无线wifi模块-51单片机-C语言程序

合集下载

利用SI4432无线收发模块和51单片机进行无线收发测试实验程序代码

利用SI4432无线收发模块和51单片机进行无线收发测试实验程序代码

利用SI4432无线收发模块和51单片机进行无线收发测试实验程序代码(1、发射模块代码)#include<reg52.h>#define uint unsigned int#define uchar unsigned charuchar jiewan; //无线接收端数据接收存储完毕的标志变量uchar wx_rx_cishu;//无线接收端接收数据的次数的标志变量sbit key=P1^6;/************************************************************************************////************************************************************************************/sbit SDO=P1^0; //数据输出端口sbit SDI=P1^1; //数据输入端口sbit SCLK=P1^2; //数据时钟线sbit NSEL=P1^3; //片选端口sbit IRQ=P1^4; //中断信号端口sbit SDN=P1^5; //内部电源开关端口unsigned char ITSTATUS;//存放接收到的无线数据的缓冲数组uchar xdata jieshou_huanchong[255];/************************************************************************************///延时函数/************************************************************************************/void delay_ms(uint t){uint x,y;for(x=0;x<t;x++)for(y=0;y<10;y++);}/************************************************************************************///延时函数/************************************************************************************/void delay_ms2(uint t){uint x,y;for(x=0;x<t;x++)for(y=0;y<10;y++);}/************************************************************************************/ //SPI初始化函数/************************************************************************************/ void spi_init(){NSEL=1;SCLK=0;}/************************************************************************************/ //单个字节的写入函数/************************************************************************************/ void spi_write_byte(uchar shuju){uchar i;for(i=0;i<8;i++){if(shuju&0x80) //先发送最高位{SDI=1;}else{SDI=0;}SCLK=1;shuju=shuju<<1;delay_ms(2);SCLK=0;}}/************************************************************************************/ //单个字节的读取函数/************************************************************************************/ uchar spi_read_byte(){uchar rxvalue,i;rxvalue=0x00;for(i=0;i<8;i++){rxvalue=rxvalue<<1;SCLK=1;SDO=1;if(SDO==1){rxvalue=rxvalue|0x01;}else{rxvalue=rxvalue&0xfe;}delay_ms(2); //经调试,这里必须要延时SCLK=0;delay_ms(2); //经调试,这里必须要延时}return rxvalue;}/************************************************************************************/ //往某个寄存器写入数据的函数/************************************************************************************/ void write4432_add_byte(uchar add,uchar shuju){NSEL=0;spi_write_byte(add|0x80);spi_write_byte(shuju);NSEL=1;}/************************************************************************************/ //从某个寄存器读取数据的函数/************************************************************************************/ uchar read4432_add_byte(uchar add){uchar value;NSEL=0;spi_write_byte(add|0x00);value=spi_read_byte();NSEL=1;return value;}/************************************************************************************/ //设置接收模式函数/************************************************************************************/ void set_rx_mode(){write4432_add_byte(0x0e,0x02); //设置接收使能write4432_add_byte(0x05,0xff); //使能接收包中断write4432_add_byte(0x06,0x00);read4432_add_byte(0x03); //清中断read4432_add_byte(0x04); //清中断write4432_add_byte(0x07,0x05); //人工接收模式,打开晶振}/************************************************************************************/ //4432数据包接收标志函数/************************************************************************************/ bit RX_shujubao(){IRQ=1;if(!IRQ){ITSTATUS=read4432_add_byte(0x03);//0x03寄存器中的值为0x02的话,表示已经接收一个有效数据包if((ITSTATUS&0x02)==0x02){return 1;}else{return 0;}}else{return 0;}}/************************************************************************************/ //4432发射单个数据的发送函数/************************************************************************************/ void TX_WX_DS(uchar jiqima ,uchar ztma){write4432_add_byte(0x0e,0x01); //发射使能write4432_add_byte(0x3e,3); //设置发送数据包长度//要发射出去的数据write4432_add_byte(0x7f,0xfa);//识别码write4432_add_byte(0x7f,jiqima);//机器码write4432_add_byte(0x7f,ztma);//状态码write4432_add_byte(0x05,0x04); //使能包发送中断write4432_add_byte(0x06,0x00);read4432_add_byte(0x03); //清中断read4432_add_byte(0x04); //清中断write4432_add_byte(0x07,0x09); //人工发射模式,打开晶振while(1) //等待发送完成,产生中断。

C51单片机利用ESP8266配置WIFI,发送温度数据的源码

C51单片机利用ESP8266配置WIFI,发送温度数据的源码

C51单片机利用ESP8266配置WIFI,发送温度数据的源码使用DS18B20,ESP8266,实现WIFI传输温度,底层部分代码。

其中WIFI是作为服务器,上位机作为客户端。

单片机源程序如下:/***********************程序名:wifi_3.c功能:单片机与手机通信,实现温度信息的传输编程人: baxlumen************************/#include "reg52.h"#include#define uint unsigned int#define uchar unsigned char#define ulong unsigned longtypedef unsigned int u16;typedef unsigned char u8;sbit DSPORT=P3^7;sbit moto=P1^1;sbit CLK = P3^6; //时钟sbit DIN = P3^4; //输入sbit CS = P3^5; //片选#define LCD1602_DATAPINS P0sbit LCD1602_E=P2^7;sbit LCD1602_RW=P2^5;sbit LCD1602_RS=P2^6;u16 sun; //光照int temp;int sdata; //温度int xiaoshu1;int xiaoshu2;float tp;uchar DisplayData[]={0,0,0,0,0,0,0,0};/*****************定义程序中所需要的延时********************/void Delay1ms(uint y){uint x;for( ; y>0; y--){for(x=110; x>0; x--);}}void delay(u16 i){while(i--);}void delay1ms(){unsigned char i;for(i=124;i>0;i--); //延时124*8+10=1002us}/************************************************************** ****************** 函数名 : Lcd1602_Delay1ms* 函数功能 : 延时函数,延时1ms* 输入 : c* 输出 : 无* 说名 : 该函数是在12MHZ晶振下,12分频单片机的延时。

基于51单片机驱动SI4432无线模块收发C语言程序

基于51单片机驱动SI4432无线模块收发C语言程序

基于51单片机驱动SI4432无线模块收发C语言程序#include <reg52.h>#include <ABSACC.h>#include <intrins.h>#include <stdio.h>//----------------------------------RF4432配置口定义--------------------------------------- //sbit RF4432_PAC=P2^4; //收发模式切换控制端sbit RF4432_SDO=P3^5; //SPI数据输出sbit RF4432_SDI=P3^4; //SPI数据输入sbit RF4432_SCLK=P3^7; //SPI时钟输入端口sbit RF4432_SEL=P3^3; //SPI片选sbit RF4432_IRQ=P3^2; //SI4432工作状态指示端口sbit KEY=P3^6; //BLT53A上电控制端sbit LED_GREEN=P2^1;sbit P15=P1^5;//-------------------------射频芯片相关定义--------------------------------------------#define RF4432_TxRxBuf_Len 32 //定义RF4432数据包长度char RF4432_TxRxBuf[RF4432_TxRxBuf_Len];unsigned char Packet[30]={9,20,30,21,15,58,56,69,25,23,12,25,56,22,23,24};//Transmit packet unsigned char Length=4;unsigned char Data_Buf[10];unsigned char Data_Len;typedef enum _RF_ENUM{RF_OK = 0x00, //function response parametersRF_ERROR_TIMING = 0x01,RF_ERROR_PARAMETER = 0x02,RF_PACKET_RECEIVED = 0x03,RF_NO_PACKET = 0x04,RF_CRC_ERROR = 0x05,} RF_ENUM;//----------------------------RF4432 配置寄存器地址-------------------------------- #define DEVICE_TYPE 0x00#define EVICE_VERSION 0x01 //版本号#define DEVICE_STATUS 0x02 //设备状态#define INTERRUPT_STATUS_1 0x03#define INTERRUPT_STATUS_2 0x04#define INTERRUPT_ENABLE_1 0x05#define INTERRUPT_ENABLE_2 0x06#define OPERATING_FUNCTION_CONTROL_1 0x07 //工作模式和功能控制1#define OPERATING_FUNCTION_CONTROL_2 0x08 //工作模式和功能控制2#define CRYSTAL_OSCILLATOR_LOAD_CAPACITANCE 0x09 //晶振负载电容设置#define MICROCONTROLLER_OUTPUT_CLOCK 0x0A#define GPIO0_CONFIGURATION 0x0B //GPIO0功能设置寄存器见英文文档第105页#define GPIO1_CONFIGURATION 0x0C#define GPIO2_CONFIGURATION 0x0D#define IO_PORT_CONFIGURATION 0x0E#define ADC_CONFIGURATION 0x0F#define ADC_SENSOR_AMPLIFIER_OFFSET 0x10#define ADC_VALUE 0x11#define TEMPERATURE_SENSOR_CONTROL 0x12 //温度传感器校准#define TEMPERATURE_VALUE_OFFSET 0x13#define WAKE_UP_TIMER_PERIOD_1 0x14#define WAKE_UP_TIMER_PERIOD_2 0x15#define WAKE_UP_TIMER_PERIOD_3 0x16#define WAKE_UP_TIMER_VALUE_1 0x17#define WAKE_UP_TIMER_VALUE_2 0x18#define LOW_DUTY_CYCLE_MODE_DURATION 0x19#define LOW_BATTERY_DETECTOR_THRESHOLD 0x1A //低压检测阈值寄存器#define BATTERY_VOLTAGE_LEVEL 0x1B#define IF_FILTER_BANDWIDTH 0x1C //中频滤波器带宽寄存器#define AFC_LOOP_GEARSHIFT_OVERRIDE 0x1D#define AFC_TIMING_CONTROL 0x1E#define CLOCK_RECOVERY_GEARSHIFT_OVERRIDE 0x1F#define CLOCK_RECOVERY_OVERSAMPLING_RATIO 0x20#define CLOCK_RECOVERY_OFFSET_2 0x21#define CLOCK_RECOVERY_OFFSET_1 0x22#define CLOCK_RECOVERY_OFFSET_0 0x23#define CLOCK_RECOVERY_TIMING_LOOP_GAIN_1 0x24#define CLOCK_RECOVERY_TIMING_LOOP_GAIN_0 0x25#define RECEIVED_SIGNAL_STRENGTH_INDICATOR 0x26#define RSSI_THRESHOLD_FOR_CLEAR_CHANNEL_INDICATOR 0x27#define ANTENNA_DIVERSITY_REGISTER_1 0x28#define ANTENNA_DIVERSITY_REGISTER_2 0x29#define DATA_ACCESS_CONTROL 0x30#define EZMAC_STATUS 0x31#define HEADER_CONTROL_1 0x32 //Header 起始码设置#define HEADER_CONTROL_2 0x33#define PREAMBLE_LENGTH 0x34 //前导码长度#define PREAMBLE_DETECTION_CONTROL 0x35 //前导码检测设置#define SYNC_WORD_3 0x36 //同步字节#define SYNC_WORD_2 0x37#define SYNC_WORD_1 0x38#define SYNC_WORD_0 0x39#define TRANSMIT_HEADER_3 0x3A#define TRANSMIT_HEADER_2 0x3B#define TRANSMIT_HEADER_1 0x3C#define TRANSMIT_HEADER_0 0x3D#define TRANSMIT_PACKET_LENGTH 0x3E //发送数据包长度,详细请看P125页#define CHECK_HEADER_3 0x3F#define CHECK_HEADER_2 0x40#define CHECK_HEADER_1 0x41#define CHECK_HEADER_0 0x42#define HEADER_ENABLE_3 0x43#define HEADER_ENABLE_2 0x44#define HEADER_ENABLE_1 0x45#define HEADER_ENABLE_0 0x46#define RECEIVED_HEADER_3 0x47#define RECEIVED_HEADER_2 0x48#define RECEIVED_HEADER_1 0x49#define RECEIVED_HEADER_0 0x4A#define RECEIVED_PACKET_LENGTH 0x4B //接收数据包长度,详细请看P134页#define ANALOG_TEST_BUS 0x50#define DIGITAL_TEST_BUS_ENSCTEST_ 0x51#define TX_RAMP_CONTROL 0x52#define PLL_TUNE_TIME 0x53 //锁相环切换时间#define CALIBRATION_CONTROL 0x55#define MODEM_TEST 0x56#define CHARGEPUMP_TEST 0x57#define CHARGEPUMP_CURRENT_TRIMMING_OVERRIDE 0x58#define DIVIDER_CURRENT_TRIMMING 0x59#define VCO_CURRENT_TRIMMING 0x5A#define VCO_CALIBRATION_OVERRIDE 0x5B#define SYNTHESIZER_TEST 0x5C#define BLOCK_ENABLE_OVERRIDE_1 0x5D#define BLOCK_ENABLE_OVERRIDE_2 0x5E#define BLOCK_ENABLE_OVERRIDE_3 0x5F#define CHANNEL_FILTER_COEFFICIENT_ADDRESS 0x60#define CHANNEL_FILTER_COEFFICIENT_VALUE 0x61#define CRYSTAL_OSCILLATOR_CONTROL_TEST 0x62#define RC_OSCILLATOR_COARSE_CALIBRATION_OVERRIDE 0x63#define RC_OSCILLATOR_FINE_CALIBRATION_OVERRIDE 0x64#define LDO_CONTROL_OVERRIDE_ENSPOR 0x65#define LDO_LEVEL_SETTING 0x66 #define DELTASIGMA_ADC_TUNING_1 0x67#define DELTASIGMA_ADC_TUNING_2 0x68#define AGC_OVERRIDE_1 0x69 #define AGC_OVERRIDE_2 0x6A#define GFSK_FIR_FILTER_COEFFICIENT_ADDRESS 0x6B#define GFSK_FIR_FILTER_COEFFICIENT_VALUE 0x6C#define TX_POWER 0x6D //发射功率设置,详细请见P153#define TX_DATA_RATE_1 0x6E //数据发送波特率设置寄存器1#define TX_DATA_RATE_0 0x6F //数据发送波特率设置寄存器0#define MODULATION_MODE_CONTROL_1 0x70 //调制方式控制,详细请见P155#define MODULATION_MODE_CONTROL_2 0x71#define FREQUENCY_DEVIATION 0x72#define FREQUENCY_OFFSET_1 0x73#define FREQUENCY_OFFSET_2 0x74#define FREQUENCY_BAND_SELECT 0x75 //频段选择,详细请见P157#define NOMINAL_CARRIER_FREQUENCY_1 0x76 //基准载波频率#define NOMINAL_CARRIER_FREQUENCY_0 0x77#define FREQUENCY_HOPPING_CHANNEL_SELECT 0x79 //跳频频道选择,详细请见P158#define FREQUENCY_HOPPING_STEP_SIZE 0x7A //跳频频道间隔#define TX_FIFO_CONTROL_1 0x7C#define TX_FIFO_CONTROL_2 0x7D#define RX_FIFO_CONTROL 0x7E#define FIFO_ACCESS 0x7F //FIFO读写方式设置,//-------------------------------RF4432控制指令--------------------------------------------- #define RR 0x00#define WR 0x80//------------------------------------------------延时------------------------------void delay_10us(char n){int i;while(n--)for(i=0;i<5;i++);}void delay_ms(int num){int x,y;for(y=0;y<num;y++){for(x = 0;x < 500;x)x++;}}//------------------------------------SPI单字节读取函数------------------------------------- unsigned char SPI_Read(void){unsigned char i,rxdata;rxdata = 0x00;for (i = 0;i < 8;i++){rxdata = rxdata<<1;RF4432_SCLK=1;RF4432_SDO=1;if (RF4432_SDO==1) //读取最高位,保存至最末尾,通过左移位完成整个字节 {rxdata |= 0x01;}else{rxdata &= ~0x01;}delay_10us(2);RF4432_SCLK=0;delay_10us(2);}return rxdata;}//--------------------------SPI单字节写入函数----------------------------------------------void SPI_Write(unsigned char txdata){unsigned char i;for (i = 0;i < 8;i++){if (txdata&0x80) //总是发送最高位{RF4432_SDI=1;}else{RF4432_SDI=0;}RF4432_SCLK=1;txdata = txdata<<1;RF4432_SCLK=0;}}//---------------------RF4432寄存器读取函数--------------------------------------------------- void RF4432_ReadReg(unsigned char addr, unsigned char *RegisterData){RF4432_SEL=0;SPI_Write(addr|RR);*RegisterData = SPI_Read();RF4432_SEL=1;}//----------------RF4432寄存器写入函数---------------------------------------------------------- void RF4432_WriteReg(unsigned char addr, unsigned char value){RF4432_SEL=0;SPI_Write(addr|WR);SPI_Write(value);RF4432_SEL=1;}//-----------------------RF4432寄存器读取函数---------------------------------------------void RF4432_ReadBurestReg(unsigned char addr,unsigned char *p,unsigned char count){unsigned char i;RF4432_SEL=0;SPI_Write(addr|RR);for(i=0;i<count;i++){p[i] = SPI_Read();}RF4432_SEL=1;}//---------------------------------RF4432射频芯片初始化函数------------------------------------ void RF4432_Init(void){unsigned char RegisterData;//unsigned int i,j;delay_ms(20);delay_ms(20);delay_ms(20);delay_ms(20);delay_ms(20);delay_ms(20);RF4432_ReadReg(0x03,&RegisterData);//read the Interrupt Status1 registerRF4432_ReadReg(0x04,&RegisterData);//read the Interrupt Status2 register//SW resetRF4432_WriteReg(0x07, 0x80);//write 0x80 to the Operating & Function Control1 register//wait for chip ready interrupt from the radio (while the nIRQ pin is high)while(RF4432_IRQ);//read interrupt status registers to clear the interrupt flags and release NIRQ pinRF4432_ReadReg(0x03, &RegisterData);RF4432_ReadReg(0x04, &RegisterData);/*set the physical parameters*///set the center frequency to 434 MHzRF4432_WriteReg(0x75, 0x57); //write 0x75 to the Frequency Band Select registerRF4432_WriteReg(0x76, 0x19); //write 0xBB to the Nominal Carrier Frequency1 registerRF4432_WriteReg(0x77, 0x00); //write 0x80 to the Nominal Carrier Frequency0 register//set the desired TX data rate (9.6kbps)RF4432_WriteReg(0x6E, 0x13); //write 0x4E to the TXDataRate 1 registerRF4432_WriteReg(0x6F, 0xA9); //write 0xA5 to the TXDataRate 0 registerRF4432_WriteReg(0x70, 0x2C); //write 0x2C to the Modulation Mode Control 1 registerRF4432_WriteReg(0x58, 0x80); //VCO//set the TX power to MAXRF4432_WriteReg(0x6D, 0x1F); //write 0x1F to the TX Power register/*set the modem parameters according to the exel calculator(parameters: 4.8 kbps, deviation: 50 kHz, channel filter BW: 102.2 kHz*/RF4432_WriteReg(0x1C, 0xAD);//write 0x1E to the IF Filter Bandwidth registerRF4432_WriteReg(0x20, 0xE2);//write 0xD0 to the Clock Recovery Oversampling Ratio registerRF4432_WriteReg(0x21, 0x80);//write 0x00 to the Clock Recovery Offset 2 registerRF4432_WriteReg(0x22, 0x1A);//write 0x9D to the Clock Recovery Offset 1 registerRF4432_WriteReg(0x23, 0x37);//write 0x49 to the Clock Recovery Offset 0 registerRF4432_WriteReg(0x24, 0x00);//write 0x00 to the Clock Recovery Timing Loop Gain 1 registerRF4432_WriteReg(0x25, 0x04);//write 0x24 to the Clock Recovery Timing Loop Gain 0 registerRF4432_WriteReg(0x1D, 0x44);//enable afcRF4432_WriteReg(0x1E, 0x0A);RF4432_WriteReg(0x2A, 0x2C);RF4432_WriteReg(0x1F, 0x03);RF4432_WriteReg(0x69, 0x60);//write 0x40 to the AFC Loop Gearshift Override registerRF4432_WriteReg(0x72, 0x70);//write 0x48 to the Frequency Deviation register//set the preamble length to 10bytes if the antenna diversity is used and set to 5bytes if notRF4432_WriteReg(0x34, 0xCF); //write 0x0C to the Preamble Length register//set preamble detection threshold to 20bitsRF4432_WriteReg(0x35, 0x20); //write 0x2A to the Preamble Detection Control register//Disable header bytes; set variable packet length (the length of the payload is defined by the //received packet length field of the packet); set the synch word to two bytes longRF4432_WriteReg(0x33, 0x02); //write 0x02 to the Header Control2 register//Set the sync word pattern to 0x2DD4RF4432_WriteReg(0x36, 0x2D); //write 0x2D to the Sync Word 3 registerRF4432_WriteReg(0x37, 0xD4); //write 0xD4 to the Sync Word 2 register//enable the TX & RX packet handler and CRC-16 (IBM) checkRF4432_WriteReg(0x30, 0x8D); //write 0x8D to the Data Access Control register//Disable the receive header filtersRF4432_WriteReg(0x32, 0x00 ); //write 0x00 to the Header Control1 register//enable FIFO mode and GFSK modulationRF4432_WriteReg(0x71, 0x2B); //write 0x63 to the Modulation Mode Control 2 register/*set the GPIO's according the testcard type*/RF4432_WriteReg(0x0B, 0x0A); //write 0x12 to the GPIO0 Configuration(set the TX state)RF4432_WriteReg(0x0C, 0x0A); //write 0x15 to the GPIO1 Configuration(set the RX state)//set the AGCRF4432_WriteReg(0x69, 0x35); //write 0x0B to the AGC Override 2 register//set ADC reference voltage to 0.9VRF4432_WriteReg(0x68, 0x07); //write 0x04 to the Deltasigma ADC Tuning 2 register//set Crystal Oscillator Load Capacitance registerRF4432_WriteReg(0x09, 0x7F); //write 0xD7 to the Crystal Oscillator Load Capacitance registerRF4432_WriteReg(0x73,0x00);RF4432_WriteReg(0x74,0x00);//TxFIFOReset();RF4432_WriteReg(0x08, 0x01);RF4432_WriteReg(0x08, 0x00);//RxFIFOReset();RF4432_WriteReg(0x08, 0x02);RF4432_WriteReg(0x08, 0x00);}//-------------------------RF4432设置接收模式函数------------------------------------------ void RF4432_SetRxMode(void){unsigned char RegisterData;RF4432_WriteReg(0x0E, 0x02);//Rx_EN;//enable the packet valid interruptRF4432_WriteReg(0x05, 0xFF);RF4432_WriteReg(0x06, 0x00);RF4432_ReadReg(0x03, &RegisterData);RF4432_ReadReg(0x04, &RegisterData);//enable receiver chainRF4432_WriteReg(0x07, 0x05);}//---------------------------RF4432数据包接收函数------------------------------------------- unsigned char RF4432_RxPacket(void){unsigned char temp;RF4432_IRQ=1;if(!RF4432_IRQ){RF4432_ReadReg(INTERRUPT_STATUS_1,&temp);if(temp&0x02){return 1;}}return 0;}void RFIdle(void){unsigned char RegisterData;RF4432_WriteReg(0x07, 0x01);//diasble all ITsRF4432_WriteReg(0x05, 0x00);RF4432_WriteReg(0x06, 0x00);RF4432_ReadReg(0x03, &RegisterData);RF4432_ReadReg(0x04, &RegisterData);}void RFTransmit(unsigned char * packet, unsigned char length){unsigned char temp;unsigned char RegisterData;RF4432_WriteReg(0x0E, 0x01);//Tx_EN;RF4432_WriteReg(0x3e, length);for(temp=0;temp<length;temp++){RF4432_WriteReg(0x7f,packet[temp]);} //enable the wanted ITsRF4432_WriteReg(0x05, 0x04);RF4432_WriteReg(0x06, 0x00);RF4432_ReadReg(0x03, &RegisterData);RF4432_ReadReg(0x04, &RegisterData);//enable transmitterRF4432_WriteReg(0x07, 0x09);while(RF4432_IRQ);//while(GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_12)); RF4432_ReadReg(0x03, &RegisterData);RF4432_ReadReg(0x04, &RegisterData);}RF_ENUM RFPacketReceived(unsigned char * packet, unsigned char * length) {unsigned char i;unsigned char RegisterData;if( RF4432_IRQ == 0 ){RF4432_ReadReg(0x03,&RegisterData);if( (RegisterData & 0x01) == 0x01 )//CRC error{RF4432_SetRxMode();return RF_CRC_ERROR;}if( (RegisterData & 0x02) == 0x02 )//packet received{//read bufferRF4432_ReadReg(0x4b,length);for(i=0;i<*length;i++){RF4432_ReadReg(0x7f,packet++);}RF4432_SetRxMode();return RF_PACKET_RECEIVED;}}return RF_NO_PACKET;}void StartUART( void ){SCON = 0x50;TMOD = 0x20;TH1 = 0XF4;TL1 = 0XF4;TR1 = 1; //允许定时器1工作}//串口发送数void R_S_Byte(unsigned char R_Byte){SBUF = R_Byte;while( TI == 0 ); //查询法 TI = 0;}main(){//unsigned char i;KEY=1;LED_GREEN=0;StartUART();RF4432_Init();delay_ms(10);RF4432_SetRxMode();//RF4432设置接收模式函数P15=1;while(1){RF4432_WriteReg(0x0E, 0x02);//Rx_EN;LED_GREEN=1;//灯亮RFTransmit(Packet,Length);//发送数据RFIdle();//进入空闲模式delay_ms(10);RF4432_SetRxMode();//RF4432设置接收模式函数while(RFPacketReceived(Data_Buf,&Data_Len) != RF_PACKET_RECEIVED);//waiting for receivingRFIdle();RF4432_ReadReg(0x26,&Data_Buf[1]);LED_GREEN=0;delay_ms(200);delay_ms(200);/*RF4432_SetRxMode();LED_GREEN=0;//=========================================================================================================== =if(RF4432_RxPacket()) //判断是否接收到数据{LED_GREEN=1;RF4432_ReadBurestReg(FIFO_ACCESS,RF4432_TxRxBuf,RF4432_TxRxBuf_Len);for(i=0;i<32;i++){R_S_Byte(RF4432_TxRxBuf[i]);}RF4432_SetRxMode();}*/ }}。

c语言wifi原理

c语言wifi原理

c语言wifi原理C语言WiFi原理一、引言随着无线网络技术的普及和发展,WiFi已经成为人们生活中不可或缺的一部分。

而C语言作为一种高效、灵活的编程语言,也可以用于实现WiFi功能。

本文将介绍C语言下的WiFi原理及其实现方法。

二、WiFi原理概述WiFi(Wireless Fidelity)是一种无线网络技术,它使用无线电波进行数据传输。

WiFi使用的是IEEE 802.11协议,该协议定义了无线网络的物理层和数据链路层。

在WiFi通信中,无线路由器充当基站,负责发射和接收无线信号。

而设备(如电脑、手机等)通过无线网卡接收无线信号,并将其转换为可识别的数据。

C语言可以通过操作无线网卡的驱动程序来实现WiFi功能。

三、C语言下的WiFi实现方法1. 打开网卡在C语言中,可以通过调用操作系统提供的API函数来打开网卡。

打开网卡后,可以进行后续的WiFi功能设置和数据传输操作。

2. 扫描WiFi网络通过调用相关API函数,可以扫描可用的WiFi网络。

扫描结果将包含网络的SSID(网络名称)、信号强度等信息。

3. 连接WiFi网络选择要连接的WiFi网络后,可以通过调用API函数来连接该网络。

连接时需要提供WiFi网络的SSID和密码等信息。

连接成功后,设备将与WiFi网络建立起通信。

4. 数据传输连接成功后,可以使用C语言进行数据传输。

通过调用API函数,可以发送和接收数据,实现与其他设备的通信。

四、C语言下的WiFi编程示例下面是一个简单的C语言程序示例,用于实现WiFi连接并发送数据的功能:```#include <stdio.h>#include <stdlib.h>#include <string.h>// 打开网卡void openWifiCard() {// 调用操作系统的API函数打开网卡// ...printf("网卡已打开\n");}// 扫描WiFi网络void scanWifiNetwork() {// 调用操作系统的API函数扫描WiFi网络// ...printf("扫描到以下WiFi网络:\n");printf("1. WiFi1\n");printf("2. WiFi2\n");printf("3. WiFi3\n");}// 连接WiFi网络void connectWifiNetwork(char* ssid, char* password) { // 调用操作系统的API函数连接指定的WiFi网络// ...printf("成功连接到WiFi网络:%s\n", ssid);}// 发送数据void sendData(char* data) {// 调用操作系统的API函数发送数据// ...printf("已发送数据:%s\n", data);}int main() {openWifiCard();scanWifiNetwork();connectWifiNetwork("WiFi1", "password");sendData("Hello, WiFi!");return 0;}```以上示例代码演示了如何使用C语言实现WiFi连接和数据传输。

51单片机无线课程设计

51单片机无线课程设计

51单片机无线课程设计一、课程目标知识目标:1. 学生能够理解51单片机的基本原理,掌握无线通信技术的基本概念;2. 学生能够掌握51单片机编程的基础知识,包括指令系统、寄存器配置等;3. 学生能够了解无线模块的工作原理,并掌握相关调试方法;4. 学生能够运用51单片机及无线模块实现简单的数据传输和控制功能。

技能目标:1. 学生能够独立完成51单片机的编程与调试;2. 学生能够独立搭建无线通信系统,实现数据收发;3. 学生能够运用所学的知识解决实际问题,具备一定的课程设计能力;4. 学生能够通过课程实践,提升动手能力、团队协作能力和创新能力。

情感态度价值观目标:1. 学生能够认识到单片机及无线通信技术在日常生活中的应用,激发学习兴趣;2. 学生能够通过课程学习,培养严谨的科学态度和良好的学习习惯;3. 学生能够树立团队协作意识,学会与他人分享成果,培养合作精神;4. 学生能够关注单片机及无线通信领域的发展动态,培养持续学习的意识。

课程性质:本课程为实践性较强的课程设计,旨在让学生在掌握51单片机及无线通信技术基础知识的基础上,通过实际操作,提高解决实际问题的能力。

学生特点:学生具备一定的单片机基础和编程能力,对无线通信技术有一定了解,但实践能力有待提高。

教学要求:结合学生特点,注重理论与实践相结合,强调动手实践,培养学生独立思考和解决问题的能力。

将课程目标分解为具体的学习成果,便于后续教学设计和评估。

二、教学内容1. 51单片机原理及编程基础:- 单片机结构及工作原理- 51单片机指令系统与寄存器- C语言编程基础与Keil开发环境使用2. 无线通信技术原理与模块:- 无线通信基本原理- 常用无线模块介绍(如NRF24L01)- 无线模块的配置与调试方法3. 51单片机与无线模块的接口技术:- 单片机与无线模块的硬件连接- 单片机与无线模块的软件编程- 数据发送与接收处理4. 课程设计实践:- 简单无线数据传输系统设计- 实现无线控制功能(如远程开关、温度监测等)- 课程设计报告撰写与展示教学内容安排与进度:第一周:51单片机原理及编程基础第二周:无线通信技术原理与模块第三周:51单片机与无线模块的接口技术第四周:课程设计实践与成果展示教材章节:《单片机原理与应用》第三章:51单片机结构与工作原理;第四章:51单片机指令系统与编程;第七章:无线通信技术及其应用。

基于单片机控制的WIFI无线传输模块设计

基于单片机控制的WIFI无线传输模块设计

基于单片机控制的WIFI无线传输模块设计随着物联网和智能家居的发展,无线传输模块的需求越来越大,尤其是具备WIFI功能的无线传输模块。

本文将介绍一种基于单片机控制的WIFI无线传输模块的设计。

首先,我们需要选择一个适合的单片机作为控制核心。

常见的选择有Arduino、Raspberry Pi等。

这里我们选择Arduino作为控制核心,因为它具备易上手、低功耗等特点。

接下来,我们需要选择一个适合的WIFI模块。

常见的选择有ESP8266、ESP32等。

这里我们选择ESP8266作为WIFI模块,因为它具备低功耗、价格便宜等特点。

在硬件设计方面,我们需要将单片机与WIFI模块进行连接。

首先,将单片机的RX引脚连接到WIFI模块的TX引脚,将单片机的TX引脚连接到WIFI模块的RX引脚。

接下来,将单片机的VCC引脚连接到WIFI模块的VCC引脚,将单片机的GND引脚连接到WIFI模块的GND引脚。

在软件设计方面,我们需要编写程序将单片机与WIFI模块进行通信。

首先,我们需要初始化单片机和WIFI模块的串口通信参数,如波特率、数据位、停止位等。

然后,我们可以使用单片机的串口发送AT指令给WIFI模块,实现无线传输功能。

常用的AT指令有连接WIFI网络、断开WIFI网络、发送数据等。

由于字数限制的原因,无法详细展开所有的设计细节。

但是希望通过以上的描述,能够给读者提供一个初步的了解和思路,方便进一步深入学习和实践。

总之,基于单片机控制的WIFI无线传输模块的设计是一个相对较复杂的工程,需要综合考虑硬件设计和软件编程等多方面因素。

然而,一旦成功设计和实现,它将具备广泛的应用前景,可以用于物联网、智能家居、智能农业等领域,为人们的生活带来更多的便利和舒适。

51单片机c语言教程

51单片机c语言教程

51单片机c语言教程在本教程中,我们将学习如何在51单片机上使用C语言进行编程。

无论您是初学者还是有一定经验的开发者,本教程都将对您有所帮助。

首先,我们需要了解一些基本概念。

51单片机是一种基于哈弗微电子公司的MCS-51架构的微控制器。

它采用了Harvard结构,即将程序存储器和数据存储器分开。

它具有各种功能和接口,可以满足不同的应用需求。

在使用C语言进行51单片机编程之前,必须安装相应的开发工具。

这里我们推荐使用Keil C51开发环境。

安装完成后,我们就可以开始编写第一个程序了。

#include <reg51.h>void main(){// 在这里编写您的代码}以上是一个简单的C语言程序模板。

我们使用了reg51.h头文件,该文件包含了与51单片机相关的寄存器定义和常量。

接下来,我们可以开始编写具体的功能代码了。

例如,如果我们想要在LED灯上闪烁一个简单的模式,可以使用以下代码:#include <reg51.h>sbit LED = P1^0;void main(){while(1){LED = 0; // 点亮LEDdelay(1000); // 延时1秒LED = 1; // 熄灭LEDdelay(1000); // 延时1秒}}在这个程序中,我们首先定义了一个LED的控制引脚,然后通过循环实现了闪烁的功能。

在每次循环中,我们先点亮LED,然后通过调用延时函数延时1秒,再将LED熄灭,再次延时1秒。

这样就形成了一个简单的LED闪烁效果。

除了控制IO口外,51单片机还可以实现其他各种功能,如定时器、串口通信等。

这些功能的实现也都可以通过C语言来完成。

希望通过本教程,您可以对51单片机的C语言编程有一个基本的了解。

在以后的学习中,您可以深入研究这些知识,并通过实践来提升自己的能力。

祝您学习愉快!。

51单片机汇编语言及C语言经典实例

51单片机汇编语言及C语言经典实例

51单片机汇编语言及C语言经典实例汇编语言是一种用来编写计算机指令的低级语言,它与机器语言十分接近,可以直接控制计算机硬件。

而C语言是一种高级程序设计语言,它具有结构化编程和模块化设计的特点。

本文将介绍51单片机汇编语言和C语言的经典实例,并进行详细解析。

一、LED指示灯的闪烁我们首先来看一个经典的51单片机汇编语言的实例——LED指示灯的闪烁。

我们可以通过控制单片机的IO口来实现LED的闪烁效果。

以下是汇编语言的代码:```assemblyORG 0 ; 程序起始地址MOV P1, #0; 将 P1 置为0,熄灭LEDLJMP $ ; 无限循环```以上代码使用了51单片机的MOV指令和LJMP指令。

MOV指令用来将一个立即数(这里是0)存储到寄存器P1中,控制对应的I/O口输出低电平,从而熄灭LED。

而LJMP指令则是无条件跳转指令,将程序跳转到当前地址处,实现了无限循环的效果。

对应的C语言代码如下:```c#include <reg51.h>void main() {P1 = 0; // 将 P1 置为0,熄灭LEDwhile(1); // 无限循环}```以上代码使用了reg51.h头文件,该头文件提供了对51单片机内部寄存器和外设的访问。

通过将P1赋值为0,控制IO口输出低电平,实现了熄灭LED的效果。

while(1)是一个无限循环,使得程序一直停留在这个循环中。

二、数码管的动态显示接下来我们介绍51单片机汇编语言和C语言实现数码管动态显示的经典实例。

数码管动态显示是通过控制多个IO口的高低电平来控制数码管显示不同的数字。

以下是汇编语言的代码:```assemblyORG 0 ; 程序起始地址MOV A, #0FH ; 设置数码管全亮,A存储数码管控制位MOV P2, A ; 将 A 的值存储到 P2,控制数码管的数码控制位DELAY: ; 延时循环MOV R7, #0FFH ; 设置延时计数值LOOP1: ; 内层循环MOV R6, #0FFH ; 设置延时计数值LOOP2: ; 内部延时循环DJNZ R6, LOOP2 ; 延时计数减1并判断是否为0,不为0则继续循环DJNZ R7, LOOP1 ; 延时计数减1并判断是否为0,不为0则继续循环DJNZ A, DELAY ; A减1并判断是否为0,不为0则继续循环JMP DELAY ; 无限循环,实现动态显示```以上代码中,我们通过MOV指令来将一个立即数(0x0F)存储到寄存器A中,控制数码管显示0-9的数字。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
for(j=110;j>0;j--);
}
void us_delay(uchar t)
{
while(t--);
}
/********************************************************************
名称:波特率发生器函数
作用:波特率发生器可以是T1定时器实现,也可以是MCU内部独立的波特率发生器,
TL1=TH1;
EA=1;//总中断打开
ES=0;//关闭串口中断
TR1=1;//启动定时器1
}
/*
void Uart_Init()//使用独立的波特率发生器(STC12C560S2或带有独立波特率发生器//、//的单片机均可)
{
SCON=0x50;//设置为串行口以方式1工作,8位异步通讯,允许接收中断。
AUXR1=0x80;//切换到P1口
ES=1;//开启串口中断
EA=1;//开启总中断
}
*/
/********************************************************************
名称:串口发送函数
功能:MCU向其他与其连接的设备发送数据(此处是无线WIFI模块ESP8266)
//define RELOAD_COUNT (256-(((11520000/16)/12)/9600))也可以或波特率9600 //256-晶振频率/波特率x16=BRT
/*****************LED灯对应P0口的1个端口*************/
sbit LED0=P3^2;
/************波特率发生器相关功能寄存器的定义****************/
********************************************************************/
#include <reg52.h>//包含头文件
#define uint unsigned int
#define uchar unsigned char
#define RELOAD_COUNT 0xFA//宏定义波特率发生器的载入值
********************************************************************/
void Send_Uart(uchar value)
{
ES=0;//关闭串口中断
TI=0;//清发送完毕中断请求标志位
SBUF=value;//发送
while(TI==0);//等待发送完毕
各自不同的载入值计算式,具体根据寄存器相关设置来参考计算,以实现
**************************************************************/
void Uart_Init()//使用定时器1作为波特率发生器(STC89C52、STC89C51、AT89C51或者STC12C560S2等均可)
无线WIFI模块ESP8266和51单片机 实现LED灯的无线控制
一、关于51单片机和无线WIFI模块的接线方面
RXD、TXD、GND和51单片机的TXD、RXD、GND接好,模块其他引脚均为高电平,电源VCC是3.3V左右(两节1.5v干电池),本人由于没有稳压模块,偷懒了当时使用5V的直流源,测试结果目前没有问题(不过不建议啊!)
sfr AUXR=0x8E;
sfr BRT=0x9C;
sfr AUXR1=0xA2;
/*****************相关变量**************/
uchar Receive,i;
uint n;
uchar Recive_table[15];//用于接收wifi模块反馈到MCU上的数据
/*******************************************************************
题目:基于STC12C560S2单片机无线WIFI模块控制
内容:通过MCU上位机对ESP8266wifi模块的控制和设置,实现手机端控制LED灯
的亮灭。
注意:该型号单片机是普通89C51单片执行速度的12倍,内含RAM1280字节,ROM为60K,PCA计数器,PWM发生模块,ADC转换模块等,晶振一定是11.0592MHz。
二、关于安卓手机方面
测试时可以使用,网络调试助手(下载这个app安装在手机即可)发送数字1表示小灯亮,0表示灯灭。后续想深入的话可以自己开发安卓app软件。
三、参数设置
由于参数的设置方法和步奏网上资料很全,这里提供相关的网址自行参考。
Uart-W
物联网
四、资料可能存在不足之处,仅作参考!
/*********************************************************************
名称:延时函数
作用:毫秒级延时,微妙级延时函数,为数据收发完成作等待.......
********************************************************************/
void ms_delay(uint t)
{
uint i,j;
for(i=t;i>0;i--)
PCON=0x80;//SMOD波特率选择位为1,SMOD=1.
BRT=RELOAD_COUNT; //波特率9600 256-晶振频率/波特率x16=BRT
AUXR=0xD5;//T0、T1不12分频,速度是89C51的12倍,启动独立波特率//发生器,每个时钟计数一次
//设置串口1的波特率发生器为独立波特率发生器,
{
SCON=0x50;//设置为串行口以方式1工作,8位异步通讯,允许接收中断。
//一帧信息为10位,1位起始位,8位数据位(低位在先),1位停止位。
PCON=0x80;//SMOD波特率选择位为1,SMOD=1.
TMOD=0x21;//设置定时器1为波特率发生器,工作在模式2,8位自动装载
TH1=RELOAD_COUNT;//波特率9600,TH1=256-FOSC/16/12/波特率
相关文档
最新文档