头3s 内力F 做的功.(取g =10m /s 2) 【解析】利用w =Fs cos a 求力F 的功时,要注意其中的s 必须是力F 作用的质点的位移.可以利用等效方法求功,要分析清楚哪些力所做的功具有等效关系.物体受到两个力的作用:拉力F '和重力mg ,由牛顿第二定律得ma mg F =-'所以=+='ma mg F 10×10+10×2=120N 则力2F F '==60N 物体从静止开始运动,3s 内的位移为221at s ==21×2×32=9m解法一: 力F 作用的质点为绳的端点,而在物体发生9m 的位移的过程中,绳的端点的位移为s /=2s =18m ,所以,力F 做的功为 =='=s F s F W260×18=1080J解法二 :本题还可用等效法求力F 的功.由于滑轮和绳的质量及摩擦均不计,所以拉力F 做的功和拉力F’对物体做的功相等. 即='=='s F W W F F 120×9=1080J2.汽车质量5t ,额定功率为60kW ,当汽车在水平路面上行驶时,受到的阻力是车重的0.1倍,问:(1)汽车在此路面上行驶所能达到的最大速度是多少?(2)若汽车从静止开始,保持以0.5m/s 2的加速度作匀加速直线运动,这一过程能维持多长时间?【解析】(1) 当汽车达到最大速度时,加速度a=0,此时mg f F μ== ① m Fv P = ②由①、②解得s m mgPv m /12==μ (2) 汽车作匀加速运动,故F 牵-μmg =ma ,解得F 牵=7.5×103N 设汽车刚达到额定功率时的速度为v ,则P = F 牵·v ,得v =8m/s 设汽车作匀加速运动的时间为t ,则v =at 得t =16s3.质量是2kg 的物体,受到24N 竖直向上的拉力,由静止开始运动,经过5s ;求:①5s 内拉力的平均功率②5s 末拉力的瞬时功率(g 取10m/s 2)【解析】物体受力情况如图5-2-5所示,其中F 为拉力,mg 为重力由牛顿第二定律有F -mg=ma解得 =a 2m/s2图5-1-8图5-2-5图5-3-15s 内物体的位移221at s ==2.5m 所以5s 内拉力对物体做的功W =FS =24×25=600J5s 内拉力的平均功率为5600==t W P =120W 5s 末拉力的瞬时功率P =Fv =Fat =24×2×5=240W4.一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处对开始运动处的水平距离为S ,如图5-3-1,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦因数相同.求动摩擦因数μ.【解析】 设该斜面倾角为α,斜坡长为l ,则物体沿斜面下滑时,重力和摩擦力在斜面上的功分别为:mgh mgl W G ==αsin αμcos 1mgl W f -=物体在平面上滑行时仅有摩擦力做功,设平面上滑行距离为S 2,则22mgS W f μ-= 对物体在全过程中应用动能定理:ΣW =ΔE k . 所以 mgl sin α-μmgl cos α-μmgS 2=0 得 h -μS 1-μS 2=0.式中S 1为斜面底端与物体初位置间的水平距离.故ShS S h =+=21μ【点拨】 本题中物体的滑行明显地可分为斜面与平面两个阶段,而且运动性质也显然分别为匀加速运动和匀减速运动.依据各阶段中动力学和运动学关系也可求解本题.比较上述两种研究问题的方法,不难显现动能定理解题的优越性.5.如图5-3-2所示,AB 为1/4圆弧轨道,半径为R =0.8m ,BC 是水平轨道,长S =3m ,BC 处的摩擦系数为μ=1/15,今有质量m =1kg 的物体,自A 点从静止起下滑到C 点刚好停止.求物体在轨道AB 段所受的阻力对物体做的功.【解析】物体在从A 滑到C 的过程中,有重力、AB 段的阻力、BC 段的摩擦力共三个力做功,W G =mgR ,f BC =umg ,由于物体在AB 段受的阻力是变力,做的功不能直接求.根据动能定理可知:W 外=0,所以mgR -umgS -W AB =0 即W AB =mgR -umgS =1×10×0.8-1×10×3/15=6J【点拨】如果我们所研究的问题中有多个力做功,其中只有一个力是变力,其余的都是恒力,而且这些恒力所做的功比较容易计算,研究对象本身的动能增量也比较容易计算时,用动能定理就可以求出这个变力所做的功.6. 如图5-4-4所示,两个底面积都是S的圆桶,图5-3-2用一根带阀门的很细的管子相连接,放在水平地面上,两桶内装有密度为ρ的同种液体,阀门关闭时两桶液面的高度分别为h 1和h 2,现将连接两桶的阀门打开,在两桶液面变为相同高度的过程中重力做了多少功?【解析】取水平地面为零势能的参考平面,阀门关闭时两桶内液体的重力势能为:2)(2)(22111h sh h sh E P ρρ+= )(212221h h gs +=ρ 阀门打开,两边液面相平时,两桶内液体的重力势能总和为221)(21212h h g h h s E P +⋅⋅+=ρ由于重力做功等于重力势能的减少,所以在此过程中重力对液体做功 22121)(41h h gs E E W P P G -=-=ρ 7.如图5-4-2使一小球沿半径为R 的圆形轨道从最低点B 上升,那么需给它最小速度为多大时,才能使它达到轨道的最高点A ? 【错解】如图5-4-2所示,根据机械能守恒,小球在圆形轨道最高点A 时的势能等于它在圆形轨道最低点B 时的动能(以B 点作为零势能位置),所以为2212B mv R mg =⋅ 从而得gR v B 2=【错因】小球到达最高点A 时的速度v A 不能为零,否则小球早在到达A 点之前就离开了圆形轨道.要使小球到达A 点(自然不脱离圆形轨道),则小球在A 点的速度必须满足Rv m N mg AA 2=+式中,N A 为圆形轨道对小球的弹力.上式表示小球在A 点作圆周运动所需要的向心力由轨道对它的弹力和它本身的重力共同提供.当N A =0时,v A 最小,v A =gR .这就是说,要使小球到大A 点,则应使小球在A 点具有速度v A gR ≥【正解】以小球为研究对象.小球在轨道最高点时,受重力和轨道给的弹力. 小球在圆形轨道最高点A 时满足方程Rv m N mg AA 2=+ (1)根据机械能守恒,小球在圆形轨道最低点B 时的速度满足方程2221221B A mv R mg mv =+ (2) 解(1),(2)方程组得A B N mRgR v +=5 当N A =0时,v B 为最小,v B =gR 5.所以在B 点应使小球至少具有v B =gR 5的速度,才能使小球到达圆形轨道的最高点A.图5-4-28.如图5-4-8所示,光滑的水平轨道与光滑半圆弧轨道相切.圆轨道半径R =0.4m ,一小球停放在光滑水平轨道上,现给小球一个v 0=5m/s 的初速度,求:小球从C 点抛出时的速度(g 取10m/s 2).【解析】由于轨道光滑,只有重力做功,小球运动时机械能守恒.即 22021221Cmv R mgh mv += 解得 =C v 3m/s9.如图5-5-1所示,光滑的倾斜轨道与半径为R 的圆形轨道相连接,质量为m 的小球在倾斜轨道上由静止释放,要使小球恰能通过圆形轨道的最高点,小球释放点离圆形轨道最低点多高?通过轨道点最低点时球对轨道压力多大?【解析】 小球在运动过程中,受到重力和轨道支持力,轨道支持力对小球不做功,只有重力做功,小球机械能守恒.取轨道最低点为零重力势能面.因小球恰能通过圆轨道的最高点C ,说明此时,轨道对小球作用力为零,只有重力提供向心力,根据牛顿第二定律可列Rv m mg c 2= 得gR m Rv m c 2212=在圆轨道最高点小球机械能:mgR mgR E C 221+=在释放点,小球机械能为: mgh E A =根据机械能守恒定律 A C E E = 列等式:R mg mgR mgh 221+= 解得R h 25=同理,小球在最低点机械能 221BB mv E = gR v E E B CB 5==小球在B 点受到轨道支持力F 和重力根据牛顿第二定律,以向上为正,可列mg F Rv mmg F B 62==-据牛顿第三定律,小球对轨道压力为6mg .方向竖直向下.10.如图5-5-2长l =80cm 的细绳上端固定,下端系一个质量m =100g 的小球.将小球拉起至细绳与竖立方向成60°角的位置,然后无初速释放.不计各处阻力,求小球通过最低点时,细绳对小球拉力多大?取g=10m/s 2.【解析】小球运动过程中,重力势能的变化量)60cos 1(0--=-=∆mgl mgh E p ,此过程中动能的变化量221mv E k=∆.机械能守恒定律还可以表达为0=∆+∆k p E E即0)60cos 1(2102=--mgl mv 整理得)60cos 1(202-=mg l v m 又在最低点时,有lv m mg T 2=-在最低点时绳对小球的拉力大小图5-5-1图5-4-8完美格式整理版学习好帮手图5-5-11NN mg mg mg lv m mg T 2101.022)60cos 1(202=⨯⨯==-+=+= 通过以上各例题,总结应用机械能守恒定律解决问题的基本方法.11.质量为m 的小球,沿光滑环形轨道由静止滑下(如图5-5-11所示),滑下时的高度足够大.则小球在最低点时对环的压力跟小球在最高点时对环的压力之差是小球重力的多少倍? 【解析】以小球和地球为研究对象,系统机械能守恒,即 221A mv mgH = ………………………① R mg mv mgH B 2212+= …………②小球做变速圆周运动时,向心力由轨道弹力和重力的合力提供在最高点A :R v m mg F A A 2=-…………③ 在最高点B : R v m mg F B B 2=+………④由①③解得: RH mg mg F A 2+= 由②④解得:)52(-=RH mg F B mg F F B A 6=-6=-∴mgF F B A12.“验证机械能守恒定律”的实验采用重物自由下落的方法.(1)用公式mv 2/2=mgh 时,对纸带上起点的要求是 ,为此目的,所选择的纸带一、二两点间距应接近 .(2)若实验中所用的重锤质量M = 1kg ,打点纸带如图5-8-8所示,打点时间间隔为0.02s ,则记录B 点时,重锤的速度v B = ,重锤动能E KB = .从开始下落起至B 点,重锤的重力势能减少量是 ,因此可得结论是 . (3)根据纸带算出相关各点速度V ,量出下落距离h ,则以2v 2为纵轴,以h 为横轴画出的图线应是图5-8-9中的 .【解析】(1)初速度为0, 2mm.(2)0.59m/s, 0.174J, 0.176J, 在实验误差允许的范围内机械能守恒.(3)C.。