空间点、线、面位置关系
空间点、线、面的位置关系

【证明】 (1)如图所示,连接B1D1.
因为EF是△D1B1C1的中位线,所以EF∥B1D1.在正方体AC1 中,B1D1∥BD,所以EF∥BD.所以EF,BD确定一个平面,即 D,B,F,E四点共面.
(2)在正方体AC1中,设A1,C,C1三点确定的平面为α,平 面BDEF为β.因为Q∈A1C1,所以Q∈α.
2.异面直线的判定方法 (1)反证法:先假设两条直线不是异面直线,即两条直线平 行或相交,由假设出发,经过严格的推理,导出矛盾,从而否 定假设,肯定两条直线异面.此法在异面直线的判定中经常用 到. (2)定理:平面外一点A与平面内一点B的连线和平面内不经 过点B的直线是异面直线.
思考题2 (1)【多选题】如图所示,是正方体的平面 展开图,
间直角坐标系,则A(a,0,0),C1(0,a, 3 a),C(0,a,0),
D1(0,0, 3a), A→C1=(-a,a, 3a),C→D1=(0,-a, 3a), 设异面直线AC1与CD1所成角为θ, 则cosθ=|AA→→CC11|··C|C→→DD11|= 52a·a2 2a= 55.
∴异面直线AC1与CD1所成角的余弦值为
思考题1 如图所示,在正方体ABCD-A1B1C1D1中, E,F分别是AB和AA1的中点,求证:
(1)E,C,D1,F四点共面; (2)CE,D1F,DA三线共点.
【证明】 (1)如图所示,连接EF,CD1,A1B.
∵E,F分别是AB,AA1的中点,∴EF∥A1B. 又A1B∥D1C,∴EF∥CD1. ∴E,C,D1,F四点共面.
在这个正方体中,有以下四个命题,正确的结论是( CD ) A.BM与ED平行 B.CN与BE是异面直线 C.CN与BM成60°角 D.DM与BN垂直
空间中点线面的位置关系

空间中点、线、面的位置关系一、平面的基本性质(1)点和直线的基本性质:连接两点的线中,最短;过两点一条直线,并且一条直线。
(2)平面的基本性质:1如果一条直线的点在一个平面内,那么这条直线上的所有点在这个平面内。
这时我们就说或。
作用:判断直线在平面内。
2经过不在同一直线的三点,有且只有个平面。
也可以简单地说成:的三点确定一个平面。
过不共线的三点A、B、C的平面,通常记作:。
3如果不重合的两个平面有个公共点,那么它们有且只有条过这个点的公共直线。
如果两个平面有一条公共直线,则称这两个平面。
这条公共直线叫做这两个平面的(3)平面的基本性质的推论:1经过一条直线和直线的一点,有且只有个平面。
2经过两条直线,有且只有个平面。
3经过两条直线,有且只有个平面。
(4)共面与异面直线:共面:空间中的几个点或几条直线,如果都在,我们就说它们共面。
共面的两条直线的位置关系有和两种。
异面直线:既又的直线叫异面直线。
判断两条直线为异面直线的方法:与一平面相交于一点的直线与这个平面内任一不过该点的直线是异面直线。
(5)符号语言:点A在平面α内,记作;点A不在平面α内,记作。
直线l在平面α内,记作;直线l不在平面α内,记作。
平面α与平面β相交于直线a, 记作 .直线l和直线m相交于点A,记作,简记作:。
基本性质01可以用集合语言描述为:如果点A α,点B α,那么直线AB α。
例1. 已知三条直线a、b、c两两相交但不共点,求证:a、b、c共面。
例2.已知三条平行线a 、b 、c 都与直线d 相交.求证:它们共面.例 3.正方体1111D C B A ABCD -中,对角线C A 1与平面1BDC 交于AC O ,、BD 交于点M . 求证:点1C 、O 、M 共线.例4.已知三个平面α、β、γ两两相交,且α⋂β=c ,β⋂γ=a ,γ⋂α=b , 且直线a 和b 不平行.求证: a 、b 、c 三条直线必相交于同一点._1_ B _二、空间中的平行关系1.空间平行直线的本性质(空间平行线的传递性): 平行于同一直线的两条直线 。
空间几何与向量运算点线面的位置关系与运算

空间几何与向量运算点线面的位置关系与运算空间几何与向量运算是数学中的重要分支,研究点、线、面在空间中的位置关系以及进行相应的运算操作。
在实际应用中,空间几何与向量运算广泛应用于物理学、工程学等领域。
本文将详细讨论点、线、面在空间中的位置关系和对应的运算方式。
一、点在空间中的位置关系在空间几何中,点是空间的最基本元素,它没有长度、宽度和高度。
点与点之间的位置关系可以通过坐标系来描述。
常用的坐标系有直角坐标系、柱坐标系和球坐标系。
1. 直角坐标系直角坐标系是最常用的坐标系,用三个坐标轴x、y、z相互垂直组成,固定在空间中的三个直线上。
点在直角坐标系中的位置可以用三个坐标(x, y, z)来表示,其中x表示点在x轴上的投影位置,y表示点在y轴上的投影位置,z表示点在z轴上的投影位置。
2. 柱坐标系和球坐标系柱坐标系和球坐标系是常用的极坐标系。
在柱坐标系中,点的位置由径向距离、极角和高度来确定,记作(r, θ, z),其中r表示点到极坐标原点的距离,θ表示点到正极轴的角度,z表示点在z轴上的投影位置。
在球坐标系中,点的位置由球半径、极角和方位角来确定,记作(r, θ, φ),其中r表示点到球心的距离,θ表示点到正半轴的角度,φ表示点到正极面的角度。
二、线在空间中的位置关系与运算线是由无数个点连接而成的集合,线在空间中的位置关系有直线、平行线、相交线等。
对于线的运算操作,主要包括长度、夹角、平移、旋转等。
1. 长度线的长度是线段两个端点之间的距离,可以通过计算两个点的坐标来求得。
对于直线则无法直接求得长度。
2. 夹角两条线之间的夹角是指这两条线在空间中交汇处的夹角。
可以通过计算两条线的方向向量来求得夹角。
3. 平移平移是指将一条线段按照指定的平移向量进行移动,其位置和形状保持不变。
平移操作可以通过向直线的每个点添加平移向量得到。
4. 旋转旋转是指将一条线段按照指定的旋转角度和旋转轴进行旋转,其位置和形状保持不变。
点、线、面投影关系

空间点对于由V、H和W面组成的投影体系有三种位置关系:(1)当点的x、y、z坐标均不为零时,点的三面投影均落在投影面内;(2)当点的x、y、z坐标有一个为零时,空间点在投影面上,其两个投影落在投影轴上,特别值得注意的是,当点在H面上时,其W面的投影落在Y 轴上,当按三视图的形成方法展开投影体系时,其W面投影随Y轴一起绕Z轴向后旋转落在YW 轴上。
(3)当点的x、y、z坐标均有两个为零时,空间点在投影轴上,其一个投影与原点重合。
点的三面投影规律⑴ 点的正面投影和水平投影的连线垂直于OX轴。
⑵ 点的正面投影和侧面投影的连线垂直于OZ轴。
⑶ 点的水平投影到OX轴的距离等于侧面投影到OZ轴的距离。
[投影面垂直线]空间直线对投影面有三种位置关系:平行、垂直和倾斜。
若空间直线垂直于一个投影面,则必平行于其他两个投影面,这样的直线称之为投影面垂直线,对于垂直于V、H、W面的直线分别称之为正垂线、铅垂线和侧垂线。
投影面垂直线在其垂直的投影面上的投影积聚为一个点,其他两个投影面上投影平行(或垂直)于投影轴,且反映实长。
若空间直线平行于一个投影面,倾斜于其他两个投影面,这样的直线称之为投影面平行线,按其平行于V、H、W面分别称之为正平线、水平线和侧平线。
投影面平行线在其平行的投影面上的投影反映实长,其他两个投影面上投影平行(或垂直)于投影轴,且投影线段的长小于空间线段的实长。
一般位置直线和三个投影面均处于倾斜位置,其三个投影和投影轴倾斜,且投影线段的长小于空间线段的实长。
从投影图上也不能直接反映出空间直线和投影平面的夹角。
[投影面平行面]空间平面对投影面有三种位置关系:平行、垂直和一般位置。
若空间平面平行于一个投影面,则必垂直于其他两个投影面,这样的平面称之为投影面平行,对平行于V、H、W面的平面分别称之为正平面、水平面和侧平面。
投影面平行面在其平行的投影面上的投影反映实形,其他两个投影面上投影积聚成一条直线,且垂直于该投影面内的投影轴[投影面垂直面]若空间平面垂直于一个投影面,而倾斜于其他两个投影面,这样的平面称之为投影面垂直面,按垂直于V、H、W面的平面分别称之为正垂面、铅垂面和侧垂面。
空间点、线、面的位置关系(讲解部分)

考法二 求异面直线所成角的方法
例2 (1)已知四棱锥P-ABCD的侧棱长与底面边长都相等,点E是PB的中 点,则异面直线AE与PD所成角的余弦值为( )
A. 1 B. 2 C. 3 D. 2
3
3
3
3
(2)(2018四川泸州模拟,7)在正方体ABCD-A1B1C1D1中,E为BC的中点,F为B1
C1的中点,则异面直线AF与C1E所成角的正切值为 ( )
如图,直线a,b是异面直线,经过空间任一点O分别作直线a'∥a,b'∥b,相交直
线a',b'所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).
特别地,当两条异面直线所成的角是直角时,称这两条异面直线互相垂直.
注意 异面直线所成的角的范围是
0,
π 2
,所以空间两直线垂直有
两种情况——异面垂直和相交垂直.
知能拓展
考法一 平面的基本性质及应用
例1 已知正方体ABCD-A1B1C1D1中,E,F分别为D1C1,C1B1的中点,AC∩BD= P,A1C1∩EF=Q. 求证:(1)D,B,F,E四点共面; (2)若A1C交平面DBFE于R点,则P,Q,R三点共线. 解题导引
证明 如图. (1)连接B1D1, 由已知得EF是△D1B1C1的中位线, ∴EF∥B1D1.在正方体AC1中,B1D1∥BD,∴EF∥BD. ∴EF,BD确定一个平面,即D,B,F,E四点共面. (2)正方体AC1中,设平面A1ACC1确定的平面为α,平面BDEF确定的平面为β. ∵Q∈A1C1,∴Q∈α.又Q∈EF,∴Q∈β,故Q是α与β的公共点.同理P是α与β 的公共点,∴α∩β=PQ.又A1C∩β=R,∴R∈A1C.∴R∈α,且R∈β,则R∈PQ.故 P,Q,R三点共线.
空间向量点线面的位置关系

空间向量点线面的位置关系在三维空间中,点、线和面是基本的几何要素。
它们的位置关系在数学和几何学中扮演着重要的角色。
本文将探讨空间向量中点、线和面之间的不同位置关系及其特点。
一、点和线的位置关系在三维空间中,点和线的位置关系主要有以下几种情况。
1. 点在线上:如果一个点位于一条直线上,那么这个点与直线上的任意两点构成的向量都是共线的。
换句话说,点和线的向量共线。
2. 点在线的延长线上:点也可以位于一条线的延长线上,这时点与线上的任意两点构成的向量也是共线的。
3. 点与线相交:在三维空间中,点还可以与一条直线相交。
这时,点与线上的任意两点构成的向量不再共线。
4. 点与线平行:若一点与直线平行,则该点与直线上的任意两点构成的向量平行。
但是,点与线平行并不意味着点在线的延长线上。
二、点和面的位置关系点和面的位置关系也有几种情况,如下所示。
1. 点在面上:如果一个点位于一个平面上,那么这个点与平面上的任意三个点构成的向量都在同一个平面内。
2. 点在面的延长线上:点也可以位于一个平面的延长线上,这时点与平面上的任意三个点构成的向量仍在同一个平面内。
3. 点在平面内但不在平面上:有时,一个点位于一个平面内部但不在平面上。
这时,点与平面上的任意三个点构成的向量不在同一个平面内。
4. 点与平面相交:在三维空间中,点还可以与一个平面相交。
这时,点与平面上的任意三个点构成的向量不在同一个平面内。
三、线和面的位置关系线和面的位置关系主要有以下几种情况。
1. 线在平面上:如果一条直线位于一个平面上,那么直线上的任意两点构成的向量都在同一个平面内。
2. 线与平面相交于一点:一个直线也可以与一个平面相交于一点。
这时,直线上的任意两点构成的向量不在同一个平面内。
3. 线与平面平行:若一条直线与一个平面平行,则直线上的任意两点构成的向量与平面内的向量平行。
但是,直线与平面平行并不意味着直线在平面上。
4. 线在平面的延长线上:一条直线还可以位于一个平面的延长线上,这时直线上的任意两点构成的向量仍在同一个平面内。
空间点线面之间的位置关系

空间点线面之间的位置关系一、平面1.平面的概念:平面是一个不加定义,只需理解的原始概念.立体几何里所说的的平面是从现实生活中常见的平面抽象出来的.常见的桌面、平静的水面等都给我们以平面的局部形象.平面是理想的、绝对的平且无大小,无厚度,不可度量. 2.平面的表示方法:(1)一个平面: 当平面是水平放置的时候,通常把平行四边形的锐角 画成45,横边画成邻边的2倍长,如右图. (2)两个相交平面:画两个相交平面时,通常要化出它们的交线,当一个平面的一部分被另一个平面遮住,应把被遮住部分的线段画成虚线或不画(如下图)3. 运用集合观点准确使用图形语言、符号语言和文字语言空间图形的基本元素是点、直线、平面从运动的观点看,点动成线,线动成面,从而可以把直线、平面看成是点的集合,因此还可借用集合中的符号语言来表示点、线、面的基本位置关系如下表所示:b A =a α⊂α=∅ αBAβαABαβαβBAAβαBAα=l β= 二、平面的基本性质1. 公理1 如果一条直线的两点在一个平面内,那么这条直线在这个平面内推理模式:A AB B ααα∈⎫⇒⊂⎬∈⎭. 如图示: 或者:∵,A B αα∈∈,∴AB α⊂ 公理1的作用:①判定直线是否在平面内;②判定点是否在平面内; ③检验面是否是平面.2. 公理2 经过不在同一条直线上的三点,有且只有一个平面推理模式:,, ,,,,A B C A B C A B C ααβ⎫⎪∈⇒⎬⎪∈⎭不共线与β重合或者:∵,,A B C 不共线,∴存在唯一的平面α,使得,,A B C α∈. 推论1:经过一条直线和这条直线外的一点,有且只有一个平面; 推论2:经过两条相交直线,有且只有一个平面; 推论3:经过两条平行直线,有且只有一个平面.(1)以上是确定平面的四个不同的条件,是判断两个平面重合的依据,是证明点线共面的依据,也是作截面、辅助面的依据.(2)“有且只有一个”的含义要准确理解.这里的“有”是说图形的存在,“只有一个”是说图形唯一.因此,在证明有关这类语句的命题时,要从“存在性”和“唯一性”两方面来论证. 2. 公理3 如果两个不重合的平面有一个公共点,有且只有一条过该点的公共直线推理模式:A A l A ααββ∈⎫⇒∈=⎬∈⎭如图示:或者:∵,A A αβ∈∈,∴,l A l αβ=∈公理3的作用:(1)判断两个平面是否相交及交线位置; (2)判断点是否在线上 1、证明空间三点共线问题通常证明这些点都在两个平面的交线上,即先确定出某两点在两个平面的交线上,再证明第三点既在第一个平面内,又在第二个平面内。
高三数学 空间点线面之间的位置关系

课堂互动讲练
【名师点评】 题中是先说明D1、 E、F确定一平面,再说明B在所确定 的平面内,也可证明D1E∥BF,从而 说明四点共面.
课堂互动讲练
考点四 异面直线的判定
证明两直线为异面直线的方法: 1.定义法(不易操作). 2.反证法:先假设两条直线不 是异面直线,即两直线平行或相交, 由假设的条件出发,经过严密的推理, 导出矛盾,从而否定假设肯定两条直 线异面.此法在异面直线的判定中经 常用到.
A.A∈l,A∈α,B∈l, B∈α⇒l⊂α
B.A∈α,A∈β,B∈α, B∈β⇒a∩β=AB
C.l⊄α,A∈l⇒A∉α D.A∈α,A∈l,l⊄α⇒l∩α=A 答案:C
三基能力强化
4.如图所示,在正方体ABCD-
A1B1C1D1中,异面直线AC与B1C1
所成的角为
.
答案:45°
5.三条直线两两相交,可以确 定3进一步反映了平面的延展 性.其作用是:(1)判定两平面相交;(2) 作两平面相交的交线(当知道两个平面 的两个公共点时,这两点的连线就是交 线);(3)证明多点共线(如果几个点都是 某两个平面的公共点,则这几个点都在 这两个平面的交线上).
随堂即时巩固
点击进入
课时活页训练
PQ、CB的延长线交于M,RQ、DB的延
长线交于N,RP、DC的延长线交于K.求
证:M、N、K三点共线.
课堂互动讲练
【思路点拨】 要证明M、N、K 三点共线,由公理3可知,只要证明M、 N、K都在平面BCD与平面PQR的交 线上即可.
课堂互动讲练
【证明】
PQ∩CB=M
RQ∩DB=N⇒
RP∩DC=K
课堂互动讲练
解:选取平面BCF,该 平面有以下两个特点:①该 平面包含直线CF;②该平面 与DE相交于点E.在平面BCF 中,过点E作CF的平行线交 BF于点N,连结ND,可以看 出:EN与ED所成的角即为 异面直线FC与ED所成的角. 10分
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间点、线、面的位置关系 【基础回顾】1.平面的基本性质公理1:如果一条直线上的________在一个平面内,那么这条直线上所有的点都在这个平面内.公理2:如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是经过____________的一条直线.公理3:经过____________________的三点,有且只有一个平面. 推论1:经过____________________,有且只有一个平面. 推论2:经过________________,有且只有一个平面. 推论3:经过________________,有且只有一个平面. 2.直线与直线的位置关系 (1)位置关系的分类⎩⎨⎧共面直线⎩⎪⎨⎪⎧异面直线:不同在任何一个平面内(2)异面直线判定定理过平面内一点与平面外一点的直线,和这个平面内______________的直线是异面直线. (3)异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间任意一点O ,作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的____________叫做异面直线a ,b 所成的角.②范围:____________. 3.公理4平行于____________的两条直线互相平行. 4.定理如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角________.自我检测1.若直线a与b是异面直线,直线b与c是异面直线,则直线a与c的位置关系是____________.2.如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线________对.3.三个不重合的平面可以把空间分成n部分,则n的可能取值为________.4.直三棱柱ABC—A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成角的大小为________.5.下列命题:①空间不同三点确定一个平面;②有三个公共点的两个平面必重合;③空间两两相交的三条直线确定一个平面;④三角形是平面图形;⑤平行四边形、梯形、四边形都是平面图形;⑥垂直于同一直线的两直线平行;⑦一条直线和两平行线中的一条相交,也必和另一条相交;⑧两组对边相等的四边形是平行四边形.其中正确的命题是________(填序号).【例题讲解】1、平面的基本性质例1 如图所示,空间四边形ABCD中,E、F、G分别在AB、BC、CD上,且满足AE∶EB=CF∶FB=2∶1,CG∶GD=3∶1,AH∶HD=3∶1,过E、F、G的平面交AD于H,连结EH.求证:EH、FG、BD三线共点.变式迁移1如图,E、F、G、H分别是空间四边形AB、BC、CD、DA上的点,且EH与FG相交于点O.求证:B、D、O三点共线.2、异面直线的判定例2 如图所示,直线a、b是异面直线,A、B两点在直线a上,C、D两点在直线b上.求证:BD和AC是异面直线.变式迁移2如图是正方体或四面体,P、Q、R、S分别是所在棱的中点,这四个点不共面的是________(填序号).3、异面直线所成的角例3 已知三棱柱ABC—A1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影为BC 的中点,则异面直线AB与CC1所成的角的余弦值为________________________________________________________________________.变式迁移3在空间四边形ABCD中,已知AD=1,BC=3,且AD⊥BC,对角线BD=132,AC=32,求AC和BD所成的角.二、空间的平行关系基础回顾1.空间直线与平面、平面与平面的位置关系(1)直线a和平面α的位置关系有三种:________、__________、__________.(2)两个平面的位置关系有两种:________和________.2.直线与平面平行的判定与性质(1)判定定理:如果平面外一条直线和这个________________平行,那么这条直线与这个平面平行.(2)性质定理:一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行.3.平面与平面平行的判定与性质(1)判定定理:如果一个平面内有________________都平行于另一个平面,那么这两个平面平行.(2)性质定理:如果两个平行平面同时和第三个平面相交,那么所得的两条交线________.自我检测1.下列各命题中:①平行于同一直线的两个平面平行;②平行于同一平面的两个平面平行;③一条直线与两个平行平面中的一个相交,那么这条直线必和另一个相交;④垂直于同一直线的两个平面平行.不正确的命题个数是________.2.经过平面外的两点作该平面的平行平面,可以作______个.3.一条直线若同时平行于两个相交平面,则这条直线与这两个平面的交线的位置关系是________.4.已知α、β是不同的两个平面,直线a⊂α,直线b⊂β,命题p:a与b没有公共点;命题q:α∥β,则p是q的________条件.【例题讲解】1、线面平行的判定例1 已知有公共边AB的两个全等的矩形ABCD和ABEF不在同一平面内,P、Q分别是对角线AE、BD上的点,且AP=DQ.求证:PQ∥平面CBE.变式迁移1在四棱锥P—ABCD中,四边形ABCD是平行四边形,M、N分别是AB、PC的中点,求证:MN∥平面PAD.2、 面面平行的判定例2 在正方体ABCD —A 1B 1C 1D 1中,M 、N 、P 分别是C 1C 、B 1C 1、C 1D 1的中点,求证:平面MNP ∥平面A 1BD .变式迁移2 已知P 为△ABC 所在平面外一点,G 1、G 2、G 3分别是△PAB 、△PCB 、△PAC 的重心.求证:平面G 1G 2G 3∥平面ABC ;3、 平行中的探索性问题例3 如图所示,在四棱锥P —ABCD 中,CD ∥AB ,AD ⊥AB ,AD =DC =12AB ,BC ⊥PC .(1)求证:PA ⊥BC ;(2)试在线段PB 上找一点M ,使CM ∥平面PAD ,并说明理由.变式迁移3如图所示,在正方体ABCD—A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,问:当点Q在什么位置时,平面D1BQ∥平面PAO?三、空间的垂直关系基础回顾1.直线与平面垂直(1)判定直线和平面垂直的方法①定义法.②利用判定定理:如果一条直线和一个平面内的两条________直线垂直,那么这条直线垂直于这个平面.③推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条直线也________这个平面.(2)直线和平面垂直的性质①直线垂直于平面,则垂直于平面内________直线.②垂直于同一个平面的两条直线________.③垂直于同一直线的两个平面________.2.直线与平面所成的角平面的一条斜线与它在这个平面内的________所成的锐角,叫做这条直线与这个平面所成的角.一条直线垂直于平面,说它们所成的角为________;直线l∥α或l⊂α,说它们所成的角是______角.3.平面与平面垂直(1)平面与平面垂直的判定方法①定义法.②利用判定定理:如果一个平面经过另一个平面的____________,那么这两个平面互相垂直.(2)平面与平面垂直的性质如果两个平面互相垂直,那么在一个平面内垂直于它们________的直线垂直于另一个平面.4.二面角的平面角以二面角的棱上的任意一点为端点,在两个面内分别作________棱的射线,这两条射线所成的角叫做二面角的平面角.自我检测1.设l,m是两条不同的直线,α是一个平面,则下列命题正确的是________(填序号).①若l⊥m,m⊂α,则l⊥α;②若l⊥α,l∥m,则m⊥α;③若l∥α,m⊂α,则l∥m;④若l∥α,m∥α,则l∥m.2.对于不重合的两个平面α与β,给定下列条件:①存在平面γ,使得α,β都垂直于γ;②存在平面γ,使得α,β都平行于γ;③存在直线l⊂α,直线m⊂β,使得l∥m;④存在异面直线l、m,使得l∥α,l∥β,m∥α,m∥β.其中,可以判定α与β平行的条件有________个.【例题讲解】1、线面垂直的判定与性质例1 Rt△ABC所在平面外一点S,且SA=SB=SC,D为斜边AC的中点.(1)求证:SD⊥平面ABC;(2)若AB=BC.求证:BD⊥平面SAC.变式迁移1 四棱锥S-ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD.已知∠ABC =45°,SA=SB.证明:SA⊥BC.2、面面垂直的判定与性质例2 如图所示,已知四棱柱ABCD—A1B1C1D1的底面为正方形,O1、O分别为上、下底面的中心,且A1在底面ABCD内的射影是O.求证:平面O1DC⊥平面ABCD.变式迁移2如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E,F分别是AP,AD的中点.求证:(1)直线EF∥平面PCD;(2)平面BEF⊥平面PAD.3、直线与平面、平面与平面所成的角例3 如图,四棱锥S—ABCD的底面是正方形,SD⊥平面ABCD,SD=2a,AD=2a,点E是SD上的点,且DE=λa(0<λ≤2).(1)求证:对任意的λ∈(0,2],都有AC⊥BE;(2)设二面角C—AE—D的大小为θ,直线BE与平面ABCD所成的角为φ,若tan θtan φ=1,求λ的值.变式迁移3如图,在三棱锥P—ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,点D、E分别在棱PB、PC上,且DE∥BC.(1)求证:BC⊥平面PAC.(2)当D为PB的中点时,求AD与平面PAC所成角的正弦值.(3)是否存在点E使得二面角A—DE—P为直二面角?并说明理由.。