高中数学三角函数公式大全附带练习题
三角函数公式典型例题大全

高中三角函数公式大全以及典型例题2009年07月12日星期日 19:27三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtan(A+B) =tan(A-B) =cot(A+B) =cot(A-B) =倍角公式tan2A =Sin2A=2SinA?CosACos2A = Cos2A-Sin2A=2Cos2A-1=1-2sin2A三倍角公式sin3A = 3sinA-4(sinA)3cos3A = 4(cosA)3-3cosAtan3a = tana·tan(+a)·tan(-a)半角公式sin()=cos()=tan()=cot()=tan()==和差化积sina+sinb=2sincossina-sinb=2cossincosa+cosb = 2coscoscosa-cosb = -2sinsintana+tanb=积化和差sinasinb = -[cos(a+b)-cos(a-b)] cosacosb =[cos(a+b)+cos(a-b)]sinacosb =[sin(a+b)+sin(a-b)] cosasinb =[sin(a+b)-sin(a-b)]诱导公式sin(-a) = -sina cos(-a) = cosa.sin(-a) = cosa cos(-a) = sinasin(+a) = cosa cos(+a) = -sinasin(π-a) = sina cos(π-a) = -cosasin(π+a) = -sina cos(π+a) = -cosatgA=tanA =万能公式sina=cosa=tana=其它公式a?sina+b?cosa=×sin(a+c) [其中tanc=]a?sin(a)-b?cos(a) =×cos(a-c) [其中tan(c)=]1+sin(a) =(sin+cos)2 1-sin(a) = (sin-cos)2其他非重点三角函数csc(a) =sec(a) =公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinα cos(2kπ+α)= cosαtan(2kπ+α)= tanα cot(2kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinα cos(π+α)= -cosαtan(π+α)= tanα cot(π+α)= cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)= -sinα cos(-α)= cosαtan(-α)= -tanα cot(-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinα cos(π-α)= -cosαtan(π-α)= -tanα cot(π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinα cos(2π-α)= cosαtan(2π-α)= -tanα cot(2π-α)= -cotα公式六:±α及±α与α的三角函数值之间的关系:sin(+α)= cosα cos(+α)= -sinα tan(+α)= -cotα cot(+α)= -tanαsin(-α)= cosα cos(-α)= sinα tan(-α)= cotα cot(-α)= tanαsin(+α)= -cosα cos(+α)= sinα tan(+α)= -cotαcot(+α)= -tanα sin(-α)= -cosα cos(-α)= -sinαtan(-α)= cotα cot(-α)= tanα(以上k∈Z)正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角正切定理:[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}三角函数积化和差和差化积公式记不住就自己推,用两角和差的正余弦:3.三角形中的一些结论:(不要求记忆)(1)tanA+tanB+tanC=tanA·tanB·tanC(2)sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)(3)cosA+cosB+cosC=4sin(A/2)·sin(B/2)·sin(C/2)+1(4)sin2A+sin2B+sin2C=4sinA·sinB·sinC(5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1 ...........................已知sinα=m sin(α+2β), |m|<1,求证tan(α+β)=(1+m)/(1-m)tanβ解:sinα=m sin(α+2β)sin(a+β-β)=msin(a+β+β)sin(a+β)cosβ-cos(a+β)sinβ=msin(a+β)cosβ+mcos(a+β)sinβsin(a+β)cosβ(1-m)=cos(a+β)sinβ(m+1)tan(α+β)=(1+m)/(1-m)tanβ三角函数典型例题1 .设锐角的内角的对边分别为,.(Ⅰ)求的大小;(Ⅱ)求的取值范围.【解析】:(Ⅰ)由,根据正弦定理得,所以,由为锐角三角形得.(Ⅱ).2 .在中,角A. B.C的对边分别为a、b、c,且满足(2a-c)cosB=bcos C.(Ⅰ)求角B的大小;20070316(Ⅱ)设且的最大值是5,求k的值.【解析】:(I)∵(2a-c)cosB=bcosC,∴(2sinA-sinC)cosB=sinBcos C.即2sinAcosB=sinBcosC+sinCcosB=sin(B+C)∵A+B+C=π,∴2sinAcosB=sinA.∵0<A<π,∴sinA≠0.∴cosB=.∵0<B<π,∴B=.(II)=4ksinA+cos2A.=-2sin2A+4ksinA+1,A∈(0,)设sinA=t,则t∈.则=-2t2+4kt+1=-2(t-k)2+1+2k2,t∈.∵k>1,∴t=1时,取最大值.依题意得,-2+4k+1=5,∴k=.3 .在中,角所对的边分别为,.I.试判断△的形状;II.若△的周长为16,求面积的最大值.【解析】:I.,所以此三角形为直角三角形.II.,当且仅当时取等号,此时面积的最大值为.4 .在中,a、b、c分别是角A. B.C的对边,C=2A,,(1)求的值;(2)若,求边AC的长?【解析】:(1)(2)①又②由①②解得a=4,c=6,即AC边的长为5.5 .已知在中,,且与是方程的两个根.(Ⅰ)求的值;(Ⅱ)若AB,求BC的长.【解析】:(Ⅰ)由所给条件,方程的两根.∴(Ⅱ)∵,∴.由(Ⅰ)知,,∵为三角形的内角,∴∵,为三角形的内角,∴,由正弦定理得:∴.6 .在中,已知内角A. B.C所对的边分别为a、b、c,向量,,且?(I)求锐角B的大小;(II)如果,求的面积的最大值?【解析】:(1)2sinB(2cos2-1)=-cos2B2sinBcosB=-cos2B tan2B=-∵0<2B<π,∴2B=,∴锐角B=(2)由tan2B=-B=或①当B=时,已知b=2,由余弦定理,得:4=a2+c2-ac≥2ac-ac=ac(当且仅当a=c=2时等号成立) ∵△ABC的面积S△ABC=acsinB=ac≤∴△ABC的面积最大值为②当B=时,已知b=2,由余弦定理,得:4=a2+c2+ac≥2ac+ac=(2+)ac(当且仅当a=c=-时等号成立)∴ac≤4(2-)∵△ABC的面积S△ABC=acsinB=ac≤ 2-∴△ABC的面积最大值为2-7 .在中,角A. B.C所对的边分别是a,b,c,且(1)求的值;(2)若b=2,求△ABC面积的最大值.【解析】:(1) 由余弦定理:cosB=+cos2B=(2)由∵b=2,+=ac+4≥2ac,得ac≤, S△ABC=acsinB≤(a=c时取等号)故S△ABC的最大值为8 .已知,求的值?【解析】;。
三角函数万能公式题目

三角函数万能公式题目三角函数万能公式,这可是高中数学里的一个“硬骨头”!想当年我自己上学的时候,也被它折腾得够呛。
咱们先来说说什么是三角函数万能公式。
它包括三个公式:sinα = [2tan(α/2)] / [1 + tan²(α/2)] ;cosα = [1 - tan²(α/2)] / [1 + tan²(α/2)] ;tanα = [2tan(α/2)] / [1 - tan²(α/2)] 。
看着这一堆式子,是不是有点头疼?别慌,咱们慢慢捋。
我记得有一次给学生们讲这部分内容,有个学生叫小李,平时数学成绩还不错,可就是卡在这万能公式上转不过弯来。
我在黑板上写了一道例题:已知tanα = 3,求sinα 和cosα 的值。
我一步一步地引导大家,先把万能公式写在旁边,然后告诉他们,咱们先从tanα 入手,求出tan(α/2)的值。
我问大家:“同学们,tanα = 3,那咱们怎么求tan(α/2) 呢?”下面一片安静,小李皱着眉头,咬着笔杆。
我笑了笑说:“别着急,咱们来想想啊,假设tan(α/2) = x ,那根据正切的二倍角公式,ta nα = 2x / (1 -x²) ,现在tanα = 3 ,是不是就能列出一个方程啦?”大家开始动笔算,小李眼睛突然一亮,大声说:“老师,我算出来啦,x = 1/2 或者 -2 !”我点点头:“很好,小李,那接下来咱们就可以代入万能公式算sinα 和cosα 啦。
”经过一番计算,大家终于算出了结果。
小李脸上露出了开心的笑容,我也松了一口气。
说回万能公式,要熟练运用它们,就得多多练习。
比如,给一个角度,让你用万能公式求三角函数值;或者反过来,给你三角函数值,让你通过万能公式求角度。
这就像是打怪升级,题目做得多了,经验值就涨上去了,遇到啥怪都不怕。
再比如说,在解决三角形的问题时,有时候已知条件给的不是常见的角度或者边长,这时候万能公式就能派上用场。
三角函数公式及其练习

三角函数公式复习与练习1、若βα与终边相同,则 。
2、同角三角函数的基本关系式 ①、 ②、 ③、3、诱导公式①、=-)sin(απ =-)cos(απ =-)tan(απ ②、=+)sin(απ =+)cos(απ =+)tan(απ ③、=-)sin(α =-)cos(α =-)tan(α ④、=-)2sin(απ=-)2cos(απ=-)2tan(απ⑤、=+)2sin(απ=+)2cos(απ=+)2tan(απ⑥、=+)2sin(παk =+)2cos(παk =+)2tan(παk 4、两角和与差的三角函数公式=+)sin(βα =-)sin(βα =+)cos(βα =-)cos(βα =+)tan(βα =-)tan(βα5、二倍角的正弦、余弦和正切公式=α2sin=α2cos=α2tan6、三角函数的降幂公式=α2sin =α2cos7、化x b x a cos sin +为一个角的一个三角函数的形式(辅助角公式)=+x b x a cos sin8、正弦定理:9、余弦定理:10、S ⊿=11、特殊角的三角函数值12、三角函数的图像及性质x y sin =x y cos =x y tan =13、图像的变化(先平移再伸缩)x y sin = ⇒ )s i n (ϕ+=x y⇒ )s i n (ϕω+=x y ⇒ )s i n (ϕ+=x A y(先伸缩再平移)x y sin = ⇒ )s i n(x y ω= ⇒ )s i n (ϕω+=x y ⇒ )s i n (ϕ+=x A y 练习:1、已知函数()sin(),f x A x x R ωϕ=+∈(其中0,0,02A πωϕ>><<)的图象与x轴的交点中,相邻两个交点之间的距离为2π,且图象上一个最低点为2(,2)3M π-. (Ⅰ)求()f x 的解析式;(Ⅱ)当[,]122x ππ∈,求()f x 的值域. 解:(Ⅰ)由最低点为2(,2)23M A π-=得 由222T T πππωπ====得 由点2(,2)3M π-在图像上得42sin()23πϕ+=-即4sin()13πϕ+=- 41122,326k k k Z πππϕπϕπ∴+=-=-∈即,又(0,)2πϕ∈,6πϕ∴=()2sin(2)6f x x π∴=+(Ⅱ)[0,],2[,]12663x x ππππ∈∴+∈Q ,0()166x f x ππ∴==当2x+即时,取得最小值;,()6312x f x πππ==当2x+即时,2、已知函数()sin()(,0)4f x x x R πϖϖ=+∈>的最小正周期为π,为了得到函数()cos g x x ϖ=的图象,只要将()y f x =的图象( )A 向左平移8π个单位长度 B 向右平移8π个单位长度 C 向左平移4π个单位长度 D 向右平移4π个单位长度【考点定位】本小题考查诱导公式、函数图象的变换,基础题。
高一数学 知识点 三角函数 诱导公式 常考题 经典题 50道 含答案和解析

高一数学三角函数诱导公式50道常考题经典题一、单选题1.若角的终边上有一点(-4,a),则a的值是()A. B. C. D.【答案】A【考点】任意角的三角函数的定义,诱导公式一【解析】【解答】由三角函数的定义知:,所以,因为角的终边在第三象限,所以<0,所以的值是。
【分析】三角函数是用终边上一点的坐标来定义的,和点的位置没有关系。
属于基础题型。
================================================================================2.若,则的值是( )A. B. C. D.【答案】C【解析】【解答】即,所以,,=,故选C。
【分析】简单题,此类题解的思路是:先化简已知条件,再将所求用已知表示。
================================================================================3.若,则()A. B. C. D.【答案】C【考点】诱导公式一,同角三角函数间的基本关系【解析】【解答】,故选C.================================================================================4.函数图像的一条对称轴方程是()A. B. C. D.【答案】A【考点】诱导公式一,余弦函数的图象,余弦函数的对称性【解析】【分析】,由y=cosx的对称轴可知,所求函数图像的对称轴满足即,当k=-1时,,故选A.================================================================================5.已知,则()A. B. C. D.【答案】C【考点】诱导公式一,同角三角函数间的基本关系,弦切互化【解析】【解答】因为,所以,可得,故C符合题意.故答案为:C .【分析】利用诱导公式将已知条件化简可求出tan,将中分子分母同时除以cos.================================================================================6.函数()A. 是奇函数B. 是偶函数C. 既是奇函数,又是偶函数D. 是非奇非偶函数【答案】A【考点】奇函数,诱导公式一【解析】【解答】∵,∴,∴是奇函数.故答案为:A【分析】首先利用诱导公式整理化简f(x) 的解析式,再根据奇函数的定义即可得证出结果。
高中数学必修4三角函数公式大全附带练习题

高中数学必修4三角函数公式大全附带练习题三角函数诱导公式sin〔-α〕=-sinα,cos〔-α〕=cosα,tan〔-α〕=-tanαcot〔-α〕=-cotαsin〔π/2-α〕=cosα,cos〔π/2-α〕=sinα,tan〔π/2-α〕=cotα,cot〔π/2-α〕=tanα,sin〔π/2+α〕=cosα,cos〔π/2+α〕=-sinα,tan〔π/2+α〕=-cotα,cot〔π/2+α〕=-tanα,sin〔π-α〕=sinαcos〔π-α〕=-cosα,tan〔π-α〕=-tanα,cot〔π-α〕=-cotαsin〔π+α〕=-sinα,cos〔π+α〕=-cosα,tan〔π+α〕=tanαcot〔π+α〕=cotα,sin〔3π/2-α〕=-cosα,cos〔3π/2-α〕=-sinαtan〔3π/2-α〕=cotα,cot〔3π/2-α〕=tanα,sin〔3π/2+α〕=-cosαcos〔3π/2+α〕=sinα,tan〔3π/2+α〕=-cotα,cot〔3π/2+α〕=-tanαsin〔2π-α〕=-sinα,cos〔2π-α〕=cosα,tan〔2π-α〕=-tanαcot〔2π-α〕=-cotα,sin〔2kπ+α〕=sinα,cos〔2kπ+α〕=cosαtan〔2kπ+α〕=tanα,cot〔2kπ+α〕=cotα(其中k∈Z)习题精选一、选择题1.假设,那么的值为〔〕.A.B.C.D.2.的值等于〔〕.A.B.C.D.3.在△ 中,以下各表达式为常数的是〔〕.A. B.C.D.4.如果,且,那么可以是〔〕.A. B. C. D.5.是方程的根,那么的值等于〔〕.A.B.C.D.二、填空题6.计算.7.,,那么,.8.假设,那么.9.设,那么.10..三、解答题11.求值:12.角终边上一点的坐标为,〔1〕化简以下式子并求其值:;〔2〕求角的集合.13.,求证:.14.假设,求的值.15.、、为△ 的内角,求证:〔1〕;〔2〕.16.为锐角,并且,,求的值.参考答案:一、选择题1.B 2.D 3.C 4.D 5.A二、填空题6.2 7.,8.9.10.三、解答题11..12.〔1〕;〔2〕.13.提示:.14.18.提示:先化简,再将代入化简式即可.15.提示:注意及其变式.16..提示:化简条件,再消去得.。
高中数学三角函数恒等变形公式及应用

高中数学三角函数恒等变形公式及应用
恒等变形一直三角函数中的一个难点,但在高考中也并非重点,因为在高考中,三角恒等变换由于题型的原因变得相当简单。
但是三角恒等变换题型能够培养学生计算、分解、添加项等各方面的能力,所以在学习必修四中学生们应该大量练习,从练习中也能理解三角函数的真正意义。
下面给出了三角函数常见变形形式和几道典型例题。
】4.设函数f(x)=(a为实常数)在区间上的最小值为-4,
那么a的值等于_______
三角形中恒等式锦囊:
11.求证:。
分析:这是一道三角恒等的证明问题,解决这类问题的一般策略是“切割化弦”、由繁到简。
其基本思路是根据题目的特点,结合有关三角公式,作适当的恒等变形。
证法1:左边
右边证法2:右边
证法3:右
边左边证法4:右边
左边证法5:右边
左边证法6:因为
,又
所以
从而,故原式成立。
反思:对三角公式做到不仅会用,而且能变形应用,这样才达到了灵活运用公式的目的,才能从中体会到公式变形的妙处及知识间的内在联系。
原题还可作如下变形,
同学们不妨试着证一下。
变形:;;
;;;;
;。
高中三角函数经典例题50道

高中三角函数经典例题50道1.求解三角形中角度的相关问题是高中数学学习中的重要内容。
例如,考虑正三角形ABC,已知∠A=60°,求∠B和∠C的大小。
2.在三角形ABC中,已知∠A=30°,∠C=60°,求∠B的大小。
3.若在直角三角形ABC中,∠A=30°,求∠C的大小。
4.在锐角三角形ABC中,已知边b=5,c=10,∠A=30°,求边a的长度。
5.在钝角三角形ABC中,边a=6,b=10,∠A=120°,求边c的长度。
6.若在任意三角形ABC中,边a=8,b=6,∠A=45°,求∠B的大小。
7.在直角三角形ABC中,边a=1,b=√3,求∠A和∠B 的大小。
8.若在锐角三角形ABC中,已知边a=5,b=7,求∠A 和∠B的大小。
9.在任意三角形ABC中,边a=10,b=15,∠A=30°,求∠B的大小。
10.若在直角三角形ABC中,边b=4,c=5,求∠A和∠C的大小。
11.在锐角三角形ABC中,已知边b=8,c=10,∠A=60°,求∠C的大小。
12.若在任意三角形ABC中,边a=7,c=9,∠A=45°,求边b的长度。
的长度。
14.在锐角三角形ABC中,已知∠A=45°,∠B=60°,求∠C的大小。
15.若在任意三角形ABC中,边a=12,b=16,求∠A和∠B的大小。
16.在直角三角形ABC中,已知边b=8,c=10,求∠A和∠C的大小。
17.在锐角三角形ABC中,边a=5,b=8,∠C=60°,求边c的长度。
18.若在任意三角形ABC中,边a=7,b=10,∠B=30°,求边c的长度。
19.在直角三角形ABC中,边a=2,c=√5,求∠A和∠B的大小。
20.在锐角三角形ABC中,已知边b=3,c=4,∠A=45°,求∠C的大小。
21.若在任意三角形ABC中,边a=9,c=12,∠C=45°,求边b的长度。
(新)高中数学三角函数知识点及试题总结

高考三角函数1.特殊角的三角函数值:2.角度制与弧度制的互化:,23600π= ,1800π=3.弧长及扇形面积公式弧长公式:r l .α= 扇形面积公式:S=r l .21α----是圆心角且为弧度制。
r-----是扇形半径4.任意角的三角函数设α是一个任意角,它的终边上一点p (x,y ), r=22y x + (1)正弦sin α=r y 余弦cos α=r x 正切tan α=xy (2)各象限的符号:sin α cos α tan αxy+O— —+x yO — ++— +y O— ++ —5.同角三角函数的基本关系:(1)平方关系:s in 2α+ cos 2α=1。
(2)商数关系:ααcos sin =tan α (z k k ∈+≠,2ππα)6.诱导公式:记忆口诀:2k παα±把的三角函数化为的三角函数,概括为:奇变偶不变,符号看象限。
()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭. ()6sin cos 2παα⎛⎫+= ⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭.口诀:正弦与余弦互换,符号看象限.7正弦函数、余弦函数和正切函数的图象与性质降幂公式: 1+cos α=2cos 22α cos 2α22cos 1α+=1-cos α=2sin 22αsin 2α22cos 1α-= 9.正弦定理 :2sin sin sin a b cR A B C===. 余弦定理:2222cos a b c bc A =+-;2222cos b c a ca B =+-;2222cos c a b ab C =+-.三角形面积定理.111sin sin sin 222S ab C bc A ca B ===.1.直角三角形中各元素间的关系:如图,在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修4三角函数公式大全附带练习题
三角函数诱导公式
sin(-α)=-sinα,cos(-α)=cosα,tan(-α)=-tanαcot(-α)=-cotα
sin(π/2-α)=cosα,cos(π/2-α)=sinα,tan(π/2-α)=cotα,
cot(π/2-α)=tanα,sin(π/2+α)=cosα,cos(π/2+α)=-sinα,
tan(π/2+α)=-cotα,cot(π/2+α)=-tanα,sin(π-α)=sinα
cos(π-α)=-cosα,tan(π-α)=-tanα,cot(π-α)=-cotα
sin(π+α)=-sinα,cos(π+α)=-cosα,tan(π+α)=tanα
cot(π+α)=cotα,sin(3π/2-α)=-cosα,cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα,cot(3π/2-α)=tanα,sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα,tan(3π/2+α)=-cotα,cot(3π/2+α)=-tanα
sin(2π-α)=-sinα,cos(2π-α)=cosα,tan(2π-α)=-tanα
cot(2π-α)=-cotα,sin(2kπ+α)=sinα,cos(2kπ+α)=cosα
tan(2kπ+α)=tanα,cot(2kπ+α)=cotα(其中k∈Z)
习题精选
一、选择题
1.若,
则的值为().
A.B.C.D.
2.的值等于().
A.B.C.D.
3.在△ 中,下列各表达式为常数的是().
A. B.
C.D.
4.如果,且,则可以是().
A. B. C. D.
5.已知是方程的根,那么的值等于().
A.B.C.D.
二、填空题
6.计算.
7.已知,,则,.
8.若,则.
9.设,则.
10..
三、解答题
11.求值:
12.已知角终边上一点的坐标为,
(1)化简下列式子并求其值:;
(2)求角的集合.
13.已知,求证:.
14.若,
求的值.
15.已知、、为△ 的内角,求证:
(1);(2).
16.已知为锐角,并且,,求
的值.
参考答案:
一、选择题1.B 2.D 3.C 4.D 5.A
二、填空题6.2 7.,8.9.10.
三、解答题
11..
12.(1);(2).
13.提示:.
14.18.提示:先化简,再将代入化简式即可.15.提示:注意及其变式.
16..提示:化简已知条件,再消去得.。