高考《立体几何》判断命题题型集锦

合集下载

新课标高考立体几何题型归纳一

新课标高考立体几何题型归纳一

立体几何题型归纳一、三视图计算几何体的体积与表面积1,如图1-3,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为A ..C .D .2,个几何体的三视图如右图所示,则该几何体的表面积为__________.3,一个几何体的三视图如图所示,其中主视图和左视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为( )A. B. C.D.二、直观图的面积计算问题4,等腰梯形ABCD ,上底边CD =1, 腰AD =CB =2 , 下底AB=3,按平行于上、下底边取x 轴,则直观图A ′B ′C ′D ′的面积为_______.三、点、线、面的位置判断问题5, 命题①空间直线a ,b ,c ,若a ∥b ,b ∥c 则a ∥c ②非零向量c 、b 、a ,若a ∥b ,b ∥c 则a ∥c ③平面α、β、γ若α⊥β,β⊥γ,则α∥γ ④空间直线a 、b 、c 若有a ⊥b ,b ⊥c ,则a ∥c ⑤直线a 、b 与平面β,若a ⊥β,c ⊥β,则a ∥c 其中所有真命题的序号是( )A .①②③B .①③⑤C .①②⑤D .②③⑤6,设直线m 、n 和平面,下列四个命题中,正确的是 ( ) A. 若 B. 若 C. 若 D. 若三、三点共线与三线共点问题例1,如图,O 1是正方体ABCD-A 1B 1C 1D 1的面A 1B 1C 1D 1的中心,M 是对角线A 1C 和截面B 1D 1A 的交点,求证:O 1、M 、A 三点共线。

12π3πβα、n m n m //,//,//则ααβαββαα//,//,//,,则n m n m ⊂⊂βαβα⊥⊂⊥m m 则,,ααββα//,,,m m m 则⊄⊥⊥A 四、球的内切与外接问题:6. 棱长为1的正方体ABCD -A 1B 1C 1D 1被以A 为球心,AB 为半径的球相截,则被截形体的表面积为( ) A .45π B .87π C .π D .47π 7.已知三棱锥的三视图如图所示,则它的外接球表面积为( ) A .16B .4C .8D .2五、空间中的平行与垂直问题:例2、如图,已知三棱锥中,为中点,为中点,且△为正三角形。

专题07 立体几何小题常考全归类(精讲精练)(原卷版)

专题07 立体几何小题常考全归类(精讲精练)(原卷版)

专题07 立体几何小题常考全归类【命题规律】高考对该部分的考查,小题主要体现在两个方面:一是有关空间线面位置关系的命题的真假判断;二是常见一些经典常考压轴小题,难度中等或偏上.【核心考点目录】核心考点一:球与截面面积问题核心考点二:体积、面积、周长、角度、距离定值问题 核心考点三:体积、面积、周长、距离最值与范围问题 核心考点四:立体几何中的交线问题核心考点五:空间线段以及线段之和最值问题 核心考点六:空间角问题 核心考点七:轨迹问题核心考点八:以立体几何为载体的情境题 核心考点九:翻折问题【真题回归】1.(2022·北京·高考真题)已知正三棱锥-P ABC 的六条棱长均为6,S 是ABC 及其内部的点构成的集合.设集合{}5T Q S PQ =∈≤,则T 表示的区域的面积为( ) A .34π B .πC .2πD .3π2.(2022·浙江·高考真题)如图,已知正三棱柱1111,ABC A B C AC AA -=,E ,F 分别是棱11,BC A C 上的点.记EF 与1AA 所成的角为α,EF 与平面ABC 所成的角为β,二面角F BC A --的平面角为γ,则( )A .αβγ≤≤B .βαγ≤≤C .βγα≤≤D .αγβ≤≤3.(多选题)(2022·全国·高考真题)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,,2FB ED AB ED FB ==∥,记三棱锥E ACD -,F ABC -,F ACE -的体积分别为123,,V V V ,则( )A .322V V =B .31V V =C .312V V V =+D .3123V V =4.(多选题)(2022·全国·高考真题)已知正方体1111ABCD A B C D -,则( ) A .直线1BC 与1DA 所成的角为90︒ B .直线1BC 与1CA 所成的角为90︒ C .直线1BC 与平面11BB D D 所成的角为45︒D .直线1BC 与平面ABCD 所成的角为45︒5.(多选题)(2021·全国·高考真题)在正三棱柱111ABC A B C 中,11AB AA ==,点P 满足1BP BC BB λμ=+,其中[]0,1λ∈,[]0,1μ∈,则( )A .当1λ=时,1AB P △的周长为定值B .当1μ=时,三棱锥1P A BC -的体积为定值 C .当12λ=时,有且仅有一个点P ,使得1A P BP ⊥ D .当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P 6.(2020·海南·高考真题)已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以1D 5BCC 1B 1的交线长为________.【方法技巧与总结】1、几类空间几何体表面积的求法(1)多面体:其表面积是各个面的面积之和. (2)旋转体:其表面积等于侧面面积与底面面积的和.(3)简单组合体:应弄清各构成部分,并注意重合部分的删、补. 2、几类空间几何体体积的求法(1)对于规则几何体,可直接利用公式计算.(2)对于不规则几何体,可采用割补法求解;对于某些三棱锥,有时可采用等体积转换法求解.(3)锥体体积公式为13V Sh =,在求解锥体体积时,不能漏掉3、求解旋转体的表面积和体积时,注意圆柱的轴截面是矩形,圆 锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形.4、球的截面问题 球的截面的性质: ①球的任何截面是圆面;②球心和截面(不过球心)圆心的连线垂直于截面;③球心到截面的距离d 与球的半径R 及截面的半径r 的关系为=+222R r d .注意:解决球与其他几何体的切、接问题,关键在于仔细观察、分析,弄清相关元素的位置关系和数量关系;选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的.5、立体几何中的最值问题有三类:一是空间几何体中相关的点、线和面在运动,求线段长度、截面的面积和体积的最值;二是空间几何体中相关点和线段在运动,求有关角度和距离的最值;三是在空间几何体中,已知某些量的最值,确定点、线和面之间的位置关系.6、解决立体几何问题的思路方法:一是几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值;通过降维的思想,将空间某些量的最值问题转化为平面三角形、四边形或圆中的最值问题;涉及某些角的三角函数的最值,借助模型求解,如正四面体模型、长方体模型和三余弦角模θαβ=cos cos cos (θ为平面的斜线与平面内任意一条直线l 所成的角,α为该斜线与该平面所成的角,β为该斜线在平面上的射影与直线l 所成的角).7、立体几何中的轨迹问题,这是一类立体几何与解析几何的交汇题型,既考查学生的空间想象能力,即点、线、面的位置关系,又考查用代数方法研究轨迹的基本思想,培养学生的数学运算、直观想象等素养.8、解决立体几何中的轨迹问题有两种方法:一是几何法.对于轨迹为几何体的问题,要抓住几何体中的不变量,借助空间几何体(柱、锥、台、球)的定义;对于轨迹为平面上的问题,要利用降维的思想,熟悉平面图形(直线、圆、圆锥曲线)的定义.二是代数法(解析法).在图形中,建立恰当的空间直角坐标系或平面直角坐标系.9、以立体几何为载体的情境题大致有三类:(1)以数学名著为背景设置问题,涉及中外名著中的数学名题名人等; (2)以数学文化为背景设置问题,包括中国传统文化,中外古建筑等; (3)以生活实际为背景设置问题,涵盖生产生活、劳动实践、文化精神等.10、以立体几何为载体的情境题都跟图形有关,涉及在具体情境下的图形阅读,需要通过数形结合来解决问题.图形怎么阅读?一是要读特征,即从图形中读出图形的基本特征;二是要读本质,即要善于将所读出的信息进行提升,实现“图形→文字→符号”的转化;三是要有问题意识,带着问题阅读图形,将研究图形的本身特征和关注题目要解决的问题有机地融合在一起;四是要有运动观点,要“动手”去操作,动态地去阅读图形.【核心考点】核心考点一:球与截面面积问题 【规律方法】 球的截面问题 球的截面的性质: ①球的任何截面是圆面;②球心和截面(不过球心)圆心的连线垂直于截面;③球心到截面的距离d 与球的半径R 及截面的半径r 的关系为=+222R r d . 【典型例题】例1.(2022·全国·高三阶段练习)已知四棱锥P -ABCD 的底面ABCD 是矩形,且该四棱锥的所有顶点都在球O 的球面上,P A ⊥平面ABCD , 22,PA AB BC === ,点E 在棱PB 上,且2EB PE =, 过E 作球O 的截面,则所得截面面积的最小值是____________. 例2.(2022·湖北省红安县第一中学高三阶段练习)球体在工业领域有广泛的应用,某零件由两个球体构成,球1O 的半径为10,,P Q 为球1O 表面上两动点,16,PQ M =为线段PQ 的中点.半径为2的球2O 在球1O 的内壁滚动,点,,A B C 在球2O 表面上,点2O 在截面ABC 上的投影H 恰为AC 的中点,若21O H =,则三棱锥M ABC -体积的最大值是___________. 例3.(2022·江西·高三阶段练习(理))如图,正方体1111ABCD A B C D -的棱长为6,11113C E CD =,点F 是CD 的中点,则过1B ,E ,F 三点的平面α截该正方体所得截面的面积为_________.例4.(2022·北京市十一学校高三阶段练习)如图,在棱长为2的正方体1111ABCD A B C D -中,,M N 分别是棱1111,A B A D 的中点,点P 在线段CM 上运动,给出下列四个结论:①平面CMN 截正方体1111ABCD A B C D -所得的截面图形是五边形; ②直线11B D 到平面CMN 2; ③存在点P ,使得1190B PD ∠=; ④1PDD △45. 其中所有正确结论的序号是__________.核心考点二:体积、面积、周长、角度、距离定值问题 【规律方法】几类空间几何体体积的求法(1)对于规则几何体,可直接利用公式计算.(2)对于不规则几何体,可采用割补法求解;对于某些三棱锥, 有时可采用等体积转换法求解.(3)锥体体积公式为13V Sh =,在求解锥体体积时,不能漏掉【典型例题】例5.(2022·河南省实验中学高一期中)如图,在正方体1111ABCD A B C D -中,2AB =,M ,N 分别为11A D ,11B C 的中点,E ,F 分别为棱AB ,CD 上的动点,则三棱锥M NEF -的体积( )A .存在最大值,最大值为83B .存在最小值,最小值为23C .为定值43D .不确定,与E ,F 的位置有关例6.(2022·山西运城·模拟预测(文))如图,正方体1111ABCD A B C D -的棱长为1,线段1CD 上有两个动点E ,F ,且12EF =,点P ,Q 分别为111A B BB ,的中点,G 在侧面11CDD C 上运动,且满足1B G ∥平面1CD PQ ,以下命题错误的是( )A .1AB EF ⊥B .多面体1AEFB 的体积为定值C .侧面11CDD C 上存在点G ,使得1B G CD ⊥ D .直线1B G 与直线BC 所成的角可能为6π例7.(2022·全国·高三专题练习)如图所示,在正方体1111ABCD A B C D -中,过对角线1BD 的一个平面交1AA 于E ,交1CC 于F ,给出下面几个命题:①四边形1BFD E 一定是平行四边形; ②四边形1BFD E 有可能是正方形;③平面1BFD E 有可能垂直于平面1BB D ;④设1D F 与DC 的延长线交于M ,1D E 与DA 的延长线交于N ,则M 、N 、B 三点共线; ⑤四棱锥11B BFD E -的体积为定值. 以上命题中真命题的个数为( ) A .2B .3C .4D .5核心考点三:体积、面积、周长、距离最值与范围问题 【规律方法】几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值【典型例题】例8.(2022·全国·高三专题练习)如图,正方形EFGH 的中心为正方形ABCD 的中心,22AB =P EFGH -(A ,B ,C ,D 四点重合于点P ),则此四棱锥的体积的最大值为( )A 1286B 1285C .43D 15例9.(2022·江西南昌·三模(理))已知长方体1111ABCD A B C D -中,2AB =,22BC =13AA =,P 为矩形1111D C B A 内一动点,设二面角P AD C --为α,直线PB 与平面ABCD 所成的角为β,若αβ=,则三棱锥11P A BC -体积的最小值是( ) A 2 B .321C 2D 32例10.(2022·浙江·高三阶段练习)如图,在四棱锥Q EFGH -中,底面是边长为22方形,4QE QF QG QH ====,M 为QG 的中点.过EM 作截面将此四棱锥分成上、下两部分,记上、下两部分的体积分别为1V ,2V ,则12V V 的最小值为( )A .12 B .13C .14D .15例11.(2022·河南省实验中学高一期中)如图,在正方体1111ABCD A B C D -中,2AB =,M ,N 分别为11A D ,11B C 的中点,E ,F 分别为棱AB ,CD 上的动点,则三棱锥M NEF -的体积( )A .存在最大值,最大值为83B .存在最小值,最小值为23C .为定值43D .不确定,与E ,F 的位置有关核心考点四:立体几何中的交线问题 【规律方法】 几何法 【典型例题】例12.(2022·浙江宁波·一模)在棱长均相等的四面体ABCD 中,P 为棱AD (不含端点)上的动点,过点A 的平面α与平面PBC 平行.若平面α与平面ABD ,平面ACD 的交线分别为m ,n ,则m ,n 所成角的正弦值的最大值为__________.例13.(2022·全国·高三专题练习)已知一个正四面体的棱长为2,则其外接球与以其一个顶点为球心,1为半径的球面所形成的交线的长度为___________.例14.(2022·福建福州·三模)已知正方体1111ABCD A B C D -31A 为球心,半径为2的球面与底面ABCD 的交线的长度为___________.例15.(2022·陕西·武功县普集高级中学高三阶段练习(理))如图,在四面体ABCD 中,DA ,DB ,DC 两两垂直,2DA DB DC ===D 为球心,1为半径作球,则该球的球面与四面体ABCD 各面交线的长度和为___.核心考点五:空间线段以及线段之和最值问题 【规律方法】几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值【典型例题】例16.(2022·全国·高三专题练习)已知正三棱锥S ABC -2,外接球表面积为3π,2SA <点M ,N 分别是线段AB ,AC 的中点,点P ,Q 分别是线段SN 和平面SCM 上的动点,则AP PQ +的最小值为( ) A 262-B 62+C 32D 2例17.(2022·全国·高三专题练习)在棱长为3的正方体1111ABCD A B C D -中,点E 满足112A E EB =,点F 在平面1BC D 内,则1A F EF +的最小值为( )A 29B .6C 41D .7例18.(2022·全国·高三专题练习)如图所示,在直三棱柱111ABC A B C -中,11AA =,3AB BC ==1cos 3ABC ∠=,P 是1A B 上的一动点,则1AP PC +的最小值为( )A 5B 7C .13+D .3核心考点六:空间角问题 【规律方法】1、用综合法求空间角的基本数学思想主要是转化与化归,即把空间角转化为平面角,进而转化为三角形的内角,然后通过解三角形求得.求解的一般步骤为:(1)作图:作出空间角的平面角.(2)证明:证明所给图形是符合题设要求的. (3)计算:在证明的基础上计算得出结果. 简称:一作、二证、三算.2、用定义作异面直线所成角的方法是“平移转化法”,可固定一条,平移另一条;或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.3、求直线与平面所成角的常见方法(1)作角法:作出斜线、垂线、斜线在平面上的射影组成的直角三角形,根据条件求出斜线与射影所成的角即为所求.(2)等积法:公式θ=sin hl,其中θ是斜线与平面所成的角,h 是垂线段的长,是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可构造三棱锥,利用等体积法来求垂线段的长.(3)证垂法:通过证明线面垂直得到线面角为90°. 4、作二面角的平面角常有三种方法(1)棱上一点双垂线法:在棱上任取一点,过这点分别在两个面内作垂直于棱的射线,这两条射线所成的角,就是二面角的平面角.(2)面上一点三垂线法:自二面角的一个面上一点向另一面引垂线,再由垂足向棱作垂线得到棱上的点(即垂足),斜足与面上一点连线和斜足与垂足连线所夹的角,即为二面角的平面角.(3)空间一点垂面法:自空间一点作与棱垂直的平面,截二面角得两条射线,这两条射线所成的角就是二面角的平面角.【典型例题】例19.(2022·浙江金华·高三期末)已知正方体1111ABCD A B C D -中,P 为1ACD △内一点,且1113PB D ACD S S =△△,设直线PD 与11A C 所成的角为θ,则cos θ的取值范围为( )A .3⎡⎢⎣⎦B .3⎡⎤⎢⎥⎣⎦C .10,2⎡⎤⎢⎥⎣⎦D .1,12⎡⎤⎢⎥⎣⎦例20.(2022·浙江·效实中学模拟预测)在等腰梯形ABCD 中,AD BC ∥,12AB AD CD BC ===,AC 交BD 于O 点,ABD △沿着直线BD 翻折成1A BD ,所成二面角1A BD C --的大小为θ,则下列选项中错误的是( )A .1A BC θ∠≤B .1AOC θ∠≥ C .1A DC θ∠≤D .11A BC A DC θ∠+∠≥例21.(2022·浙江·湖州中学高三阶段练习)如图,ABC 中,90C ∠=︒,1AC =,3BC =D 为AB 边上的中点,点M 在线段BD (不含端点)上,将BCM 沿CM 向上折起至'B CM △,设平面'B CM 与平面ACM 所成锐二面角为α,直线'MB 与平面AMC 所成角为β,直线MC 与平面'B CA 所成角为γ,则在翻折过程中,下列三个命题中正确的是( )①3tan βα,②γβ≤,③γα>. A .①B .①②C .②③D .①③例22.(2022·浙江·高三专题练习)已知等边ABC ,点,E F 分别是边,AB AC 上的动点,且满足EF BC ∥,将AEF △沿着EF 翻折至P 点处,如图所示,记二面角P EF B --的平面角为α,二面角P FC B --的平面角为β,直线PF 与平面EFCB 所成角为γ,则( )A .αβγ≥≥B .αγβ≥≥C .βαγ≥≥D .βγα≥≥例23.(2022·全国·高三专题练习)设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P AC B --的平面角是γ则三个角α,β,γ中最小的角是( ) A .αB .βC .γD .不能确定核心考点七:轨迹问题 【规律方法】解决立体几何中的轨迹问题有两种方法:一是几何法.对于轨迹为几何体的问题,要抓住几何体中的不变量,借助空间几何体(柱、锥、台、球)的定义;对于轨迹为平面上的问题,要利用降维的思想,熟悉平面图形(直线、圆、圆锥曲线)的定义.二是代数法(解析法).在图形中,建立恰当的空间直角坐标系或平面直角坐标系.【典型例题】例24.(2022·北京·昌平一中高三阶段练习)设正方体1111ABCD A B C D -的棱长为1,E ,F 分别为AB ,1BD 的中点,点M 在正方体的表面上运动,且满足FM DE ⊥,则下列命题:①点M 可以是棱AD 的中点; ②点M 的轨迹是菱形; ③点M 轨迹的长度为25 ④点M 5. 其中正确的命题个数为( ) A .1B .2C .3D .4例25.(2022·全国·高三专题练习)已知正方体1111ABCD A B C D -的边长为2,点E ,F 分别为棱CD ,1DD 的中点,点P 为四边形11CDD C 内(包括边界)的一动点,且满足1B P ∥平面BEF ,则点P 的轨迹长为( ) A 2B .2C 2D .1例26.(2022·全国·模拟预测(理))如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,P A ⊥平面ABCD ,且2PA =,点E ,F ,G 分别为棱AB ,AD ,PC 的中点,下列说法错误的是( )A .AG ⊥平面PBDB .直线FG 和直线AC 所成的角为π3C .过点E ,F ,G 的平面截四棱锥P ABCD -所得的截面为五边形D .当点T 在平面ABCD 内运动,且满足AGT △的面积为12时,动点T 的轨迹是圆例27.(2022·浙江温州·高三开学考试)如图,正方体1AC ,P 为平面11B BD 内一动点,设二面角11A BD P --的大小为α,直线1A P 与平面11BD A 所成角的大小为β.若cos sin βα=,则点P 的轨迹是( )A .圆B .抛物线C .椭圆D .双曲线例28.(2022·全国·高三专题练习)如图,正方体ABCD A B C D -''''中,M 为BC 边的中点,点P 在底面A B C D ''''和侧面CDD C ''上运动并且使MAC PAC ''∠=∠,那么点P 的轨迹是( )A .两段圆弧B .两段椭圆弧C .两段双曲线弧D .两段抛物线弧核心考点八:以立体几何为载体的情境题 【规律方法】以立体几何为载体的情境题都跟图形有关,涉及在具体情境下的图形阅读,需要通过数形结合来解决问题.图形怎么阅读?一是要读特征,即从图形中读出图形的基本特征;二是要读本质,即要善于将所读出的信息进行提升,实现“图形→文字→符号”的转化;三是要有问题意识,带着问题阅读图形,将研究图形的本身特征和关注题目要解决的问题有机地融合在一起;四是要有运动观点,要“动手”去操作,动态地去阅读图形.【典型例题】例29.(2022·宁夏·平罗中学高三阶段练习(理))设P 为多面体M 的一个顶点,定义多面体M 在P 处的离散曲率为()()1223111 1.2,3,32k i Q PQ Q PQ Q PQ Q i k π-∠+∠+⋯+∠=⋯≥其中,为多面体M 的所有与点P 相邻的顶点,且平面12Q PQ ,23Q PQ ,……,1k Q PQ 遍及多面体M 的所有以P 为公共点的面如图是正四面体、正八面体、正十二面体和正二十面体,若它们在各顶点处的离散曲率分别是a ,b ,c ,d ,则a ,b ,c ,d 的大小关系是( )A .a b c d >>>B .a b d c >>>C .b a d c >>>D .c d b a >>>例30.(2022·广东·广州市从化区第三中学高三阶段练习)北京大兴国际机场的显著特点之一是各种弯曲空间的运用,在数学上用曲率刻画空间弯曲性.规定:多面体的顶点的曲率等于2π与多面体在该点的面角之和的差(多面体的面的内角叫做多面体的面角,角度用弧度制),多面体面上非顶点的曲率均为零,多面体的总曲率等于该多面体各顶点的曲率之和.例如:正四面体在每个顶点有3个面角,每个面角是3π,所以正四面体在每个顶点的曲率为233πππ-⨯=,故其总曲率为4π.给出下列三个结论:①正方体在每个顶点的曲率均为2π; ②任意四棱锥的总曲率均为4π;③若某类多面体的顶点数V ,棱数E ,面数F 满足2V E F -+=,则该类多面体的总曲率是常数.其中,所有正确结论的序号是( ) A .①②B .①③C .②③D .①②③例31.(2022·辽宁·沈阳二十中三模)我国南北朝时期的著名数学家祖暅原提出了祖暅原理:“幂势既同,则积不容异.”意思是,夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意一个平面所截,若截面面积都相等,则这两个几何体的体积相等.运用祖暅原理计算球的体积时,构造一个底面半径和高都与球的半径相等的圆柱,与半球(如图①)放置在同一平面上,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥后得到一新几何体(如图②),用任何一个平行于底面的平面去截它们时,可证得所截得的两个截面面积相等,由此可证明新几何体与半球体积相等,即2311122323V R R R R R πππ=⋅-⋅=球.现将椭圆22149x y +=绕y 轴旋转一周后得一橄榄状的几何体(如图③),类比上述方法,运用祖暅原理可求得其体积等于( )A .32πB .24πC .18πD .16π例32.(2022·全国·高三专题练习)将地球近似看作球体.设地球表面某地正午太阳高度角为θ,δ为此时太阳直射纬度(当地夏半年取正值,冬半年取负值),ϕ为该地的纬度值,如图.已知太阳每年直射范围在南北回归线之间,即[]2326,2326δ''∈-︒︒.北京天安门广场的汉白玉华表高为9.57米,北京天安门广场的纬度为北纬395427'''︒,若某天的正午时刻,测得华表的影长恰好为9.57米,则该天的太阳直射纬度为( )A .北纬5527'''︒B .南纬5527'''︒C .北纬5533'''︒D .南纬5533'''︒核心考点九:翻折问题 【规律方法】1、处理图形翻折问题的关键是理清翻折前后长度和角度哪些发生改变,哪些保持不变.2、把空间几何问题转化为平面几何问题,把握图形之间的关系,感悟数学本质. 【典型例题】例33.(2022·全国·高三专题练习)如图,已知四边形ABCD ,BCD △是以BD 为斜边的等腰直角三角形,ABD △为等边三角形,2BD =,将ABD △沿对角线BD 翻折到PBD △在翻折的过程中,下列结论中不正确...的是( )A .BD PC ⊥B .DP 与BC 可能垂直C .直线DP 与平面BCD 所成角的最大值是45︒D .四面体PBCD 3例34.(2022·浙江·杭州高级中学模拟预测)如图,已知矩形ABCD 的对角线交于点,,1E AB x BC ==,将ABD △沿BD 翻折,若在翻折过程中存在某个位置,使得ABCE ,则x 的取值范围是( )A .03x <≤B .02x <≤C .01x <≤D .06x ≤<例35.(2022·全国·高三专题练习)如图1,在正方形ABCD 中,点E 为线段BC 上的动点(不含端点),将ABE 沿AE 翻折,使得二面角B AE D --为直二面角,得到图2所示的四棱锥B AECD -,点F 为线段BD 上的动点(不含端点),则在四棱锥B AECD -中,下列说法正确的是( )A .B 、E 、C 、F 四点一定共面 B .存在点F ,使得CF ∥平面BAEC .侧面BEC 与侧面BAD 的交线与直线AD 相交 D .三棱锥B ADC -的体积为定值例36.(2022·全国·高三专题练习)已知直角梯形ABCD 满足:AD ∥BC ,CD ⊥DA ,且△ABC 为正三角形.将△ADC 沿着直线AC 翻折至△AD 'C 如图,且AD BD CD '''<<,二面角D AB C '﹣﹣、D BC A '﹣﹣、D AC B '﹣﹣的平面角大小分别为α,β,γ,直线D A ',D B ',D C '与平面ABC 所成角分别是θ1,θ2,θ3,则( )A .123θθθαγβ>>,>>B .123θθθαβγ<<,>>C .123θθθαβγ>>,<<D .123θθθαβγ<<,<<【新题速递】1.(2022·安徽·高三阶段练习)如图,在棱长为a 的正四面体ABCD 中,点111,,B C D 分别在棱,,AB AC AD 上,且平面111B C D 平面1,BCD A 为BCD △内一点,记三棱锥1111A B C D -的体积为V ,设1AD x AD=,关于函数()V f x =,下列说法正确的是( )A .12220,,,133x x ⎛⎫⎛⎫∀∈∃∈ ⎪ ⎪⎝⎭⎝⎭,使得()()21f x f x =B .函数()f x 在1,12⎛⎫⎪⎝⎭上是减函数C .函数()f x 的图象关于直线12x =对称 D .()00,1x ∃∈,使得()016A BCD f x V ->(其中A BCD V -为四面体ABCD 的体积)2.(2022·重庆市长寿中学校高三阶段练习)如图所示,在直角梯形BCEF 中,90,CBF BCE A ∠∠==、D 分别是BF 、CE 上的点,//AD BC ,且22AB DE BC AF ===(如图1).将四边形ADEF 沿AD 折起,连接BE BF CE 、、(如图2).在折起的过程中,下列说法中错误的个数是( )①AC //平面BEF ; ②B C E F 、、、四点不可能共面;③若EF CF ⊥,则平面ADEF ⊥平面ABCD ; ④平面BCE 与平面BEF 可能垂直. A .1B .2C .3D .43.(2022·四川·成都市第二十中学校一模(理))如图, 在棱长为 2 的正方体1111ABCD A B C D -中,E F G H P 、、、、均为所在棱的中点, 则下列结论正确的有( )①棱 AB 上一定存在点Q , 使得1QC D Q ⊥ ②三棱锥F EPH -的外接球的表面积为8π③过点 E F G ,,作正方体的截面, 则截面面积为33④设点 M 在平面11BB C C 内, 且1//A M 平面AGH , 则1A M 与AB 所成角的余弦值的最大22A .1 个B .2 个C .3 个D .4 个4.(2022·四川·成都市锦江区嘉祥外国语高级中学有限责任公司模拟预测(文))在棱长为2的正方体1111ABCD A B C D -中,N 为11B C 的中点,点P 在正方体各棱及表面上运动且满足AP CN ⊥,则点P 轨迹所围成图形的面积为( )A .25B .42C .23D .45.(2022·上海市实验学校高三阶段练习)直线m ⊥平面α,垂足是O ,正四面体ABCD 的棱长为4,点C 在平面α上运动,点B 在直线m 上运动,则点O 到直线AD 的距离的取值范围是( )A .425425⎡-+⎢⎣⎦B .222,222⎡⎤⎣⎦C .322322⎡-+⎢⎣⎦D .322,322⎡⎤⎣⎦6.(2022·湖南·模拟预测)正三棱柱111ABC A B C 的底面边长是4,侧棱长是6,M ,N 分别为1BB ,1CC 的中点,若点P 是三棱柱内(含棱柱的表面)的动点,MP ∥平面1AB N ,则动点P 的轨迹面积为( ) A .53B .5C 39D 267.(2022·山西·高三阶段练习)已知正方体1111ABCD A B C D -的顶点都在表面积为12π的球面上,过球心O 的平面截正方体所得的截面为一菱形,记该菱形截面为S ,点P 是正方体表面上一点,则以截面S 为底面,以点P 为顶点的四棱锥的体积的最大值为( ) A .83B .73C .2D .538.(2022·浙江·高三阶段练习)在OAB △中,OA AB =,120OAB ∠=︒.若空间点P 满足1=2PABOABSS ,则直线OP 与平面OAB 所成角的正切的最大值是( )A .13B .12C 3D .19.(多选题)(2022·云南曲靖·高三阶段练习)已知正方体1111ABCD A B C D -的棱长为1,点P 为侧面11BCC B 内一点,则( )A .当1113C P C B =时,异面直线CP 与AD 所成角的正切值为2B .当11(01)C P C B λλ=<<时,四面体1D ACP 的体积为定值C .当点P 到平面ABCD 的距离等于到直线11A B 的距离时,点P 的轨迹为拋物线的一部分 D .当1112C P C B =时,四面体BCDP 的外接球的表面积为3π10.(多选题)(2022·辽宁·本溪高中高三阶段练习)如图,矩形BDEF 所在平面与正方形ABCD 所在平面互相垂直,2AD DE ==,G 为线段AE 上的动点,则( )A .AE CF ⊥B .多面体ABCDEF 的体积为83C .若G 为线段AE 的中点,则GB //平面CEFD .点M ,N 分别为线段AF ,AC 上的动点,点T 在平面BCF 内,则MT NT +43 11.(多选题)(2022·广东·东涌中学高三期中)如图,已知正方体1111ABCD A B C D -的棱长为1,E ,F ,G 分别为AB ,AD ,1BB 的中点,点P 在11A C 上,//AP 平面EFG ,则以下说法正确的是( )A .点P 为11A C 的中点B .三棱锥P EFG -的体积为148C .直线1BB 与平面EFG 3D .过点E 、F 、G 作正方体的截面,所得截面的面积是3312.(多选题)(2022·安徽·阜阳师范大学附属中学高三阶段练习)已知ABC 为等腰直角三角形,AB AC =,其高3AD =,E 为线段BD 的中点,将ABC 沿AD 折成大小为32ππθθ⎛⎫< ⎪⎝⎭的二面角,连接BC ,形成四面体A BCD -,动点P 在ACD 内(含边界),且//PE 平面ABC ,则在θ变化的过程中( )A .AD BC ⊥B .E 点到平面ADC 的距离的最大值为322C .点P 在ADC △2D .当BP AC ⊥时,BP 与平面ADC 所成角的正切值的取值范围为)22,⎡+∞⎣13.(多选题)(2022·江苏省泰兴中学高三阶段练习)棱长为1的正方体1111ABCD A B C D -内部有一圆柱12O O ,此圆柱恰好以直线1AC 为轴,且圆柱上下底面分别与正方体中以1A C ,为公共点的3个面都有一个公共点,以下命题正确的是( )A .在正方体1111ABCD ABCD -内作与圆柱12O O 3B .无论点1O 在线段1AC 上如何移动,都有11BO B C ⊥C .圆柱12O O 的母线与正方体1111ABCD A B C D -所有的棱所成的角都相等D .圆柱12O O 外接球体积的最小值为π6 14.(多选题)(2022·江苏盐城·高三阶段练习)已知正四面体ABCD 的棱长为2球的球心为O .点E 满足(01)AE AB λλ=<<,(01)CF CD μμ=<<,过点E 作平面α平行于AC 和BD ,平面α分别与该正四面体的棱BC ,CD ,AD 相交于点M ,G ,H ,则( )A .四边形EMGH 的周长为是变化的B .四棱锥A EMGH -的体积的最大值为6481 C .当14λ=时,平面α截球O 47 D .当12λμ==时,将正四面体ABCD 绕EF 旋转90︒后与原四面体的公共部分体积为43 15.(2022·安徽·石室中学高三阶段练习)已知三棱锥V ABC -的高为3D E F ,,,分别为VC VA VB ,,的中点,若平面ABD ,平面BCE ,平面ACF 相交于O 点,则O 到平面ABC 的距离h 为___________.16.(2022·北京八十中高三期末)如图,在正方体ABCD —1111D C B A 中,E 为棱11B C 的中点.动点P 沿着棱DC 从点D 向点C 移动,对于下列四个结论:。

立体几何7大题型汇编

立体几何7大题型汇编

立体几何立体几何是高考数学的必考内容,在大题中一般分两问,第一问考查空间直线与平面的位置关系证明;第二问考查空间角、空间距离等的求解。

考题难度中等,常结合空间向量知识进行考查。

2024年高考有很大可能延续往年的出题方式。

题型一:空间异面直线夹角的求解1(2023·上海长宁·统考一模)如图,在三棱锥A-BCD中,平面ABD⊥平面BCD,AB=AD,O为BD的中点.(1)求证:AO⊥CD;(2)若BD⊥DC,BD=DC,AO=BO,求异面直线BC与AD所成的角的大小.【思路分析】(1)利用面面垂直的性质、线面垂直的性质推理即得.(2)分别取AB,AC的中点M,N,利用几何法求出异面直线BC与AD所成的角.【规范解答】(1)在三棱锥A-BCD中,由AB=AD,O为BD的中点,得AO⊥BD,而平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AO⊂平面ABD,因此AO⊥平面BCD,又CD⊂平面BCD,所以AO⊥CD.(2)分别取AB,AC的中点M,N,连接OM,ON,MN,于是MN⎳BC,OM⎳AD,则∠OMN是异面直线BC与AD所成的角或其补角,由(1)知,AO ⊥BD ,又AO =BO ,AB =AD ,则∠ADB =∠ABD =π4,于是∠BAD =π2,令AB =AD =2,则DC =BD =22,又BD ⊥DC ,则有BC =BD 2+DC 2=4,OC =DC 2+OD 2=10,又AO ⊥平面BCD ,OC ⊂平面BCD ,则AO ⊥OC ,AO =2,AC =AO 2+OC 2=23,由M ,N 分别为AB ,AC 的中点,得MN =12BC =2,OM =12AD =1,ON =12AC =3,显然MN 2=4=OM 2+ON 2,即有∠MON =π2,cos ∠OMN =OM MN =12,则∠OMN =π3,所以异面直线BC 与AD 所成的角的大小π3.1、求异面直线所成角一般步骤:(1)平移:选择适当的点,线段的中点或端点,平移异面直线中的一条或两条成为相交直线.(2)证明:证明所作的角是异面直线所成的角.(3)寻找:在立体图形中,寻找或作出含有此角的三角形,并解之.(4)取舍:因为异面直线所成角θ的取值范围是0,π2,所以所作的角为钝角时,应取它的补角作为异面直线所成的角.2、可通过多种方法平移产生,主要有三种方法:(1)直接平移法(可利用图中已有的平行线);(2)中位线平移法;(3)补形平移法(在已知图形中,补作一个相同的几何体,以便找到平行线).3、异面直线所成角:若n 1 ,n 2分别为直线l 1,l 2的方向向量,θ为直线l 1,l 2的夹角,则cos θ=cos <n 1 ,n 2 > =n 1 ⋅n 2n 1 n 2.1(2023·江西萍乡·高三统考期中)如图,在正四棱台ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,CD 的中点.(1)证明:EF ⎳平面AB1C 1D ;(2)若AB =2A 1B 1,且正四棱台的侧面积为9,其内切球半径为22,O 为ABCD 的中心,求异面直线OB 1与CC 1所成角的余弦值.【答案】(1)证明见解析;(2)45【分析】(1)根据中位线定理,结合线面平行判定定理以及面面平行判定定理,利用面面平行的性质,可得答案;(2)根据题意,结合正四棱台的几何性质,求得各棱长,利用线线角的定义,可得答案.【解析】(1)取CC 1中点G ,连接GE ,GF ,如下图:在梯形BB 1C 1C 中,E ,G 分别为BB 1,CC 1的中点,则EG ⎳B 1C 1,同理可得FG ⎳C 1D ,因为EG ⊄平面AB 1C 1D ,B 1C 1⊂平面AB 1C 1D ,所以EG ⎳平面AB 1C 1D ,同理可得GF ⎳平面AB 1C 1D ,因为EG ∩FG =G ,EG ,FG ⊆平面EFG ,所以平面EFG ⎳平面AB 1C 1D ,又因为EF ⊆平面EFG ,所以EF ⎳平面AB 1C 1D ;(2)连接AC ,BD ,则AC ∩BD =O ,连接A 1O ,A 1C 1,B 1O ,在平面BB 1C 1C 中,作B 1N ⊥BC 交BC 于N ,在平面BB 1D 1D 中,作B 1M ⊥BD 交BD 于M ,连接MN ,如下图:因为AB =2A 1B 1,则OC =A 1C 1,且OC ⎳A 1C 1,所以A 1C 1CO 为平行四边形,则A 1O ⎳CC 1,且A 1O =CC 1,所以∠A 1OB 1为异面直线OB 1与CC 1所成角或其补角,同理可得:B 1D 1DO 为平行四边形,则B 1O =D 1D ,在正四棱台ABCD -A 1B 1C 1D 1中,易知对角面BB 1D 1D ⊥底面ABCD ,因为平面ABCD ∩平面BB 1D 1D =BD ,且B 1M ⊥BD ,B 1M ⊂平面BB 1D 1D ,所以B 1M ⊥平面ABCD ,由内切球的半径为22,则B 1M =2,在等腰梯形BB 1C 1C 中,BC =2B 1C 1且B 1N ⊥BC ,易知BN =14BC ,同理可得BM =14BD ,在△BCD 中,BN BC=BM BD =14,则MN =14CD ,设正方形ABCD 的边长为4x x >0 ,则正方形A 1B 1C 1D 1的边长为2x ,MN =x ,由正四棱台的侧面积为9,则等腰梯形BB 1C 1C 的面积S =94,因为B 1M ⊥平面ABCD ,MN ⊂平面ABCD ,所以B 1M ⊥MN ,在Rt △B 1MN ,B 1N =B 1M 2+MN 2=2+x 2,可得S =12⋅B 1N ⋅B 1C 1+BC ,则94=12×2+x 2×4x +2x ,解得x =12,所以BC =2,B 1C 1=1,BN =14BC =12,B 1N =32,则A 1B 1=1,在Rt △BB 1N 中,BB 1=B 1N 2+BN 2=102,则CC 1=DD 1=102,所以在△A 1OB 1中,则cos ∠A 1OB 1=A 1O 2+B 1O 2-A 1B 212⋅A 1O ⋅B 1O=1022+102 2-12×102×102=45,所以异面直线OB 1与CC 1所成角的余弦值为45.2(2023·辽宁丹东·统考二模)如图,平行六面体ABCD -A 1B 1C 1D 1的所有棱长都相等,平面CDD 1C 1⊥平面ABCD ,AD ⊥DC ,二面角D 1-AD -C 的大小为120°,E 为棱C 1D 1的中点.(1)证明:CD ⊥AE ;(2)点F 在棱CC 1上,AE ⎳平面BDF ,求直线AE 与DF 所成角的余弦值.【答案】(1)证明见解析;(2)37【分析】(1)根据面面垂直可得线面垂直进而得线线垂直,由二面角定义可得∠D 1DC =120°,进而根据中点得线线垂直即可求;(2)由线面平行的性质可得线线平行,由线线角的几何法可利用三角形的边角关系求解,或者建立空间直角坐标系,利用向量的夹角即可求解.【解析】(1)因为平面CDD 1C 1⊥平面ABCD ,且两平面交线为DC ,AD ⊥DC ,AD ⊂平面ABCD , 所以AD ⊥平面CDD 1C 1,所以AD ⊥D 1D ,AD ⊥DC ,∠D 1DC 是二面角D 1-AD -C 的平面角,故∠D 1DC =120°.连接DE ,E 为棱C 1D 1的中点,则DE ⊥C 1D 1,C 1D 1⎳CD ,从而DE ⊥CD .又AD ⊥CD ,DE ∩AD =D ,DE ,AD ⊂平面AED ,所以CD ⊥平面AED ,ED ⊂平面AED ,因此CD ⊥AE .(2)解法1:设AB =2,则DE =D 1D 2-12D 1C 1 2=3,所以CE =AE =AD 2+DE 2=7.连AC 交BD 于点O ,连接CE 交DF 于点G ,连OG .因为AE ⎳平面BDF ,AE ⊂平面AEC ,平面AEC ∩平面BDF =OG ,所以AE ∥OG ,因为O 为AC 中点,所以G 为CE 中点,故OG =12AE =72.且直线OG 与DF 所成角等于直线AE 与DF 所成角.在Rt △EDC 中,DG =12CE =72,因为OD =2,所以cos ∠OGD =722+72 2-(2)22×72×72=37.因此直线AE 与DF 所成角的余弦值为37.解法2;设AB =2,则DE =D 1D 2-12D 1C 1 2=3,所以CE =AE =AD 2+DE 2=7.取DC 中点为G ,连接EG 交DF 于点H ,则EG =DD 1=2.连接AG 交BD 于点I ,连HI ,因为AE ⎳平面BDF ,AE ⊂平面AGE ,平面AGE ∩平面BDF =IH ,所以AE ∥IH .HI 与DH 所成角等于直线AE 与DF 所成角.正方形ABCD 中,GI =13AG ,DI =13DB =223,所以GH =13EG ,故HI =13AE =73.在△DHG 中,GH =13EG =23,GD =1,∠EGD =60°,由余弦定理DH =1+49-1×23=73.在△DHI 中,cos ∠DHI =732+73 2-223 22×73×73=37.因此直线AE 与DF 所成角的余弦值为37.解法3:由(1)知DE ⊥平面ABCD ,以D 为坐标原点,DA为x 轴正方向,DA为2个单位长,建立如图所示的空间直角坐标系D -xyz .由(1)知DE =3,得A 2,0,0 ,B 2,2,0 ,C 0,2,0 ,E (0,0,3),C 1(0,1,3).则CC 1=(0,-1,3),DC =(0,2,0),AE =(-2,0,3),DB =(2,2,0).由CF =tCC 1 0≤t ≤1 ,得DF =DC +CF =(0,2-t ,3t ).因为AE ⎳平面BDF ,所以存在唯一的λ,μ∈R ,使得AE =λDB +μDF=λ2,2,0 +μ(0,2-t ,3t )=2λ,2λ+2μ-tμ,3μt ,故2λ=-2,2λ+2μ-tμ=0,3μt =3,解得t =23,从而DF =0,43,233 .所以直线AE 与DF 所成角的余弦值为cos AE ,DF =AE ⋅DF|AE ||DF |=37.题型二:空间直线与平面夹角的求解2(2024·安徽合肥·统考一模)如图,三棱柱ABC -A 1B 1C 1中,四边形ACC 1A 1,BCC 1B 1均为正方形,D ,E 分别是棱AB ,A 1B 1的中点,N 为C 1E 上一点.(1)证明:BN ⎳平面A 1DC ;(2)若AB =AC ,C 1E =3C 1N,求直线DN 与平面A 1DC 所成角的正弦值.【思路分析】(1)连接BE ,BC 1,DE ,则有平面BEC 1⎳平面A 1DC ,可得BN ⎳平面A 1DC ;(2)建立空间直角坐标系,利用空间向量进行计算即可.【规范解答】(1)连接BE ,BC 1,DE .因为AB ⎳A 1B 1,且AB =A 1B 1,又D ,E 分别是棱AB ,A 1B 1的中点,所以BD ⎳A 1E ,且BD =A 1E ,所以四边形BDA 1E 为平行四边形,所以A 1D ⎳EB ,又A 1D ⊂平面A 1DC ,EB ⊄平面A 1DC ,所以EB ⎳平面A 1DC ,因为DE ⎳BB 1⎳CC 1,且DE =BB 1=CC 1,所以四边形DCC 1E 为平行四边形,所以C 1E ⎳CD ,又CD ⊂平面A 1DC ,C 1E ⊄平面A 1DC ,所以C 1E ⎳平面A 1DC ,因为C 1E ∩EB =E ,C 1E ,EB ⊂平面BEC 1,所以平面BEC 1⎳平面A 1DC ,因为BN ⊂平面BEC 1,所以BN ⎳平面A 1DC .(2)四边形ACC 1A 1,BCC 1B 1均为正方形,所以CC 1⊥AC ,CC 1⊥BC ,所以CC 1⊥平面ABC .因为DE ⎳CC 1,所以DE ⊥平面ABC ,从而DE ⊥DB ,DE ⊥DC .又AB =AC ,所以△ABC 为等边三角形.因为D 是棱AB 的中点,所以CD ⊥DB ,即DB ,DC ,DE 两两垂直.以D 为原点,DB ,DC ,DE 所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系D -xyz .设AB =23,则D 0,0,0 ,E 0,0,23 ,C 0,3,0 ,C 10,3,23 ,A 1-3,0,23 ,所以DC =0,3,0 ,DA 1=-3,0,23 .设n=x ,y ,z 为平面A 1DC 的法向量,则n ⋅DC=0n ⋅DA 1 =0,即3y =0-3x +23z =0 ,可取n=2,0,1 .因为C 1E =3C 1N ,所以N 0,2,23 ,DN =0,2,23 .设直线DN 与平面A 1DC 所成角为θ,则sin θ=|cos ‹n ,DN ›|=|n ⋅DN ||n |⋅|DN |=235×4=1510,即直线DN 与平面A 1DC 所成角正弦值为1510.1、垂线法求线面角(也称直接法):(1)先确定斜线与平面,找到线面的交点B 为斜足;找线在面外的一点A ,过点A 向平面α做垂线,确定垂足O ;(2)连结斜足与垂足为斜线AB 在面α上的投影;投影BO 与斜线AB 之间的夹角为线面角;(3)把投影BO 与斜线AB 归到一个三角形中进行求解(可能利用余弦定理或者直角三角形)。

高考数学复习—立体几何:(二)空间直线平面关系判断与证明—平行与垂直关系证明(试题版)

高考数学复习—立体几何:(二)空间直线平面关系判断与证明—平行与垂直关系证明(试题版)

【考点2:空间直线、平面的平行与垂直关系证明】题型1:直线、平面平行的判断及性质【典型例题】[例1]►(1)如图,在四面体P ABC中,点D,E,F,G分别是棱AP,AC,BC,PB的中点.求证:DE∥平面BCP .►(2)(2013福建改编)如图,在四棱锥P-ABCD中,AB∥DC, AB=6,DC=3,若M为P A的中点,求证:DM∥平面PBC . ►(3)如图,在四面体A-BCD中,F,E,H分别是棱AB,BD,AC 的中点,G为DE的中点.证明:直线HG∥平面CEF .[例2]►(1)如图,在三棱柱ABC—A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:①B,C,H,G四点共面;②平面EF A1∥平面BCHG .►(2)如图E、F、G、H分别是正方体ABCD-A1B1C1D1的棱BC、CC1、C1D1、AA1的中点.求证:①EG∥平面BB1D1D;②平面BDF∥平面B1D1H .【变式训练】1.(2014·衡阳质检)在正方体ABCD-A1B1C1D1中,E是DD1的中点,则BD1与平面ACE的位置关系为______.2.如图,四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH.求证:AP∥GH .3.如图,在长方体ABCD-A1B1C1D1中,E,H分别为棱A1B1,D1C1上的点,且EH∥A1D1,过EH的平面与棱BB1,CC1相交,交点分别为F,G,求证:FG∥平面ADD1A1.4.如图,已知ABCD-A1B1C1D1是棱长为3的正方体,点E 在AA1上,点F在CC1上,G在BB1上,且AE=FC1=B1G=1,H是B1C1的中点.(1)求证:E,B,F,D1四点共面;(2)求证:平面A1GH∥平面BED1F .题型2:直线、平面垂直的判断及性质【典型例题】[例1]►(1)如图,在四棱锥P-ABCD中, P A⊥底面ABCD, AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC中点. 证明:①CD⊥AE;②PD⊥平面ABE .►(2)如图所示,在四棱锥P-ABCD中,AB⊥平面P AD,AB∥CD,PD=AD,E是PB的中点,F是DC上的点且DF=12AB,PH为△P AD中AD边上的高.①证明:PH⊥平面ABCD;②证明:EF⊥平面P AB.[例2]►(1)[2014·辽宁文]如图所示,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F,G分别为AC,DC,AD的中点.(I)求证:EF⊥平面BCG;(II)求三棱锥D -BCG的体积.►(2)(2012·课标全国)如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=12AA1,D是棱AA1的中点.(I)证明:平面BDC1⊥平面BDC;(II)平面BDC1分此棱柱为两部分,求这两部分体积的比.►(3)(2015·大庆质检) 如图,四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.①求证:PC⊥BC;②求点A到平面PBC的距离.【变式训练】1.如图,四棱锥P—ABCD中,P A⊥底面ABCD,AB⊥AD,点E 在线段AD上,且CE∥AB. (1)求证:CE⊥平面P AD;(2)若P A=AB=1,AD=3,CD=2,∠CDA=45°,求四棱锥P-ABCD的体积.2.[2014·福建文]如图所示,三棱锥A-BCD中,AB⊥平面BCD,CD⊥BD.(1)求证:CD⊥平面ABD;(2)若AB=BD=CD=1,M为AD中点,求三棱锥A -MBC的体积.3.(2015·唐山统考)如图,在三棱锥P-ABC中,P A=PB=AB =BC,∠PBC=90°,D为AC的中点,AB⊥PD.(1)求证:平面P AB⊥平面ABC;(2)如果三棱锥P-BCD的体积为3,求P A.4.[2014·课标Ⅰ文]如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC-A1B1C1的高.☆题型3:直线、平面平行与垂直关系的综合【典型例题】[例1]►(1)已知l,m是两条不同的直线,α,β是两个不同的平面,下列命题中真命题是(写出序号).①若l⊂α,m⊂α,l∥β,m∥β,则α∥β;②若l⊂α,l∥β,α∩β=m,则l∥m;③若α∥β,l∥α,则l∥β;④若l⊥α,m∥l,α∥β,则m⊥β.►(2)(2014·辽宁)已知m,n表示两条不同直线,α表示平面.下列说法正确的是()A.若m∥α,n∥α,则m∥nB.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α►(3)(2015·江西七校联考)已知直线a和平面α,β,α∩β=l,a⊄α,a⊄β,且a在α,β内的射影分别为直线b和c,则直线b和c的位置关系是()A.相交或平行B.相交或异面C.平行或异面D.相交、平行或异面►(4)(2013·课标Ⅱ)已知m,n为异面直线,m⊥平面α,n⊥平面β,直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则()A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l►(5)(2016·课标Ⅱ)α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有________.(填写所有正确命题的编号) [例2]►(1)(2014·北京)如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别为A1C1,BC的中点.(I)求证:平面ABE⊥平面B1BCC1;(II)求证:C1F∥平面ABE;(III)求三棱锥E-ABC的体积.►(2)[2014江苏文]如图,三棱锥P-ABC中,D,E,F分别为棱PC,AC,AB的中点.已知P A⊥AC,P A=6,BC=8,DF=5. 求证:(I)直线P A∥平面DEF;(II)平面BDE⊥平面ABC.[例3]►(1)[2014·陕西文]四面体ABCD及其三视图如图所示,平行于棱AD,BC的平面分别交四面体的棱AB,BD,DC,CA于点E,F,G,H.(I)求四面体ABCD的体积;(II)证明:四边形EFGH是矩形.►(2)(2012·北京)如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点.将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.(I)求证:DE∥平面A1CB;(II)求证:A1F⊥BE;(III)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.【变式训练】1.(2016·浙江联考)已知a,b,c为三条不同的直线,α,β是空间两个平面,且a⊂α,b⊂β,α∩β=c.给出下列命题:①若a与b是异面直线,则c至少与a,b中的一条相交;②若a不垂直于c,则a与b一定不垂直;③若a∥b,则必有a∥c;④若a⊥b,a⊥c,则必有α⊥β. 其中正确命题的个数是()A.0B.1C.2D.32.(2012·四川)下列命题正确的是()A.若两直线和同一平面所成的角相等,则这两条直线平行B.若一平面内有三点到另一平面的距离相等,则这两平面平行C.若一直线平行于两相交平面,则这条直线与这两平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行3.(2015·福建)若l,m是两条不同的直线,m垂直于平面α,则“l⊥m”是“l∥α”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.(2016·山东济南一模)设m,n是两条不同的直线,α,β是两个不同的平面.()A.若m⊥n,n∥α,则m⊥αB.若m∥β,β⊥α,则m⊥αC.若m⊥β,n⊥β,n⊥α,则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥α5.(2016·浙江温州联考)关于直线a,b,l及平面α,β,下列命题中正确的是()A.若a∥α,b∥α,则a∥bB.若a∥α,b⊥a,则b⊥αC.若a ⊂α,b ⊂α,且l ⊥a ,l ⊥b ,则l ⊥αD.若a ⊥α,a ∥β,则α⊥β 6.(2015·山东二模)设m ,n 是空间两条直线,α,β是空间两个平面,则下列命题中不正确的是( ) A.当n ⊥α时,“n ⊥β”是“α∥β”的充要条件B.当m ⊂α时,“m ⊥β”是“α⊥β”的充分不必要条件C.当m ⊂α时,“n ∥α”是“m ∥n ”的必要不充分条件D.当m ⊂α时,“n ⊥α”是“m ⊥n ”的充分不必要条件 7.(2016·浙江)已知互相垂直的平面α,β交于直线l ,若直线m ,n 满足m ∥α,n ⊥β,则( )A.m ∥lB.m ∥nC.n ⊥lD.m ⊥n 8.(2013北京)如图,四棱锥P -ABCD 中,AB ∥CD ,AB ⊥AD ,CD =2AB ,平面P AD ⊥底面ABCD ,P A ⊥AD .E 和F 分别是CD 和PC 的中点.求证: (1)P A ⊥底面ABCD ; (2)BE ∥平面P AD ;(3)平面BEF ⊥平面PCD .9.[2014·山东文]如图,四棱锥P -ABCD 中,AP ⊥平面PCD , AD ∥BC ,AB =BC=12AD ,E ,F 分别为线段AD ,PC 的中点. (1)求证:AP ∥平面BEF ; (2)求证:BE ⊥平面P AC .10.(2013全国Ⅱ文)如图,直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点.(Ⅰ)证明:BC 1∥平面A 1CD ;(Ⅱ)设AA 1=AC =CB =2,AB =22,求三棱锥C -A 1DE 的体积.11.(2013·辽宁)如图,AB 是圆O 的直径,P A 垂直圆O 所在的平面,C 是圆O 上的点. (1)求证:BC ⊥平面P AC ; (2)设Q 为P A 的中点,G 为△AOC 的重心,求证:QG ∥平面PBC .12.[2014·课标Ⅱ文]如图,四棱锥P -ABCD 中,底面ABCD 为矩形,P A ⊥平面ABCD ,E 为PD 的中点. (1)证明:PB ∥平面AEC ;(2)设AP =1,AD =3,三棱锥P - ABD 的体积V =34,求A到平面PBC 的距离.13.(2015江苏)如图,在直三棱柱ABC -A 1B 1C 1中,已知AC ⊥BC ,BC =CC 1.设AB 1的中点为D ,B 1C ∩BC 1=E . 求证:(1)DE ∥平面AA 1C 1C ; (2)BC 1⊥AB 1.14.(2015广东文)如图,三角形PDC 所在的平面与长方形ABCD 所在的平面垂直,PD =PC =4,AB =6,BC =3. (1)证明:BC ∥平面PDA ; (2)证明:BC ⊥PD ;(3)求点C 到平面PDA 的距离.15.(2015课标Ⅱ)如图,长方体ABCD -A 1B 1C 1D 1中,AB =16, BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由); (2)求平面α把该长方体分成的两部分体积的比值.16.(2015陕西)如图,直角梯形ABCD 中,AD ∥B C,∠BAD =π2, AB =BC =12AD =a ,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到如图2中△A 1BE 的位置,得到四棱锥A 1﹣BCDE . (Ⅰ)证明:CD ⊥平面A 1OC ;(Ⅱ)当平面A 1BE ⊥平面BCDE 时,四棱锥A 1﹣BCDE 的体积为362,求a 的值.17.(2016·课标Ⅱ文)如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E ,F 分别在AD ,CD 上,AE =CF ,EF 交BD 于点H ,将△DEF 沿EF 折到△D ′EF 的位置. (1)证明:AC ⊥HD ′(2)若AB =5,AC =6,AE =54,OD ′=22,求五棱锥D ′­ABCFE 的体积.18.(2016·课标Ⅲ文)如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点. (1)证明MN ∥平面P AB ;(2)求四面体N -BCM 的体积.19.[2017全国I 文]如图,在四棱锥P-ABCD 中,AB//CD ,且∠BAP =∠CDP =90°.(1)证明:平面PAB ⊥平面PAD ; (2)若PA =PD =AB =DC ,∠ADP =90°,且四棱锥P-ABCD 的体积为83,求该四棱锥的侧面积.20.[2017全国II 文]如图,四棱锥P-ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD , ∠BAD =∠ABC =90°.(1)证明:直线BC ∥平面PAD ;(2)若△PCD 面积为27,求四棱锥P-ABCD 的体积.21.[2017全国III 文]在正方体ABCD-A 1B 1C 1D 1中,E 为棱CD 的中点,则( )A.A 1E ⊥DC 1B.A 1E ⊥BDC.A 1E ⊥BC 1D.A 1E ⊥AC22.[2017全国III 文]如图,四面体ABCD 中,△ABC 是正三角形,AD =CD .(1)证明:AC ⊥BD ;(2)已知△ACD 是直角三角形,AB =BD .若E 为棱BD 上与D 不重合的点,且AE ⊥EC ,求四面体ABCE 与四面体ACDE 的体积比.。

立体几何高考常考题型

立体几何高考常考题型

空间位置关系的判断与证明(1)高考对此部分的命题较为稳定,一般为“一小一大”或“一大”,即一道选择题(或填空题)和一道解答题或只考一道解答题.(2)选择题一般在第9~11题的位置,填空题一般在第14题的位置,多考查线面位置关系的判断,难度较小.(3)解答题多出现在第18或19题的第一问的位置,考查空间中平行或垂直关系的证明,难度中等.考点一 空间点、线、面的位置关系[大稳定——常规角度考双基]1.[命题真假的判定]已知直线m ,l ,平面α,β,且m ⊥α,l ⊂β,给出下列命题: ①若α∥β,则m ⊥l ;②若α⊥β,则m ∥l ;③若m ⊥l ,则α⊥β;④若m ∥l ,则α⊥β.其中正确的命题是( )A .①④B .③④C .①②D .①③解析:选A 对于①,若α∥β,m ⊥α,则m ⊥β,又l ⊂β,所以m ⊥l ,故①正确,排除B.对于④,若m ∥l ,m ⊥α,则l ⊥α,又l ⊂β,所以α⊥β.故④正确.故选A.2.[判断直线与直线的位置关系](2019·全国卷Ⅲ)如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则( )A .BM =EN ,且直线BM ,EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM ,EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线解析:选B 法一:取CD 的中点O ,连接EO ,ON .由△ECD 是正三角形,平面ECD ⊥平面ABCD ,知EO ⊥平面ABCD .∴EO ⊥CD ,EO ⊥ON .又N 为正方形ABCD 的中心,∴ON ⊥CD .以CD 的中点O 为原点, OD ―→方向为x 轴正方向建立空间直角坐标系,如图①所示.不妨设AD =2,则E (0,0,3),N (0,1,0),D (1,0,0),M ⎝⎛⎭⎫12,0,32,B (-1,2,0),∴EN = 12+(-3)2=2,BM = ⎝⎛⎭⎫322+4+34=7, ∴EN ≠BM .连接BD ,BE ,∵点N 是正方形ABCD 的中心,∴点N 在BD 上,且BN =DN ,∴BM ,EN 是△DBE 的中线,∴BM ,EN 必相交.故选B.法二:如图②,取CD 的中点F ,DF 的中点G ,连接EF ,FN ,MG ,GB .∵△ECD 是正三角形,∴EF ⊥CD .∵平面ECD ⊥平面ABCD ,∴EF ⊥平面ABCD .∴EF ⊥FN .不妨设AB =2,则FN =1,EF =3,∴EN = FN 2+EF 2=2.∵EM =MD ,DG =GF ,∴MG ∥EF 且MG =12EF ,∴MG ⊥平面ABCD , ∴MG ⊥BG .∵MG =12EF =32, BG = CG 2+BC 2= ⎝⎛⎭⎫322+22=52, ∴ BM = MG 2+BG 2=7.∴ BM ≠EN .连接BD ,BE ,∵ 点N 是正方形ABCD 的中心,∴ 点N 在BD 上,且BN =DN ,∴ BM ,EN 是△DBE 的中线,∴ BM ,EN 必相交.故选B.3.[线面垂直、面面垂直的判定]如图,在正方形ABCD 中,E ,F 分别是BC ,CD 的中点,G 是EF 的中点,现在沿AE ,AF 及EF 把这个正方形折成一个空间图形,使B ,C ,D 三点重合,重合后的点记为H ,那么,在这个空间图形中必有( )A .AG ⊥平面EFHB .AH ⊥平面EFHC .HF ⊥平面AEFD .HG ⊥平面AEF解析:选B 根据折叠前、后AH ⊥HE ,AH ⊥HF 不变,得AH ⊥平面EFH ,B 正确;∵过A 只有一条直线与平面EFH 垂直,∴A 不正确;∵AG ⊥EF ,EF ⊥GH ,AG ∩GH =G ,∴EF ⊥平面HAG ,又EF ⊂平面AEF ,∴平面HAG ⊥AEF ,过H 作直线垂直于平面AEF ,一定在平面HAG 内,∴C 不正确;由条件证不出HG ⊥平面AEF ,∴D 不正确.故选B.4.[求异面直线所成的角](2018·全国卷Ⅱ)在正方体ABCD ­A 1B 1C 1D 1中,E 为棱CC 1的中点,则异面直线AE 与CD 所成角的正切值为( )A .22B .32C .52D .72解析:选C 如图,连接BE ,因为AB ∥CD ,所以AE 与CD 所成的角为∠EAB .在Rt △ABE 中,设AB =2,则BE =5,则tan ∠EAB =BE AB =52,所以异面直线AE 与CD 所成角的正切值为52.故选C. [解题方略]判断与空间位置关系有关命题真假的3种方法(1)借助空间线面平行、面面平行、线面垂直、面面垂直的判定定理和性质定理进行判断;(2)借助空间几何模型,如从长方体模型、四面体模型等模型中观察线面位置关系,结合有关定理进行判断;(3)借助于反证法,当从正面入手较难时,可利用反证法,推出与题设或公认的结论相矛盾的命题,进而作出判断.[小创新——变换角度考迁移]1.[与充要条件交汇](2019·全国卷Ⅱ)设α,β为两个平面,则α∥β的充要条件是( )A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面解析:选B 若α∥β,则α内有无数条直线与β平行,反之不成立;若α,β平行于同一条直线,则α与β可以平行也可以相交;若α,β垂直于同一平面,则α与β可以平行也可以相交,故A 、C 、D 均不是充要条件.根据平面与平面平行的判定定理知,若一个平面内有两条相交直线与另一个平面平行,则两平面平行,反之成立.因此B 中条件是α∥β的充要条件.故选B.2.[与命题的交汇](2019·北京高考)已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:____________.解析:已知l ,m 是平面α外的两条不同直线,由①l ⊥m 与②m ∥α,不能推出③l ⊥α,因为l 可以与α平行,也可以相交不垂直;由①l ⊥m 与③l ⊥α能推出②m ∥α;由②m ∥α与③l ⊥α可以推出①l ⊥m .故正确的命题是②③⇒①或①③⇒②.答案:②③⇒①或①③⇒②3.[线面角与其他问题的交汇](2018·全国卷Ⅱ)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若△SAB 的面积为515,则该圆锥的侧面积为________.解析:如图,∵SA 与底面成45°角,∴△SAO 为等腰直角三角形.设OA =r ,则SO =r ,SA =SB =2r .在△SAB 中,cos ∠ASB =78,∴sin ∠ASB =158, ∴S △SAB =12SA ·SB ·sin ∠ASB =12×(2r )2×158=515,解得r=210,∴SA=2r=45,即母线长l=45,∴S圆锥侧=πrl=π×210×45=402π.答案:402π考点二空间平行、垂直关系的证明[例1]如图,在四棱锥P-ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD,E和F分别是CD和PC的中点,求证:(1)PA⊥底面ABCD;(2)BE∥平面PAD;(3)平面BEF⊥平面PCD.[证明](1)∵平面PAD⊥底面ABCD,且PA垂直于这两个平面的交线AD,PA⊂平面PAD,∴PA⊥底面ABCD.(2)∵AB∥CD,CD=2AB,E为CD的中点,∴AB∥DE,且AB=DE.∴四边形ABED为平行四边形.∴BE∥AD.又∵BE⊄平面PAD,AD⊂平面PAD,∴BE∥平面PAD.(3)∵AB⊥AD,且四边形ABED为平行四边形.∴BE⊥CD,AD⊥CD,由(1)知PA⊥底面ABCD.∴PA⊥CD.∵PA∩AD=A,PA⊂平面PAD,AD⊂平面PAD,∴CD⊥平面PAD,又PD⊂平面PAD,∴CD⊥PD.∵E和F分别是CD和PC的中点,∴PD∥EF,∴CD⊥EF.又BE⊥CD且EF∩BE=E,∴CD⊥平面BEF.又CD⊂平面PCD,∴平面BEF⊥平面PCD.[解题方略]1.直线、平面平行的判定及其性质(1)线面平行的判定定理:a⊄α,b⊂α,a∥b⇒a∥α.(2)线面平行的性质定理:a ∥α,a ⊂β,α∩β=b ⇒a ∥b .(3)面面平行的判定定理:a ⊂β,b ⊂β,a ∩b =P ,a ∥α,b ∥α⇒α∥β.(4)面面平行的性质定理:α∥β,α∩γ=a ,β∩γ=b ⇒a ∥b .2.直线、平面垂直的判定及其性质(1)线面垂直的判定定理:m ⊂α,n ⊂α,m ∩n =P ,l ⊥m ,l ⊥n ⇒l ⊥α.(2)线面垂直的性质定理:a ⊥α,b ⊥α⇒a ∥b .(3)面面垂直的判定定理:a ⊂β,a ⊥α⇒α⊥β.(4)面面垂直的性质定理:α⊥β,α∩β=l ,a ⊂α,a ⊥l ⇒a ⊥β.[多练强化]1.如图,在四棱锥P -ABCD 中,平面PAB ⊥平面ABCD ,AD ∥BC ,PA ⊥AB ,CD ⊥AD ,BC =CD =12AD . 求证:(1)PA ⊥CD ;(2)平面PBD ⊥平面PAB .证明:(1)因为平面PAB ⊥平面ABCD ,平面PAB ∩平面ABCD =AB ,又因为PA ⊥AB ,所以PA ⊥平面ABCD ,又CD ⊂平面ABCD ,所以PA ⊥CD .(2)取AD 的中点为E ,连接BE ,由已知得,BC ∥ED ,且BC =ED ,所以四边形BCDE 是平行四边形,又CD ⊥AD ,BC =CD ,所以四边形BCDE 是正方形,连接CE ,所以BD ⊥CE .又因为BC ∥AE ,BC =AE ,所以四边形ABCE 是平行四边形,所以CE ∥AB ,则BD ⊥AB .由(1)知PA ⊥平面ABCD ,所以PA ⊥BD ,又因为PA ∩AB =A ,所以BD ⊥平面PAB ,因为BD ⊂平面PBD ,所以平面PBD ⊥平面PAB .2.如图,四边形ABCD 与四边形ADEF 均为平行四边形,M ,N ,G 分别是AB ,AD ,EF 的中点.求证:(1)BE ∥平面DMF ;(2)平面BDE ∥平面MNG .证明:(1)如图,连接AE ,则AE 必过DF 与GN 的交点O ,连接MO ,则MO 为△ABE 的中位线,所以BE ∥MO ,又BE ⊄平面DMF ,MO ⊂平面DMF ,所以BE ∥平面DMF .(2)因为N ,G 分别为平行四边形ADEF 的边AD ,EF 的中点,所以DE ∥GN ,又DE ⊄平面MNG ,GN ⊂平面MNG ,所以DE ∥平面MNG .又M 为AB 的中点,N 为AD 的中点,所以MN 为△ABD 的中位线,所以BD ∥MN ,又BD ⊄平面MNG ,MN ⊂平面MNG ,所以BD ∥平面MNG ,又DE 与BD 为平面BDE 内的两条相交直线,所以平面BDE ∥平面MNG .考点三 平面图形中的折叠问题[例2] 如图①,在直角梯形ABCD 中,∠ADC =90°,AB ∥CD ,AD =CD =12AB =2,E 为AC 的中点,将△ACD 沿AC 折起,使折起后的平面ACD 与平面ABC 垂直,如图②.在图②所示的几何体D ­ABC 中.(1)求证:BC ⊥平面ACD ;(2)点F 在棱CD 上,且满足AD ∥平面BEF ,求几何体F -BCE 的体积.[解] (1)证明:∵AC = AD 2+CD 2=22,∠BAC =∠ACD =45°,AB =4,∴在△ABC 中,BC 2=AC 2+AB 2-2AC ×AB ×cos 45°=8,∴AB 2=AC 2+BC 2=16,∴AC ⊥BC ,∵平面ACD ⊥平面ABC ,平面ACD ∩平面ABC =AC ,BC ⊂平面ABC ,∴BC ⊥平面ACD .(2)∵AD ∥平面BEF ,AD ⊂平面ACD ,平面ACD ∩平面BEF =EF ,∴AD ∥EF ,∵E 为AC 的中点,∴EF 为△ACD 的中位线,由(1)知,V F ­BCE =V B ­CEF =13×S △CEF ×BC , S △CEF =14S △ACD =14×12×2×2=12, ∴V F ­BCE =13×12×22=23. [解题方略] 平面图形折叠问题的求解方法(1)解决与折叠有关的问题的关键是搞清折叠前后的变化量和不变量,一般情况下,线段的长度是不变量,而位置关系往往会发生变化,抓住不变量是解决问题的突破口.(2)在解决问题时,要综合考虑折叠前后的图形,既要分析折叠后的图形,也要分析折叠前的图形.[多练强化]如图①,在矩形ABCD 中,AB =3,BC =4,E ,F 分别在线段BC ,AD 上,EF ∥AB ,将矩形ABEF 沿EF 折起,记折起后的矩形为MNEF ,且平面MNEF ⊥平面ECDF ,如图②.(1)求证:NC ∥平面MFD ;(2)若EC =3,求证:ND ⊥FC ;(3)求四面体NEFD 体积的最大值.解:(1)证明:∵四边形MNEF 和四边形EFDC 都是矩形,∴MN ∥EF ,EF ∥CD ,MN =EF =CD ,∴MN 綊CD .∴四边形MNCD 是平行四边形,∴NC ∥MD .∵NC ⊄平面MFD ,MD ⊂平面MFD ,∴NC ∥平面MFD .(2)证明:连接ED ,∵平面MNEF ⊥平面ECDF ,且NE ⊥EF ,平面MNEF ∩平面ECDF =EF ,NE ⊂平面MNEF ,∴NE ⊥平面ECDF .∵FC ⊂平面ECDF ,∴FC ⊥NE .∵EC =CD ,∴四边形ECDF 为正方形,∴FC ⊥ED .又∵ED ∩NE =E ,ED ,NE ⊂平面NED ,∴FC ⊥平面NED .∵ND ⊂平面NED ,∴ND ⊥FC .(3)设NE =x ,则FD =EC =4-x ,其中0<x <4,由(2)得NE ⊥平面FEC ,∴四面体NEFD 的体积为V NEFD =13S △EFD ·NE =13×12×3×(4-x )x =12x (4-x ). ∴V 四面体NEFD ≤12⎣⎢⎡⎦⎥⎤x +(4-x )22=2,当且仅当x=4-x,即x=2时,四面体NEFD的体积最大,最大值为2.逻辑推理——转化思想在平行、垂直证明中的应用[典例]如图,在三棱锥A­BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.[证明](1)在平面ABD内,因为AB⊥AD,EF⊥AD,所以EF∥AB,又因为EF⊄平面ABC,AB⊂平面ABC,所以EF∥平面ABC.(2)因为平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,BC⊂平面BCD,BC⊥BD,所以BC⊥平面ABD.因为AD⊂平面ABD,所以BC⊥AD.又AB⊥AD,BC∩AB=B,AB⊂平面ABC,BC⊂平面ABC,所以AD⊥平面ABC.又因为AC⊂平面ABC,所以AD⊥AC.[素养通路]本题(1)证明线面平行的思路是转化为证明线线平行,即证明EF与平面ABC内的一条直线平行,从而得到EF∥平面ABC;(2)证明线线垂直可转化为证明线面垂直,由平面ABD⊥平面BCD,根据面面垂直的性质定理得BC⊥平面ABD,则可证明AD⊥平面ABC,再根据线面垂直的性质,得到AD⊥AC.考查了逻辑推理这一核心素养.[专题过关检测]A组——“6+3+3”考点落实练一、选择题1.设α为平面,a,b为两条不同的直线,则下列叙述正确的是()A.若a∥α,b∥α,则a∥bB.若a⊥α,a∥b,则b⊥αC.若a⊥α,a⊥b,则b∥αD.若a∥α,a⊥b,则b⊥α解析:选B若a∥α,b∥α,则a与b相交、平行或异面,故A错误;易知B正确;若a⊥α,a⊥b,则b∥α或b⊂α,故C错误;若a∥α,a⊥b,则b∥α或b⊂α或b与α相交,故D错误.故选B.2.设l是直线,α,β是两个不同的平面,则下列说法正确的是()A.若l∥α,l∥β,则α∥βB.若l∥α,l⊥β,则α⊥βC.若α⊥β,l⊥α,则l∥βD.若α⊥β,l∥α,则l⊥β解析:选B对于A,若l∥α,l∥β,则α∥β或α与β相交,故A错误;易知B正确;对于C,若α⊥β,l⊥α,则l∥β或l⊂β,故C错误;对于D,若α⊥β,l∥α,则l与β的位置关系不确定,故D错误.故选B.3.如图,在三棱锥D-ABC中,若AB=CB,AD=CD,E是AC的中点,则下列命题中正确的是()A.平面ABC⊥平面ABDB.平面ABD⊥平面BCDC.平面ABC⊥平面BDE,且平面ACD⊥平面BDED.平面ABC⊥平面ACD,且平面ACD⊥平面BDE解析:选C因为AB=CB,且E是AC的中点,所以BE⊥AC,同理,DE⊥AC,由于DE∩BE=E,于是AC⊥平面BDE.因为AC⊂平面ABC,所以平面ABC⊥平面BDE.又AC⊂平面ACD,所以平面ACD⊥平面BDE.故选C.4.已知m,n是两条不同的直线,α,β是两个不同的平面,给出四个命题:①若α∩β=m,n⊂α,n⊥m,则α⊥β;②若m⊥α,m⊥β,则α∥β;③若m⊥α,n⊥β,m⊥n,则α⊥β;④若m∥α,n∥β,m∥n,则α∥β.其中正确的命题是()A.①②B.②③C .①④D .②④解析:选B 两个平面斜交时也会出现一个平面内的直线垂直于两个平面的交线的情况,①不正确;垂直于同一条直线的两个平面平行,②正确;当两个平面与两条互相垂直的直线分别垂直时,它们所成的二面角为直二面角,故③正确;当两个平面相交时,分别与两个平面平行的直线也平行,故④不正确.故选B.5.在长方体ABCD -A 1B 1C 1D 1中,AB =BC =1,AA 1=3,则异面直线AD 1与DB 1所成角的余弦值为( )A .15B .56C .55D .22解析:选C 如图,连接BD 1,交DB 1于O ,取AB 的中点M ,连接DM ,OM ,易知O 为BD 1的中点,所以AD 1∥OM ,则∠MOD 为异面直线AD 1与DB 1所成角.因为在长方体ABCD -A 1B 1C 1D 1中,AB =BC =1,AA 1=3,AD 1=AD 2+DD 21=2,DM =AD 2+⎝⎛⎭⎫12AB 2=52,DB 1=AB 2+AD 2+DD 21=5,所以OM =12AD 1=1,OD =12DB 1=52,于是在△DMO 中,由余弦定理,得cos ∠MOD =12+⎝⎛⎭⎫522-⎝⎛⎭⎫5222×1×52=55,即异面直线AD 1与DB 1所成角的余弦值为55.故选C. 6.如图,在矩形ABCD 中,AB =3,BC =1,将△ACD 沿AC 折起,使得D 折起后的位置为D 1,且D 1在平面ABC 上的射影恰好落在AB 上,在四面体D 1ABC 的四个面中,有n 对平面相互垂直,则n 等于( )A .2B .3C .4D .5解析:选B 如图,设D 1在平面ABC 上的射影为E ,连接D 1E ,则D 1E ⊥平面ABC ,因为D 1E ⊂平面ABD 1,所以平面ABD 1⊥平面ABC .因为D 1E ⊥平面ABC ,BC ⊂平面ABC , 所以D 1E ⊥BC ,又AB ⊥BC ,D 1E ∩AB =E , 所以BC ⊥平面ABD 1, 又BC ⊂平面BCD 1,所以平面BCD 1⊥平面ABD 1,因为BC ⊥平面ABD 1,AD 1⊂平面ABD 1, 所以BC ⊥AD 1,又CD 1⊥AD 1,BC ∩CD 1=C , 所以AD 1⊥平面BCD 1,又AD 1⊂平面ACD 1, 所以平面ACD 1⊥平面BCD 1. 所以共有3对平面互相垂直.故选B. 二、填空题7.正方体ABCD -A 1B 1C 1D 1的棱长为2,点M 为CC 1的中点,点N 为线段DD 1上靠近D 1的三等分点,平面BMN 交AA 1于点Q ,则线段AQ 的长为________.解析:如图所示,在线段DD 1上靠近点D 处取一点T ,使得DT =13,因为N 是线段DD 1上靠近D 1的三等分点,故D 1N =23,故NT =2-13-23=1,因为M 为CC 1的中点,故CM =1,连接TC ,由NT ∥CM ,且CM =NT =1,知四边形CMNT 为平行四边形,故CT ∥MN ,同理在AA 1上靠近A 处取一点Q ′,使得AQ ′=13,连接BQ ′,TQ ′,则有BQ ′∥CT ∥MN ,故BQ ′与MN 共面,即Q ′与Q 重合,故AQ =13.答案:138.如图,∠ACB =90°,DA ⊥平面ABC ,AE ⊥DB 交DB 于点E ,AF ⊥DC 交DC 于点F ,且AD =AB =2,则三棱锥D -AEF 体积的最大值为________.解析:因为DA ⊥平面ABC ,所以DA ⊥BC ,又BC ⊥AC ,DA ∩AC=A ,所以BC ⊥平面ADC ,所以BC ⊥AF .又AF ⊥CD ,BC ∩CD =C ,所以AF ⊥平面DCB ,所以AF ⊥EF ,AF ⊥DB .又DB ⊥AE ,AE ∩AF =A ,所以DB ⊥平面AEF ,所以DE 为三棱锥D -AEF 的高.因为AE 为等腰直角三角形ABD 斜边上的高,所以AE =2,设AF =a ,FE =b ,则△AEF 的面积S =12ab ≤12·a 2+b 22=12×22=12,所以三棱锥D -AEF 的体积V ≤13×12×2=26(当且仅当a =b =1时等号成立).答案:269.在长方体ABCD -A 1B 1C 1D 1中,AB =AD =4,AA 1=2.过点A 1作平面α与AB ,AD 分别交于M ,N 两点,若AA 1与平面α所成的角为45°,则截面A 1MN 面积的最小值是________.解析:如图,过点A 作AE ⊥MN ,连接A 1E ,因为A 1A ⊥平面ABCD ,所以A 1A ⊥MN ,所以MN ⊥平面A 1AE ,所以A 1E ⊥MN ,平面A 1AE ⊥平面A 1MN ,所以∠AA 1E 为AA 1与平面A 1MN 所成的角,所以∠AA 1E =45°,在Rt △A 1AE 中,因为AA 1=2,所以AE =2,A 1E =22,在Rt △MAN 中,由射影定理得ME ·EN =AE 2=4,由基本不等式得MN =ME +EN ≥2ME ·EN =4,当且仅当ME =EN ,即E 为MN 的中点时等号成立,所以截面A 1MN 面积的最小值为12×4×22=4 2.答案:4 2 三、解答题10.(2019·全国卷Ⅲ)图①是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°.将其沿AB ,BC 折起使得BE 与BF 重合,连接DG ,如图②.(1)证明:图②中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图②中的四边形ACGD 的面积.解:(1)证明:由已知得AD ∥BE ,CG ∥BE ,所以AD∥CG,故AD,CG确定一个平面,从而A,C,G,D四点共面.由已知得AB⊥BE,AB⊥BC,故AB⊥平面BCGE.又因为AB⊂平面ABC,所以平面ABC⊥平面BCGE.(2)取CG的中点M,连接EM,DM.因为AB∥DE,AB⊥平面BCGE,所以DE⊥平面BCGE,故DE⊥CG.由已知,四边形BCGE是菱形,且∠EBC=60°,得EM⊥CG,故CG⊥平面DEM.因此DM⊥CG.在Rt△DEM中,DE=1,EM=3,故DM=2.所以四边形ACGD的面积为4.11.如图所示,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点.求证:(1)AF∥平面BCE;(2)平面BCE⊥平面CDE.证明:(1)如图,取CE的中点G,连接FG,BG.因为F为CD的中点,所以GF∥DE且GF=12DE.因为AB⊥平面ACD,DE⊥平面ACD,所以AB∥DE,所以GF∥AB.又因为AB=12DE,所以GF=AB.所以四边形GFAB为平行四边形,则AF∥BG.因为AF⊄平面BCE,BG⊂平面BCE,所以AF∥平面BCE.(2)因为△ACD为等边三角形,F为CD的中点,所以AF⊥CD.因为DE⊥平面ACD,AF⊂平面ACD,所以DE⊥AF.又CD∩DE=D,所以AF⊥平面CDE.因为BG∥AF,所以BG⊥平面CDE.又因为BG⊂平面BCE,所以平面BCE⊥平面CDE.12.如图1,在直角梯形ABCD中,AD∥BC,AB⊥BC,BD⊥DC,点E是BC边的中点,将△ABD沿BD折起,使平面ABD⊥平面BCD,连接AE,AC,DE,得到如图2所示的几何体.(1)求证:AB⊥平面ADC;(2)若AD=1,AC与其在平面ABD内的正投影所成角的正切值为6,求点B到平面ADE的距离.解:(1)证明:因为平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,又DC⊥BD,DC⊂平面BCD,所以DC⊥平面ABD.因为AB⊂平面ABD,所以DC⊥AB.又因为折叠前后均有AD⊥AB,且DC∩AD=D,所以AB⊥平面ADC.(2)由(1)知DC⊥平面ABD,所以AC在平面ABD内的正投影为AD,即∠CAD为AC与其在平面ABD内的正投影所成的角.=6,依题意知tan∠CAD=DCAD因为AD=1,所以DC= 6.设AB =x (x >0),则BD = x 2+1, 易知△ABD ∽△DCB ,所以AB AD =DC BD, 即x 1=6x 2+1,解得x =2,故AB =2,BD =3,BC =3. 由于AB ⊥平面ADC ,所以AB ⊥AC ,又E 为BC 的中点,所以由平面几何知识得AE =BC 2=32,同理DE =BC 2=32,∴S △ADE =12×1×⎝⎛⎭⎫322-⎝⎛⎭⎫122=22,∵DC ⊥平面ABD∴V A ­BCD =13CD ·S △ABD =33,设点B 到平面ADE 的距离为d ,则13d ·S △ADE =V B ­ADE =V A ­BDE =12V A ­BCD =36, ∴d =62,即点B 到平面ADE 的距离为62. B 组——大题专攻强化练1.如图,三棱柱ABC -A 1B 1C 1中,底面ABC 是等边三角形,侧面BCC 1B 1是矩形,AB =A 1B ,N 是B 1C 的中点,M 是棱AA 1上的点,且AA 1⊥CM .(1)证明:MN ∥平面ABC ;(2)若AB ⊥A 1B ,求二面角A -CM -N 的余弦值.解:(1)证明:如图1,在三棱柱ABC -A 1B 1C 1中,连接BM .因为BCC 1B 1是矩形,所以BC ⊥BB 1.因为AA 1∥BB 1,所以AA 1⊥BC . 又AA 1⊥MC ,BC ∩MC =C ,所以AA 1⊥平面BCM , 所以AA 1⊥MB ,又AB =A 1B ,所以M 是AA 1的中点.取BC 的中点P ,连接NP ,AP ,因为N 是B 1C 的中点,所以NP ∥BB 1,且NP =12BB 1,所以NP ∥MA ,且NP =MA ,所以四边形AMNP 是平行四边形,所以MN ∥AP . 又MN ⊄平面ABC ,AP ⊂平面ABC ,所以MN ∥平面ABC .(2)因为AB ⊥A 1B ,所以△ABA 1是等腰直角三角形,设AB =2a , 则AA 1=2a ,BM =AM =a .又在Rt △ACM 中,AC =2a ,所以MC =a . 在△BCM 中,CM 2+BM 2=2a 2=BC 2,所以MC ⊥BM ,所以MA 1,MB ,MC 两两垂直,如图2,以M 为坐标原点, MA 1―→,MB ―→,MC ―→的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,则M (0,0,0),C (0,0,a ),B 1(2a ,a ,0),所以MC ―→=(0,0,a ),N ⎝⎛⎭⎫a ,a 2,a 2,则MN ―→=⎝⎛⎭⎫a ,a 2,a 2. 设平面CMN 的法向量为n 1=(x ,y ,z ),则⎩⎪⎨⎪⎧n 1·MC ―→=0,n 1·MN ―→=0,即⎩⎪⎨⎪⎧az =0,ax +a 2y +a 2z =0,得z =0, 取x =1得y =-2.故平面CMN 的一个法向量为n 1=(1,-2,0). 因为平面ACM 的一个法向量为n 2=(0,1,0), 所以cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=-255.因为二面角A -CM -N 为钝角, 所以二面角A -CM -N 的余弦值为-255.2.如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,底面ABCD 为菱形,E为CD的中点.(1)求证:BD⊥平面PAC;(2)若∠ABC=60°,求证:平面PAB⊥平面PAE;(3)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.解:(1)证明:因为PA⊥平面ABCD,所以PA⊥BD.因为底面ABCD为菱形,所以BD⊥AC.又PA∩AC=A,所以BD⊥平面PAC.(2)证明:因为PA⊥平面ABCD,AE⊂平面ABCD,所以PA⊥AE.因为底面ABCD为菱形,∠ABC=60°,且E为CD的中点,所以AE⊥CD.所以AB⊥AE.又AB∩PA=A,所以AE⊥平面PAB.因为AE⊂平面PAE,所以平面PAB⊥平面PAE.(3)棱PB上存在点F,使得CF∥平面PAE.取PB的中点F,PA的中点G,连接CF,FG,EG,则FG∥AB,且FG=12AB.因为底面ABCD为菱形,且E为CD的中点,所以CE∥AB,且CE=12AB.所以FG∥CE,且FG=CE.所以四边形CEGF为平行四边形.所以CF∥EG.因为CF⊄平面PAE,EG⊂平面PAE,所以CF∥平面PAE.3.如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =12AD =a ,E 是AD 的中点,O 是AC 与BE 的交点,将△ABE 沿BE 折起到图2中△A 1BE 的位置,得到四棱锥A 1­BCDE .(1)证明:CD ⊥平面A 1OC ;(2)当平面A 1BE ⊥平面BCDE 时,四棱锥A 1­BCDE 的体积为362,求a 的值. 解:(1)证明:在图1中,因为AB =BC =12AD =a ,E 是AD 的中点,∠BAD =π2,所以BE ⊥AC .即在图2中,BE ⊥A 1O ,BE ⊥OC , 从而BE ⊥平面A 1OC , 又CD ∥BE , 所以CD ⊥平面A 1OC .(2)由已知,平面A 1BE ⊥平面BCDE , 且平面A 1BE ∩平面BCDE =BE , 又由(1)知,A 1O ⊥BE , 所以A 1O ⊥平面BCDE , 即A 1O 是四棱锥A 1­BCDE 的高. 由图1知,A 1O =22AB =22a ,平行四边形BCDE 的面积S =BE ·OC =a 2. 从而四棱锥A 1­BCDE 的体积为 V =13×S ×A 1O =13×a 2×22a =26a 3,由26a 3=362,得a =6. 4.(2019·天津高考)如图,在四棱锥P -ABCD 中,底面ABCD 为平行四边形,△PCD 为等边三角形,平面PAC ⊥平面PCD ,PA⊥CD ,CD =2,AD =3.(1)设G ,H 分别为PB ,AC 的中点,求证:GH ∥平面PAD ;(2)求证:PA ⊥平面PCD ;(3)求直线AD 与平面PAC 所成角的正弦值.解:(1)证明:连接BD ,易知AC ∩BD =H ,BH =DH .又由BG =PG ,故GH ∥PD .又因为GH ⊄平面PAD ,PD ⊂平面PAD ,所以GH ∥平面PAD .(2)证明:取棱PC 的中点N ,连接DN .依题意,得DN ⊥PC .又因为平面PAC ⊥平面PCD ,平面PAC ∩平面PCD =PC ,所以DN ⊥平面PAC .又PA ⊂平面PAC ,所以DN ⊥PA .又已知PA ⊥CD ,CD ∩DN =D ,所以PA ⊥平面PCD .(3)连接AN ,由(2)中DN ⊥平面PAC ,可知∠DAN 为直线AD 与平面PAC 所成的角. 因为△PCD 为等边三角形,CD =2且N 为PC 的中点,所以DN = 3.又DN ⊥AN ,在Rt △AND 中,sin ∠DAN =DN AD =33. 所以,直线AD 与平面PAC 所成角的正弦值为33.。

历年高考立体几何经典题型以及解析

历年高考立体几何经典题型以及解析

1.已知正方体ABCD ﹣A 1B 1C 1D 1的棱长为2,点P 在线段1CB 上,且12B P PC =,平面α经过点1,,A P C ,则正方体ABCD ﹣A 1B 1C 1D 1被平面α截得的截面面积为( )A. 36B. 26C. 5D. 5342.一副三角板由一块有一个内角为60°的直角三角形和一块等腰直角三角形组成,如图所示,90B F ∠=∠=︒,60A ∠=︒,45D ∠=︒,BC DE =.现将两块三角板拼接在一起,取BC 中点O 与AC 中点M ,则下列直线与平面OFM 所成的角不为定值的是( )A. ACB. AFC. BFD. CF3. (多选题)如图,在四棱锥P ﹣ABCD 中,底面ABCD 是正方形,PA ⊥底面ABCD ,PA AB =,截面BDE 与直线PC 平行,与PA 交于点E ,则下列判断正确的是( )A. E 为PA 的中点B. BD ⊥平面PACC. PB 与CD 所成的角为3πD. 三棱锥C BDE -与四棱锥P ﹣ABCD 的体积之比等于1:4.4.在棱长为2的正方体ABCD ﹣A 1B 1C 1D 1中,M 是棱11A D 的中点,过C 1,B ,M 作正方体的截面,则这个截面的面积为( )35 35 C. 92 D. 985. 已知正方体ABCD ﹣A 1B 1C 1D 1的棱长为2,点M 为棱DD 1的中点,则平面ACM 截该正方体的内切球所得截面面积为( ) A.3π B. 23π C. π D. 43π 6.(多选题)在三棱锥P -ABC 中,(0,1,0)A ,(3,1,0)B ,(0,3,0)C ,(0,1,2)P ,则( )A. (3,0,2)PB =-B. (3,0,0)AB =-C. PB AC ⊥D. 13PB =7.在四面体ABCD 中,E 是棱BC 的中点,且AE xAD yDB zDC =++,则( )A. 1x y z ++=B. 12xyz =C. x y z =+D. 222x y z =+8.三棱锥P -ABC 中,P A ⊥平面ABC ,2,3,23,3BAC AP AB π∠===Q 是BC 边上的一个动点,且直线PQ 与面ABC 所成角的最大值为,3π则该三棱锥外接球的表面积为( ) A. 45πB. 63πC. 57πD. 84π 9.已知三棱锥P ﹣ABC 的四个顶点均在同一个球面上,底面△ABC 满足6BA BC ==,2ABC π∠=,若该三棱锥体积的最大值为3.则其外接球的体积为________.10. 如图,五边形ABSCD 中,四边形ABCD 为长方形,SBC ∆为边长为2的正三角形,将SBC ∆沿BC 折起,使得点S 在平面ABCD 上的射影恰好在AD 上.(Ⅰ)当2AB =,证明:平面SAB ⊥平面SCD ;(Ⅱ)若1AB =,求平面SCD 与平面SBC 所成二面角的余弦值的绝对值.11.如图PAD △中,90PDA ︒∠=,2DP DA ==,B 、C 分别是PA 、PD 的中点,将PBC 沿BC 折起连结PA 、PD ,得到多面体PABCD .(1)证明:在多面体PABCD 中,BC PD ⊥;(2)在多面体PABCD 中,当6PA =时,求二面角B PA D --的余弦值.12.直四棱柱ABCD ﹣A 1B 1C 1D 1被平面1A ECD 所截得到如图所示的五面体,CD CE ⊥,CD AD ⊥.(1)求证:BC ∥平面1A AD ;(2)若113BC CD BE AD ====,求二面角1B A E C --的余弦值. 13.如图,在四棱锥S ﹣ABCD 中,SD ⊥平面ABCD ,底面ABCD 是边长为2的正方形,DE SC ⊥,E 为垂足,M 为AB 的中点.(1)当点F 在线段BC 上移动时,判断DEF 是否为直角三角形,并说明理由 (2)若4SD =,求二面角D EM C --的正弦值如图,AE ⊥平面ABCD ,,CF AE AD BC ∥∥,,1,2AD AB AB AD AE BC ⊥====.(Ⅰ)求证:BF ∥平面ADE ;(Ⅱ)求直线CE 与平面BDE 所成角的正弦值;(Ⅲ)若二面角E BD F --的余弦值为13,求线段CF 的长. 15.在四棱锥P ﹣ABCD 中,底面ABCD 为正方形,PB PD =.(1)证明:BD ⊥平面PAC ;(2)若PA 与底面ABCD 所成的角为30°,PA PC ⊥,求二面角B PC D --的余弦值. 16.如图,在四棱锥M ﹣ABCD 中,AB AD ⊥,2AB AM AD ===,22MB MD ==.(1)证明:AM ⊥平面ABCD ;(2)若//CD AB ,2CD AB =,E 为线段BM 上一点,且2BE EM =,求直线EC 与平面BDM 所成角的正弦值.如图,在四棱锥E -ABCD 中,AE ⊥DE ,CD ⊥平面ADE ,AB ⊥平面ADE ,CD =DA =6,AB =2,DE =3.(I )求棱锥C -ADE 的体积;(II )求证:平面ACE ⊥平面CDE ;(III )在线段DE 上是否存在一点F ,使AF ∥平面BCE ?若存在,求出EF ED的值;若不存在,说明理由.18.如图,在四边形ABCD 中,//AB CD ,且::3:2:2AB BC CD =,60ABC ∠=︒,点E 是线段AB 上靠近点A 的一个三等分点,以DE 为折痕将ADE 折起,使点A 到达点A 1的位置,且12A C BC ==.(1)证明:平面1A DE ⊥平面BCD ;(2)求平面1A BE 与平面1A CD 所成锐二面角的余弦值.19.如图,在四棱柱ABCD ﹣A 1B 1C 1D 1中,平面11A ADD ⊥平面ABCD ,底面ABCD 是菱形,60ABC ∠=︒,11A A A D AC ==,E 为DD 1的中点.(1)证明:1//BD 平面ACE ;(2)求直线1A D 与平面ACE 所成角的正弦值.20.如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,底面ABCD 是直角梯形,其中//AD BC ,AB AD ⊥,122AB AD BC ===,4PA =,E 为棱BC 上的点,且14BE BC =.(1)求证:DE ⊥平面PAC ;(2)求二面角A PC D --的余弦值;(3)设Q 为棱CP 上的点(不与C ,P 重合),且直线QE 与平面PAC 所成角的正弦值5CQ CP 的值. 21.如图,在四棱锥P -ABCD 中,AP ⊥平面PCD ,//AD BC ,AB BC ⊥,12AP AB BC AD ===,E 为AD 的中点,AC 与BE 相交于点O .(1)证明:PO ⊥平面ABCD .(2)求直线BC 与平面PBD 所成角的正弦值.22.如图,在四棱锥P —ABCD 中, 90ABC BCD ︒∠=∠=,60,BAD ADP ︒∠=是等腰等直角三形,且2,22,7AP DP AB CD BP =====.(1)求证: AD ⊥BP ;(2)求直线BC 与平面ADP 所成角的正弦值.试卷答案1.B【分析】先根据平面的基本性质确定平面,然后利用面面平行的性质定理,得到截面的形状再求解.【详解】如图所示:1,,A P C 确定一个平面α,因为平面11//AA DD 平面11BB CC ,所以1//AQ EC ,同理1//AE QC ,所以四边形1AEC Q 是平行四边形.即正方体被平面截的截面.因为12B P PC =,所以112C B CE =,即1EC EB == 所以115,23AE EC AC ===由余弦定理得:22211111cos 25AE EC AC AEC AE EC +-∠==⨯ 所以126sin AEC ∠= 所以S 四边形1AEQC 1112sin 262AE EC AEC =⨯⨯⨯∠=故选:B 【点睛】本题主要考查平面的基本性质,面面平行的性质定理及截面面积的求法,还考查了空间想象和运算求解的能力,属于中档题.2.B【分析】通过证明BC ⊥平面OMF ,可以找到,,BF CF AC 与平面OFM 所成的角,计算可知都为定值,由此可得答案.【详解】因为,O M 为中点,所以//OM AB ,所以OM BC ⊥,又OF BC ⊥,且OM OF O ⋂=,所以BC ⊥平面OMF ,所以,BF CF 与平面OFM 所成的角分别为BFO ∠和CFO ∠,它们相等,等于45°, 根据直线与平面所成角的定义知,AC 与平面OFM 所成的角为60CMO A ∠=∠= 故只有AF 与平面OFM 所成的角不为定值.故选:B【点睛】本题考查了直线与平面垂直的判定定理,考查了直线与平面所成角,属于基础题. 3.ABD【分析】采用排除法,根据线面平行的性质定理以及线面垂直的判定定理,结合线线角的求法,锥体体积公式的计算,可得结果.【详解】对于A ,连接AC 交BD 于点M ,连接EM ,如图所示,PC //面BDE ,PC ⊂面APC ,且面APC 面=BDE EM ,PC ∴//EM , 又四边形ABCD 是正方形,∴M 为AC 的中点,∴E 为PA 的中点,故A 正确.对于B ,PA ⊥面ABCD ,BD ⊂面ABCD ,∴PA BD ⊥,又AC BD ⊥,AC PA A ⋂=,,AC PA ⊂面PAC∴BD ⊥面PAC ,故B 正确.对于C ,//AB CD ,∴PBA ∠为PB 与CD 所成的角,PA ⊥面ABCD ,AB 面ABCD ,∴PA AB ⊥,在Rt PAB 中,PA AB =,4PBA=π∴∠,故C 错误.对于D ,由等体积法可得1.3C BDE E BCD BCD V V S EA --==⋅,13-=⋅⋅P ABCD ABCD V S PA 又1,22BCDABCD S S PA EA ==,∴14--=P ABC C BD DE V V ,故D 正确. 故选:ABD.【点睛】本题考查立体几何的综合应用,熟练线线、线面、面面之间的位置关系,审清题意,考验分析能力,属中档题. 4.C 【详解】 【分析】设1AA 的中点为N ,则1MNBC ,连接11,,MN NB BC MC , ,则梯形1MNBC 就是过1C ,B ,M 正方体的截面,其面积为()13292+22=222⨯⨯,故选C.5.A 【分析】根据球的特点可知截面是一个圆,根据等体积法计算出球心到平面ACM 的距离,由此求解出截面圆的半径,从而截面面积可求. 【详解】如图所示:设内切球球心为O ,O 到平面ACM 的距离为d ,截面圆的半径为r , 因为内切球的半径等于正方体棱长的一半,所以球的半径为1, 又因为O AMC M AOC V V --=,所以1233AMCAOCd S S ⨯⨯=⨯,又因为()()221122526,221222AMCAOCSS=⨯⨯-==⨯⨯=, 所以12633d ⨯=,所以63d =, 所以截面圆的半径22313r d =-=,所以截面圆的面积为233S ππ=⋅=⎝⎭. 故选:A.【点睛】本题考查正方体的内切球的特点以及球的截面面积的计算,难度一般.任何一个平面去截球,得到的截面一定是圆面,截面圆的半径可通过球的半径以及球心到截面的距离去计算. 6. ACD 【分析】根据空间向量的坐标运算可判断A 、B ,计算PB AC ⋅的值可判断C ,利用向量的模长公式可判断选项D ,即可得正确答案.【详解】对于选项A :()()3,1,00,1,2(3,0,2)PB =-=-,故选项A 正确; 对于选项B :()()3,1,00,1,0(3,0,0)AB =-=,故选项B 不正确;对于选项C :()()0,3,00,1,0(0,2,0)AC =-=,则3002200PB AC ⋅=⨯+⨯-⨯=,所以PB AC ⊥,故选项C 正确; 对于选项D :因为()223213PB =+-=D 正确,故选:ACD7.C 【分析】根据向量的加法法则和数乘的定义判断. 【详解】因为1()2AE AD DE AD DB DC =+=++, 所以1x =,12y z ==,则x y z =+. 故选:C . 8.C 【分析】根据题意画出图形,结合图形找出△ABC 的外接圆圆心与三棱锥P ﹣ABC 外接球的球心, 求出外接球的半径,再计算它的表面积.【详解】三棱锥P ﹣ABC 中,PA ⊥平面ABC ,直线PQ 与平面ABC 所成角为θ,如图所示;则sinθ=PA PQ =3PQ ,且sinθ的最大值是2,∴(PQ )min AQ A 到BC∴AQ ⊥BC ,∵Rt △ABQ 中可得6ABC π∠=,即可得BC=6;取△ABC 的外接圆圆心为O′,作OO′∥PA ,∴6120sin =2r ,解得∴取H 为PA 的中点,∴,PH=32,由勾股定理得, ∴三棱锥P ﹣ABC 的外接球的表面积是S=4πR 2=4×2π⨯=57π. 故答案为C9.323π 【分析】画出示意图,利用体积最大时P 所处的位置,计算出球的半径从而算出球的体积. 【详解】如图所示:设球心为O ,ABC 所在圆面的圆心为1O ,则1OO ⊥平面ABC ;因为6BA BC ==2ABC π∠=,所以ABC 是等腰直角三角形,所以1O 是AC 中点;所以当三棱锥体积最大时,P 为射线1O O 与球的交点,所以113p ABC ABCV PO S -=⋅⋅;因为16632ABCS==,设球的半径为R ,所以2221113PO PO OO R R AO R R =+=-=+-,所以(213333R R ⋅-⋅=,解得:2R =,所以球的体积为:343233R ππ=. 【点睛】本题考查三棱锥的外接球的相关计算,难度较难.处理球的有关问题时要充分考虑到球本身的性质,例如:球心与小圆面圆心的连线垂直于小圆面. 10.(Ⅰ)证明见解析;(Ⅱ)13.【详解】 【分析】 试题分析:(Ⅰ)作SO AD ⊥,垂足为O ,依题意得SO ⊥平面ABCD ,则,SO AB AB AD ⊥⊥,AB ⊥平面SAD ,AB SD ⊥,结合勾股定理可得SA SD ⊥,则SD ⊥平面SAB ,平面SAB ⊥平面SCD .(Ⅱ)由几何关系,以,,OA OE OS 为,,x y z 轴建立空间直角坐标系,由题意可得平面SCD 的法向量()2,0,1m =-,平面SBC 的法向量()0,2,1n =.计算可得平面SCD 与平面SBC 所成二面角的余弦值的绝对值为13. 试题解析:(Ⅰ)作SO AD ⊥,垂足为O ,依题意得SO ⊥平面ABCD ,,SO AB SO CD ∴⊥⊥, 又AB AD ⊥,AB ∴⊥平面SAD ,,AB SA AB SD ⊥⊥利用勾股定理得22422SA SB AB =-=-2SD =在SAD ∆中,2,2,AD SA SD SA SD ===∴⊥SD ∴⊥平面SAB ,又SD ⊂平面SCD ,所以平面SAB ⊥平面SCD (Ⅱ)连结,BO CO ,SB SC =,Rt SOB Rt SOC ∴∆≅∆,BO CO =,又四边形ABCD 为长方形,,Rt AOB Rt DOC OA OD ∴∆≅∆∴=.取BC 中点为E ,得OE ∥AB ,连结,3SE SE ∴= 其中1OE =,1OA OD ==,2312OS -由以上证明可知,,OS OE AD 互相垂直,不妨以,,OA OE OS 为,,x y z 轴建立空间直角坐标系.1,2OE OS =∴=,()()()0,1,0,1,1,2,2,0,0DC SC BC ∴==--=-,设()111,,m x y z =是平面SCD 的法向量,则有00m DC m SC ⎧⋅=⎨⋅=⎩即1111020y x y z =⎧⎪⎨-+-=⎪⎩,令11z =得()2,0,1m =-设()222,,n x y z =是平面SBC 的法向量,则有00n BC n SC ⎧⋅=⎨⋅=⎩即22222020x x y z -=⎧⎪⎨-+-=⎪⎩ 令11z =得()0,2,1n =. 则11,333m n cosm n m n⋅===⋅ 所以平面SCD 与平面SBC 所成二面角的余弦值的绝对值为13. 11.(1)见解析;(2)0.【分析】(1)根据线面垂直的判定定理,先得到BC ⊥平面PCD ,进而可得 BC PD ⊥; (2)根据题意,先得到,,CB CD CP 两两垂直,以C 为坐标原点,分别以,,CB CD CP 为,,x y z 轴建立空间直角坐标系,求出两平面,PAB PAD 的法向量,根据向量夹角计算公式,即可求出结果.【详解】(1)证明:PAD △中,因为,B C 分别是,PA PD 的中点,90,PDA ∠=所以//BC AD ,90BCP BCD ∠=∠=,所以多面体PABCD 中, BC PC ⊥,BC CD ⊥, 又PCCD C =,BC ∴⊥平面PCD ;因为PD ⊂平面PCD ,.BC PD ∴⊥(2)依题意可得, 1PC CD ==,直角ADC 中,得5AC =,又6,PA =所以222PA PC AC =+,PC CA ∴⊥, 由(1)知, BC PC ⊥,PC ∴⊥平面.ABCD以C 为坐标原点,分别以,,CB CD CP 为,,x y z 轴,建立如图的坐标系.则(1,0,0),(2,1,0),(0,1,0),(0,0,1)B A D P , 得(2,1,1),(1,0,1),(0,1,1).PA PB PD =-=-=-设平面,PAB PAD 的一个法向量分别是(,,),(,,)m x y z n p q r ==,则20,0.m PA x y z m PB x z ⎧⋅=+-=⎨⋅=-=⎩可取(1,1,1)m =-.20,0.n PA p q r n PD q r ⎧⋅=+-=⎨⋅=-=⎩可取(0,1,1)n =. 01cos ,03m n m n m n⋅-<>===⋅⋅. 所以二面角B PA D --的余弦值为0.【点睛】本题主要考查证明线线垂直,以及求二面角的余弦值问题,熟记线面垂直的判定定理及性质,灵活运用向量的方法求解二面角即可,属于常考题型. 12.(1)见解析(2 【分析】(1)利用面面平行的性质定理,可证得线面平行;(2)以D 为坐标原点,DA 为x 轴,DC 为y 轴,过D 垂直于ABCD 的直线为z 轴,如图建系,求出平面1A EC 的一个法向量(1,0,1)u =-,平面1A EB 的一个法向量(1,2,0)v =,求出向量夹角的余弦值,即可得到答案;【详解】(1)在直四棱柱1111ABCD A B C D -中,BE ⊥平面ABCD , ∵CD ⊂平面ABCD ,∴BE CD ⊥∵CD CE ⊥,BE CE E ⋂=,∴CD ⊥平面BCE 同理可证CD ⊥平面1A AD , ∴平面//BCE 平面1A AD ,∵BC ⊂平面BCE ,∴//BC 平面1A AD(2)∵平面//BCE 平面1A AD ,平面1A ECD ⋂平面BCE CE =,平面1A ECD ⋂平面11A AD A D =,∴1A D ∥EC ,∴1A D 和CE 与平面ABCD 所成角相等,即1A B DA EC ∠=∠; ∵BC BE =,∴45ECB ︒∠=,∴13AA AD ==,以D 为坐标原点,DA 为x 轴,DC 为y 轴,过D 垂直于ABCD 的直线为z 轴,如图建系,(0,1,0)C ,(1,1,0)B ,(1,1,1)E ,1(3,0,3)A ,∴(1,0,1)CE =,1(2,1,2)EA =-,(0,0,1)BE =, 设()111,,u x y z =为平面1A EC 的一个法向量,则10u CE u EA ⎧⋅=⎪⎨⋅=⎪⎩,即111110220x z x y z +=⎧⎨-+=⎩, 令11x =,则(1,0,1)u =-设()222,,v x y z =为平面1A EB 的一个法向量,则10v BE v EA ⎧⋅=⎪⎨⋅=⎪⎩,即22220220z x y z =⎧⎨-+=⎩, 令21x =,则(1,2,0)v =, 则110cos ,||||1025u v u v u v ⋅<>===⨯, 由图知,二面角1B A E C --为锐角,则二面角1B A E C --10. 【点睛】本题考查利用面面平行证明线面平行、向量法求二面角的余弦值,考查转化与化归思想,考查空间想象能力、运算求解能力. 13.(1)证明见解析;(2)57042. 【分析】(1)先证明BC ⊥平面SCD ,可得BC DE ⊥,结合DE SC ⊥,即可证得DE ⊥平面SBC ,进而可得DE EF ⊥,即可得出DEF 是直角三角形;(2)以D 为原点,分别以,,DA DC DS 所在的直线为,,x y z 轴建立空间直角坐标系,根据//SE SC ,设()0,2,4SE tSC t t ==-,利用0DE SC ⋅=求出t 的值,再计算平面DEM 的法向量,平面EMC 的法向量,利用向量夹角公式求夹角余弦值,再计算正弦值即可. 【详解】(1)因为SD ⊥平面ABCD ,BC ⊂平面ABCD ,所以SD BC ⊥, 因为四边形ABCD 是边长为2的正方形,所以CD BC ⊥, 因为SDCD D =,所以BC ⊥平面SCD ,因为DE ⊂平面SCD ,所以BC DE ⊥, 又因为DE SC ⊥,BCSC C =,所以DE ⊥平面SBC ,因为EF ⊂平面SBC ,所以DE EF ⊥,可得90DEF ∠=, 所以DEF 是直角三角形.(2)如图以D 为原点,分别以,,DA DC DS 所在的直线为,,x y z 轴建立空间直角坐标系,则()0,0,0D ,()2,0,0A ,()2,2,0B ,()0,0,4S ,()0,2,0C ,()2,1,0M ,()0,2,4SC =-,因为//SE SC ,设()0,2,4SE tSC t t ==-,所以()()()0,0,40,2,40,2,44DE DS SE t t t t =+=+-=- 因为DE SC ⊥,所以()224440DE SC t t ⋅=⨯--=,解得:45t =, 所以840,,55DE ⎛⎫= ⎪⎝⎭,()84342,1,00,,2,,5555EM DM DE ⎛⎫⎛⎫=-=-=-- ⎪⎪⎝⎭⎝⎭, ()2,1,0MC =-,设平面DEM 的一个法向量为()1111,,x n y z =,由1111118405520n DE y z n DM x y ⎧⋅=+=⎪⎨⎪⋅=+=⎩ 令12y =可得14z =-,11x =-, 所以()11,2,4n =--,设平面EMC 的一个法向量为()2222,,n x y z =, 由222212234205520n EM x y z n MC x y ⎧⋅=--=⎪⎨⎪⋅=-+=⎩令21x =,可得22y =,21z =, 所以()21,2,1n =设二面角D EM C --的平面角为θ,则1212cos 1n n n n θ⋅===+, 因为0θπ≤≤,所以sin θ===, 故二面角D EM C --【点睛】方法点睛:求空间角的常用方法:(1)定义法,由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量夹角(直线方向向量与直线方向向量、直线方向向量与平面法向量,平面法向量与平面法向量)余弦值,即可求出结果. 14.(Ⅰ)见证明;(Ⅱ)49(Ⅲ)87【分析】首先利用几何体的特征建立空间直角坐标系(Ⅰ)利用直线BF 的方向向量和平面ADE 的法向量的关系即可证明线面平行; (Ⅱ)分别求得直线CE 的方向向量和平面BDE 的法向量,然后求解线面角的正弦值即可; (Ⅲ)首先确定两个半平面的法向量,然后利用二面角的余弦值计算公式得到关于CF 长度的方程,解方程可得CF 的长度.【详解】依题意,可以建立以A 为原点,分别以,,AB AD AE 的方向为x 轴,y 轴,z 轴正方向的空间直角坐标系(如图),可得()()()()()0,0,0,1,0,0,1,2,0,0,1,0,0,0,2A B C D E .设()0CF h h =>,则()1,2,F h .(Ⅰ)依题意,()1,0,0AB =是平面ADE 的法向量,又()0,2,BF h =,可得0BF AB ⋅=,又因为直线BF ⊄平面ADE ,所以BF ∥平面ADE .(Ⅱ)依题意,(1,1,0),(1,0,2),(1,2,2)BD BE CE =-=-=--,设(),,n x y z =为平面BDE 的法向量,则00n BD n BE ⎧⋅=⎨⋅=⎩,即020x y x z -+=⎧⎨-+=⎩,不妨令z =1,可得()2,2,1n =, 因此有4cos ,9||||CE n CE n CE n ⋅〈〉==-. 所以,直线CE 与平面BDE 所成角的正弦值为49. (Ⅲ)设(),,m x y z =为平面BDF 的法向量,则00m BD m BF ⎧⋅=⎨⋅=⎩,即020x y y hz -+=⎧⎨+=⎩. 不妨令y =1,可得21,1,m h ⎛⎫=- ⎪⎝⎭.由题意,有2241cos ,3432m nhm n m n h -⋅===⨯+,解得87h =. 经检验,符合题意。所以,线段CF 的长为87. 【点睛】本题主要考查直线与平面平行、二面角、直线与平面所成的角等基础知识.考查用空间向量解决立体几何问题的方法.考查空间想象能力、运算求解能力和推理论证能力. 15.(1)见解析,(2)17-【分析】(1)连接BD 交AC 于O ,连接PO ,则有AC BD ⊥,O 为BD 的中点,再由PB PD =可得BD PO ⊥,由线面垂直的判定定理可证得结论;(2)由(1)可知,平面PAC ⊥平面ABCD ,两平面的交线为AC ,所以过P 作PE 垂直AC 于E ,则PE ⊥平面ABCD ,从而可知平面30PAC ∠=︒,若设PC =2,由可把其它边求出来,然后以A 为坐标原点,AB 为x 轴,AD 为y 轴,过A 作平面ABCD 的垂线为z 轴,建立空间直角坐标系,利用空间向量求解二面角B PC D --的余弦值.【详解】(1)证明:连接BD 交AC 于O ,连接PO ,因为四边形ABCD 为正方形,所以AC BD ⊥,O 为BD 的中点,因为PB PD =,所以BD PO ⊥,因为AC PO O =,所以BD ⊥平面PAC ;(2)解:因为BD ⊥平面PAC ,BD 在平面ABCD 内,所以平面PAC ⊥平面ABCD ,过P 作PE 垂直AC 于E ,则PE ⊥平面ABCD ,所以PAC ∠为PA 与底面ABCD 所成的角,即30PAC ∠=︒,设PC =2,因为PA PC ⊥,所以23,3,3,4,22PA PE AE AC AD =====, 如图,以A 为坐标原点,AB 为x 轴,AD 为y 轴,过A 作平面ABCD 的垂线为z 轴,建立空间直角坐标系, 则3232(0,0,0),(22,0,0),(22,22,0),(0,22,0),(,,3)22A B C D P , 22(0,22,0),(,,3)(22,0,0)22BC CP DC ==--=,, 设平面PBC 法向量为(,,)n x y z =,则220223022n BC y n CP x y z ⎧⋅==⎪⎨⋅=--+=⎪⎩,令1z =,则(6,0,1)n =, 设平面PDC 的法向量为(,,)m a b c =,则220223022n DC a n CP a b c ⎧⋅==⎪⎨⋅=--+=⎪⎩,令1c =,则(0,6,1)m =, 所以11cos ,777m nm n m n ⋅===⨯, 由图可知二面角B PC D --的平面角为钝角,所以二面角B PC D --的余弦值为17-【点睛】此题考查线面垂直的证明,考查二面欠余弦值的求法,考查空间中线线、线面、面面间的位置关系等知识,考查运算能力,属于中档题.16.(1)证明见解析(2159【分析】(1)利用线段长度得到AM 与,AB AD 间的垂直关系,再根据线面垂直的判定定理完成证明;(2)以AD 、AM 、AB 为x 轴、y 轴、z 轴建立空间直角坐标系,利用直线的方向向量与平面的法向量夹角的余弦值的绝对值等于线面角的正弦值,计算出结果.【详解】(1)∵2AB AM AD ===,22MB MD ==,∴222AM AD MD +=,222AM AB MB +=∴AM AD ⊥,AM AB ⊥ ∵AB AD A ⋂=,AD ⊂平面ABCD ,∴AM ⊥平面ABCD (2)由(1)知AB AD ⊥,AM AD ⊥,AM AB ⊥又A 为坐标原点,分别以AD 、AM 、AB 为x 轴、y 轴、z 轴建立空间直角坐标系,则()0,0,0A ,()0,2,0M ,()2,0,0D ,()0,0,2B ,()2,0,1C ,()2,0,2BD =-,()2,2,0DM =-,∵2BE EB =,∴420,,33E ⎛⎫ ⎪⎝⎭,412,,33CE ⎛⎫=-- ⎪⎝⎭ 设(),,n x y z =是平面BDM 的一个法向量则00n BD n DM ⎧⋅=⎨⋅=⎩,即220220x z x y -=⎡⎢-+=⎣,取1x =得()1,1,1n = ∴41215933cos ,53||||5333CE CE CE n n n -+-⋅〈〉===⋅⨯∴直线EC 与平面BDM 所成的正弦值为15953 【点睛】本题考查线面垂直的证明以及用向量法求解线面角的正弦,难度一般.用向量方法求解线面角的正弦值时,注意直线方向向量与平面法向量夹角的余弦值的绝对值等于线面角的正弦值. 17. (Ⅰ)93;(Ⅱ)证明见解析;(Ⅲ)存在,13.【分析】(I )在Rt ADE △中,22AE AD DE =-,可得12ADE S AE DE =⋅,由于CD ⊥平面ADE ,可得13C ADE ADE V CD S -=⋅;(II )由CD ⊥平面ADE ,可得CD AE ⊥,进而得到AE ⊥平面CDE ,即可证明平面ACE ⊥平面CDE ;(III )在线段DE 上存在一点F ,使AF 平面BCE ,13EF ED =.设F 为线段DE 上的一点,且13EF ED =,过F 作FM CD 交CE 于点M ,由线面垂直的性质可得:CDAB .可得四边形ABMF 是平行四边形,于是AF BM ,即可证明AF 平面BCE【详解】(I )在Rt △ADE 中,2233AE AD DE =-=,因为CD ⊥平面ADE , 所以棱锥C-ADE 的体积为1193332C ADE ADE AE DE V S CD CD -∆⋅=⋅=⋅⋅=. (II )因为CD ⊥平面ADE ,AE ⊂平面ADE ,所以CD AE ⊥.又因为AE DE ⊥,CD DE D ⋂=,所以AE ⊥平面CDE ,又因为AE ⊂平面ACE ,所以平面ACE ⊥平面CDE.(III )在线段DE 上存在一点F ,且13EF ED =,使AF 平面BCE .解:设F 为线段DE 上一点,且13EF ED =,过点F 作//FM CD 交CE 于M ,则13FM CD =. 因为CD ⊥平面ADE ,AB ⊥平面ADE ,所以//CD AB ,又因为3CD AB = 所以MF AB =,//FM AB ,所以四边形ABMF 是平行四边形,则//AF BM . 又因为AF ⊄平面BCE ,BM ⊂平面BCE ,所以//AF 平面BCE .18.(1)证明见解析;(2)65.【分析】(1)连接1OA ,OC ,结合勾股定理和等边三角形的性质,证得1OA OC ⊥和OC DE ⊥,利用线面垂直的判定定理,得到OC ⊥平面1A DE ,再由面面垂直的判定定理,即可证得平面1A DE ⊥平面BCD.(2)以OC 的方向为x 轴的正方向建立如图所示的空间直角坐标系O -xyz ,分别求得平面1A BE 和平面1A CD 的一个法向量,结合向量的夹角公式,即可求解.【详解】(1)由题意,四边形BCDE 为菱形,连接CE ,取DE 的中点O ,连接1OA ,OC ,如图所示,在ADE 中,60AED ABC ∠=∠=︒,且2DE =,1AE =,可得,AD =则222DE AE AD =+,则90EAD ∠=︒,即AD AE ⊥,即11A D A E ⊥.因为O 是DE 的中点,所以1112OA DE ==, 因为60CDE ABC ∠=∠=︒,所以CDE ∆为等边三角形,所以OC DE ⊥,且OC =所以22211A C OA OC =+,所以190A OC ∠=︒,即1OA OC ⊥.又因为OC DE ⊥,且1OA DE O ⋂=,所以OC ⊥平面1A DE ,又因为OC ⊂平面BCD ,所以平面1A DE ⊥平面BCD.(2)以OC 的方向为x 轴的正方向建立如图所示的空间直角坐标系O -xyz ,则(0,1,0)D ,(0,1,0)E -,(3,0,0)C ,(3,2,0)B -,1130,,22A ⎛⎫- ⎪ ⎪⎝⎭, 设平面1A BE 的法向量为(,,)m x y z =,则13013022m BE x y m EA y z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,令1z =,可得(1,3,1)m =--, 设平面1A CD 的法向量为(),,n x y z '''=,则13033022n CD x y n DA y z ⎧⋅=-+=⎪⎨⋅'''=-+=⎪⎩',令1x '=,得(1,3,3)n =. 因为13365cos ,65||||513m n m n m n ⋅--+〈〉===-⨯. 所以平面1A BE 与平面1A CD 所成锐二面角的余弦值为6565.19.(1)证明见解析;(2387.【分析】(1)连接BD 交AC 于O ,连接OE ,可证1//OE BD ,从而得线面平行;(2)取AD 中点M ,连接1MA ,MC ,由已知证明1A M ⊥平面ABCD ,MC AD ⊥,以1,,MC MD MA 为,,x y z 轴建立空间直角坐标系,设2AD =,得出各点坐标,求出平面AEC 的法向量n ,由法向量n 与1A D 的夹角的余弦值的绝对值等于直线1A D 与平面AEC 所成有的正弦可得.【详解】(1)连接BD 交AC 于O ,连接OE ,∵ABCD 是菱形,∴O 是BD 中点,又E 是1DD 中点,∴1//OE BD ,1BD ⊄平面AEC ,OE ⊂平面AEC ,∴1//BD 平面ACE ;(2)取AD 中点M ,连接1MA ,MC ,∵11AA A D =,∴1A M AD ⊥,又平面11A ADD ⊥平面ABCD ,平面11A ADD 平面ABCD AD =,∴1A M ⊥平面ABCD ,又菱形ABCD 中,60ABC ∠=︒,所以ABC 和ACD △都是等边三角形,所以MC AD ⊥,如图,以1,,MC MD MA 为,,x y z 轴建立空间直角坐标系,设2AD =, 则3MC =,222211213A M A A AM =-=-=∴(0,1,0)A -,(0,1,0)D ,3,0,0)C ,13)A ,13)D ,33(0,,22E , ∴1(0,1,3)A D =-,(3,1,0)AC =,53(0,,22AE =, 设(,,)n x y z =是平面ACE 的一个法向量,则 305302n AC x y n AE y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,令1x =,则3y =5z =,(1,3,5)n =-, 设直线1A D 与平面ACE 所成角为θ, 则111353387sin cos ,29292n A Dn A D n A D θ⋅--=<>===⨯.【点睛】本题考查证明线面平行,考查用空间向量法求线面角.求空间角的常用方法是空间向量法,在题中有垂直的情况下,常常取过同一点且两两垂直的三条直线为坐标轴建立空间直角坐标系,用空间向量法求空间角,考查了学生的运算求解能力.20.(1)证明见解析;(225;(3)23CQ CP =.【分析】(1)建立适当的空间直角坐标系,确定各点坐标,得到0DE AC ⋅=,0DE AP ⋅=,根据线面垂直的判定定理,即可证明.(2)由(1)可知,平面PAC 的法向量(2,1,0)m =-,确定平面PCD 的法向量(2,2,1)n =-,根据cos ,||||m n m n m n ⋅〈〉=⋅,求解即可. (3)设(01)CQ CPλλ=<<,确定(22,44,4)Q λλλ=--,(2,43,4)QE λλλ=--,根据直线QE 与平面PAC 5,求解λ,即可. 【详解】(1)因为PA ⊥平面ABCD ,AB平面ABCD ,AD ⊂平面ABCD所以PA AB ⊥,PA AD ⊥因为AB AD ⊥ 则以A 为坐标原点,建立如图所示的空间直角坐标系.由已知可得(0,0,0)A ,()2,0,0B ,(2,4,0)C ,(0,2,0)D ,(0,0,4)P ,(2,1,0)E . 所以(2,1,0)DE =-,(2,4,0)AC =,(0,0,4)AP =.因为221400DE AC ⋅=⨯-⨯+=,0DE AP ⋅=.所以DE AC ⊥,DE AP ⊥又AP AC A ⋂=,AP ⊂平面PAC ,AC ⊂平面PAC .所以DE ⊥平面PAC .(2)设平面PAC 的法向量m ,由(1)可知,(2,1,0)m DE ==-设平面PCD 的法向量(,,)n x y z =因为(0,2,4)PD =-,(2,4,4)PC =-.所以00n PD n PC ⎧⋅=⎨⋅=⎩,即2402440y z x y z -=⎧⎨+-=⎩ 不妨设1z =,得(2,2,1)n =-. 2222225cos ,||||2(1)(2)21m n m n m n ⋅⨯〈〉===⋅+-⨯-++ 所以二面角A PC D --25. (3)设(01)CQ CPλλ=<<,即(2,4,4)CQ CP λλλλ==--. 所以(22,44,4)Q λλλ=--,即(2,43,4)QE λλλ=--.因为直线QE 与平面PAC 5所以2||cos ,5||||2QE m QE m QE m ⋅〈〉===⋅+∣3=解得23λ=即23CQ CP =. 【点睛】本题考查空间向量在立体几何中的应用,考查综合分析求解与论证能力,属于较难题. 21.(1)证明见解析(2)11【分析】(1)通过证明BE ⊥平面APC ,得到BE PO ⊥,再证PO AC ⊥即可证得PO ⊥平面ABCD . (2)建立空间直角坐标系,求出平面的法向量、直线的方向向量,利用空间向量法求出线面角的正弦值.【详解】(1)证明:AP ⊥平面PCD ,CD ⊂平面PCD ,AP CD ∴⊥, //,AD BC 12BC AD =,E 为AD 的中点,则//BC DE 且BC DE =. ∴四边形BCDE 为平行四边形,//BE CD ∴,AP BE ∴⊥.又,AB BC ⊥12AB BC AD ==,且E 为AD 的中点,∴四边形ABCE 为正方形,BE AC ∴⊥,又,AP AC A =BE ∴⊥平面APC ,PO ⊂平面APC ,则BE PO ⊥.AP ⊥平面,PCD PC ⊂平面PCD ,AP PC ∴⊥,又AC ==,PAC ∴∆为等腰直角三角形,O 为斜边AC 上的中点,PO AC ∴⊥且,ACBE O =PO ∴⊥平面ABCD . (2)解:以O 为坐标原点,建立空间直角坐标系O -xyz ,如图所示不妨设1OB =,则(1,0,0),B (0,1,0),C (0,0,1),P (2,1,0)D -,则(1,1,0),BC =-(1,0,1),PB =-(2,1,1)PD =--.设平面PBD 的法向量为(,,)n x y z =,则00n PB n PD ⎧⋅=⎨⋅=⎩,,即0,20,x z x y z -=⎧⎨-+-=⎩即,3,x z y z =⎧⎨=⎩ 令1z =,得(1,3,1)n =.设BC 与平面PBD 所成角为θ, 则()2222211310122sin cos ,13111BC n θ-⨯+⨯+⨯=<>==++-+【点睛】本题考查线面垂直,线面角的计算,属于中档题. 22.(1)证明见解析;(2)14.【分析】(1)取AD 中点E ,连接PE 、BE 、BD ,由平面几何的知识可得AD PE ⊥、AD BE ⊥,由线面垂直的判定可得AD ⊥平面PBE ,再由线面垂直的性质即可得证; (2)由题意建立空间直角坐标系,求出所需点的坐标后,再求出33,22BC ⎛⎫=-- ⎪ ⎪⎝⎭、平面ADP 的一个法向量为n ,由sin cos ,n BC α=即可得解.【详解】(1)证明:取AD 中点E ,连接PE 、BE 、BD ,如图:ADP △是等腰直角三角形,且2AP DP ==,∴AD PE ⊥且2AD =,2AB =且60BAD ∠=,∴ABD △是等边三角形,∴AD BE ⊥,又BE PE E ⋂=,∴AD ⊥平面PBE , BP ⊂平面PBE ,∴AD BP ⊥;(2)AE ⊥平面PBE ,以E 为坐标原点,分别以AE ,BE 为x 轴、y 轴,过点E 与平面ABCD 垂直的方向为z 轴建立空间直角坐标系E-xyz 如图所示:则()()()()0,0,0,1,0,0,3,0,1,0,0E A B D -,()213,0AB DC =-=,∴33(,22C -, 1PE =,3EB =7BP =∴2223cos 22PE EB BP PEB PE EB +-∠==-⋅,∴150PEB ∠=,∴310,,22P ⎛⎫- ⎪ ⎪⎝⎭, 则33,22BC ⎛⎫=-- ⎪ ⎪⎝⎭,()2,0,0AD =-,311,22AP ⎛⎫=-- ⎪⎝⎭, 设平面ADP 的一个法向量为(,,)n x y z =,则20102n AD x n AP x y z ⎧⋅=-=⎪⎨⋅=--+=⎪⎩,取y =(0,3,3)n =, 设直线BC 与平面ADP 所成角为α, 则1sin cos ,43n BCn BC n BC α⋅====⋅. 【点睛】本题考查了线面垂直的判定与性质、利用空间向量求线面角的应用,考查了空间思维能力与运算求解能力,属于中档题.。

高中数学立体几何题型归纳

高中数学立体几何题型归纳

高中数学立体几何题型归纳
高中数学立体几何是高考数学的一个重要组成部分,其题型归纳如下:
1. 计算题:主要要求异面直线所成的角、直线与平面所成的角、二面角、点到面的距离、表面积、体积等。

2. 证明题:主要证明线线平行或垂直、线面平行或垂直、面面平行或垂直、多点共线、多点共面、多线共面等。

3. 三视图问题:要求画出简单空间图形 (长方体、球、圆柱、圆锥、棱柱等的简易组合) 的三视图,并能识别上述三视图所表示的立体模型。

4. 空间直线与平面的位置关系问题:要求判断直线与平面的位置关系 (包括平行、垂直、相交等),并求解距离、角度等。

5. 空间向量问题:要求理解空间向量的概念,掌握空间向量的加减法和数量积运算法则,能够运用空间向量求解立体几何问题。

6. 空间点、线、面之间的位置关系问题:要求判断点、线、面之间的位置关系 (包括平行、垂直、相交等),并求解距离、角度等。

7. 立体几何中的证明题:主要证明线线平行或垂直、线面平行或垂直、面面平行或垂直、多点共线、多点共面、多线共面等。

此外,还有一些特殊的立体几何问题,如立方体问题、圆锥问题、球体问题等。

对于这些问题,需要结合实际情况进行具体分析,并注重理解和掌握相关的概念、定理和公式。

高中数学高考总复习立体几何平行与垂直的判断习题及详解

高中数学高考总复习立体几何平行与垂直的判断习题及详解

高中数学高考总复习立体几何平行与垂直的判断习题及详解一、选择题1.(文)(09·福建)设m,n是平面α内的两条不同直线;l1,l2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是()A.m∥β且l1∥αB.m∥l1且n∥l2C.m∥β且n∥βD.m∥β且n∥l2[答案] B[解析]如图(1),α∩β=l,m∥l,l1∥l,满足m∥β且l1∥α,故排除A;如图(2),α∩β=l,m∥n∥l,满足m∥β,n∥β,故排除C.在图(2)中,m∥n∥l∥l2满足m∥β,n∥l2,故排除D,故选B.[点评]∵l1与l2相交,m∥l1,n∥l2,∴m与n相交,由面面平行的判定定理可知α∥β;但当m、n⊂α,l1,l2⊂β,l1与l2相交,α∥β时,如图(3),得不出m∥l1且n∥l2.(理)设a,b是两条直线,α,β是两个平面,则a⊥b的一个充分条件是()A.a⊥α,b∥β,α⊥βB.a⊥α,b⊥β,α∥βC.a⊂α,b⊥β,α∥βD.a⊂α,b∥β,α⊥β[答案] C[解析]对于A,如图正方体α、β分别为平面ABCD与平面ADD1A1,a、b分别为直线B1B和C1C.a与b也可能平行,对于B,∵a⊥α,α∥β,∴a⊥β,又b⊥β,∴a∥b,对于D,a与b也可能平行,故选C.2.(2010·郑州检测)已知α,β,γ是三个不同的平面,命题“α∥β,且α⊥γ⇒β⊥γ”是真命题.如果把α,β,γ中的任意两个换成直线,另一个保持不变,在所得的所有新命题中,真命题有()A.0个B.1个C.2个D.3个[答案] C[解析]依题意得,命题“a∥b,且a⊥γ⇒b⊥γ”是真命题(由“若两条平行线中的一条与一个平面垂直,则另一条也与这个平面垂直”可知);命题“a∥β,且a⊥c⇒β⊥c”是假命题(直线c可能位于平面β内,此时结论不成立);命题“α∥b,且α⊥c⇒b⊥c”是真命题(因为α∥b,因此在平面α内必存在直线b1∥b;又α⊥c,因此c∥b1,c⊥b).综上所述,其中真命题共有2个,选C.3.(2010·东北三校模拟)正方体ABCD -A 1B 1C 1D 1中,M ,N ,P 分别为A 1B 1,CD ,B 1C 1的中点,则下列命题正确的是( )A .AM 与PC 是异面直线B .AM ⊥PC C .AM ∥平面BC 1ND .四边形AMC 1N 为正方形 [答案] C[解析] 连接MP ,AC ,A 1C 1,AM ,C 1N ,由题易知MP ∥A 1C 1∥AC ,且MP =12AC ,所以AM 与PC 是相交直线,假设AM ⊥PC ,∵BC ⊥平面ABB 1A 1,∴BC ⊥AM ,∴AM ⊥平面BCC 1B 1,又AB ⊥平面BCC 1B 1矛盾,∴AM 与PC 不垂直.因为AM ∥C 1N ,C 1N ⊂平面BC 1N ,所以AM ∥平面BC 1N .又易得四边形AMC 1N 为菱形而不是正方形,故选C.4.(文)对两条不相交的空间直线a 与b ,必存在平面α,使得( ) A .a ⊂α,b ⊂α B .a ⊂α,b ∥α C .a ⊥α,b ⊥αD .a ⊂α,b ⊥α[答案] B[解析] a 、b 异面时,A 错,C 错;若D 正确,则必有a ⊥b ,故排除A 、C 、D ,选B.(理)设a 、b 为两条直线,α、β为两个平面.下列四个命题中,正确的命题是( ) A .若a 、b 与α所成的角相等,则a ∥b B .若a ∥α,b ∥β,α∥β,则a ∥b C .若a ⊂α,b ⊂β,a ∥b ,则α∥β D .若a ⊥α,b ⊥β,α⊥β,则a ⊥b [答案] D[解析] 若直线a 、b 与α成等角,则a 、b 平行、相交或异面;对选项B ,如a ∥α,b ∥β,α∥β,则a 、b 平行、相交或异面;对选项C ,若a ⊂α,b ⊂β,a ∥b ,则α、β平行或相交;对选项D ,由⎭⎪⎬⎪⎫a ⊥αβ⊥α⇒a ∥β或a ⊂β,无论哪种情形,由b ⊥β都有b ⊥a .,故选D. 5.一个正方体纸盒展开后如图,在原正方体纸盒中有下列结论:①AB ⊥EF ②AB 与CM 成60°③EF 与MN 是异面直线④MN ∥CD 其中正确的是( )A.①②B.③④C.②③D.①③[答案] D[解析]本题考查学生的空间想象能力,将其还原成正方体如图所示,AB⊥EF,EF与MN是异面直线,AB∥CM,MN⊥CD.只有①③正确,故选D.6.(文)(2010·山东潍坊)已知m、n是两条不同的直线,α、β、γ是三个不同的平面,则下列命题正确的是()A.若α⊥γ,α⊥β,则γ∥βB.若m∥n,m⊂α,n⊂β,则α∥βC.若m∥n,m∥α,则n∥αD.若m∥n,m⊥α,n⊥β,则α∥β[答案] D[解析]对于选项A,两平面β、γ同垂直于平面α,平面β与平面γ可能平行,也可能相交;对于选项B,平面α、β可能平行,也可能相交;对于选项C,直线n可能与平面α平行,也可能在平面α内;对于选项D,∵m∥n,m⊥α,∴n⊥α,又n⊥β,∴α∥β,故选D.(理)(2010·曲师大附中)已知两个不同的平面α,β和两条不重合的直线a,b,则下列四个命题中为真命题的是()A.若a∥b,b⊂α,则a∥αB.若α⊥β,α∩β=b,a⊥b,则a⊥βC.若a⊂α,b⊂α,a∥β,b∥β,则α∥βD.若α∥β,a⊄α,a⊄β,a∥α,则a∥β[答案] D[解析]选项A中,直线a可能在平面α内;选项B中,直线a可能在平面β内;选项C 中,直线a ,b 为相交直线时命题才成立.7.(2010·江苏南通)在正方体ABCD -A 1B 1C 1D 1中,P 、Q 分别是棱AA 1、CC 1的中点,则过点B 、P 、Q 的截面是( )A .邻边不等的平行四边形B .菱形但不是正方形C .邻边不等的矩形D .正方形 [答案] B[解析] 设正方体棱长为1,连结D 1P ,D 1Q ,则易得PB =PQ =D 1P =D 1Q =52,取D 1D 的中点M ,则D 1P 綊AM 綊BQ ,故截面为四边形PBQD 1,它是一个菱形,又PQ =AC =2,∴∠PBQ 不是直角,故选B.8.(文)(2010·山东日照、聊城模考)已知直线l 、m ,平面α、β,且l ⊥α,m ⊂β,给出下列四个命题:①若α∥β,则l ⊥m ;②若l ⊥m ,则α∥β;③若α⊥β,则l ∥m ;④若l ∥m ,则α⊥β; 其中真命题是( ) A .①② B .①③ C .①④D .②④[答案] C [解析][点评] 如图,α∩β=m ,则l ⊥m ,故(2)假;在上述图形中,当α⊥β时,知③假.(理)(2010·福建福州市)对于平面α和共面的直线m ,n ,下列命题是真命题的是( ) A .若m ,n 与α所成的角相等,则m ∥n B .若m ∥α,n ∥α,则m ∥nC.若m⊥α,m⊥n,则n∥αD.若m⊂α,n∥α,则m∥n[答案] D[解析]正三棱锥P-ABC的侧棱P A、PB与底面成角相等,但P A与PB相交应排除A;若m∥α,n∥α,则m与n平行、相交或异面,应排除B;若m⊥α,m⊥n,则n∥α或n⊂α,应排除C.∵m、n共面,设经过m、n的平面为β,∵m⊂α,∴α∩β=m,∵n∥α,∴n∥m,故D正确.9.(文)(2010·北京顺义一中月考)已知l是直线,α、β是两个不同平面,下列命题中的真命题是()A.若l∥α,l∥β,则α∥βB.若α⊥β,l∥α,则l⊥βC.若l⊥α,l∥β,则α⊥βD.若l∥α,α∥β,则l∥β[答案] C[解析]如图在正方体ABCD-A1B1C1D1中,取平面ABD1A1为α,平面ABCD为β,B1C1为l,则排除A、B;又取平面ADD1A1为α,平面BCC1B1为β,B1C1为l,排除D.(理)(2010·广东罗湖区调研)已知相异直线a,b和不重合平面α,β,则a∥b的一个充分条件是()A.a∥α,b∥αB.a∥α,b∥β,α∥βC.a⊥α,b⊥β,α∥βD.α⊥β,a⊥α,b∥β[答案] C[解析]a∥α,b∥α时,a与b可相交可异面也可平行,故A错;a∥α,b∥β,α∥β时,a与b可异面,故B错;由α⊥β,a⊥α得,a∥β或a⊂β,又b∥β,此时a与b可平行也可异面,排除D.10.(2010·日照实验高中)如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,AB =1,M ,N 分别在AD 1,BC 上移动,且始终保持MN ∥平面DCC 1D 1,设BN =x ,MN =y ,则函数y =f (x )的图象大致是( )[答案] C[解析] 过M 作ME ⊥AD 于E ,连接EN ,则平面MEN ∥平面DCC 1D 1,所以BN =AE =x (0≤x <1),ME =2x ,MN 2=ME 2+EN 2,则y 2=4x 2+1,y 2-4x 2=1(0≤x <1,y >0),图象应是焦点在y 轴上的双曲线的一部分.故选C.二、填空题11.(文)如图,在正四棱柱ABCD -A 1B 1C 1D 1中,E 、F 、G 、H 分别是棱CC 1、C 1D 1、D 1D 、DC 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则M 满足条件________时,有MN ∥平面B 1BDD 1.[答案] M ∈线段FH[解析] 因为HN ∥BD ,HF ∥DD 1,所以平面NHF ∥平面B 1BDD 1,又平面NHF ∩平面EFGH =FH .故线段FH 上任意点M 与N 相连,有MN ∥平面B 1BDD 1,故填M ∈线段FH .(理)(2010·南充市模拟)已知两异面直线a ,b 所成的角为π3,直线l 分别与a ,b 所成的角都是θ,则θ的取值范围是________.[答案] [π6,π2]12.在四面体ABCD 中,M 、N 分别是△ACD 、△BCD 的重心,则四面体的四个面中与MN 平行的是________.[答案] 面ABC 和面ABD[解析] 连结AM 并延长交CD 于点E ,∵M 为△ACD 的重心,∴E 为CD 的中点, 又N 为△BCD 的重心,∴B 、N 、E 三点共线, 由EM MA =EN NB =12得MN ∥AB , 因此MN ∥平面ABC ,MN ∥平面ABD .13.如图是一正方体的表面展开图,B 、N 、Q 都是所在棱的中点,则在原正方体中, ①AB 与CD 相交;②MN ∥PQ ;③AB ∥PE ;④MN 与CD 异面;⑤MN ∥平面PQC . 其中真命题的序号是________.[答案] ①②④⑤[解析] 将正方体还原后如图,则N 与B 重合,A 与C 重合,E 与D 重合,∴①、②、④、⑤为真命题.14.如图所示,正方体ABCD -A 1B 1C 1D 1的棱长为a ,点P 是棱AD 上一点,且AP =a3,过B 1,D 1,P 的平面交底面ABCD 于PQ ,Q 在直线CD 上,则PQ =________.[答案]223a [解析] ∵B 1D 1∥平面ABCD ,平面B 1D 1P ∩平面ABCD =PQ ,∴B 1D 1∥PQ , 又B 1D 1∥BD ,∴BD ∥PQ ,设PQ ∩AB =M ,∵AB ∥CD ,∴△APM ∽△DPQ ,∴PQ PM =PDAP=2,即PQ =2PM , 又△APM ∽△ADP ,∴PM BD =AP AD =13,∴PM =13BD ,又BD =2a ,∴PQ =223a .三、解答题15.(文)(2010·南京调研)如图,在四棱锥E -ABCD 中,四边形ABCD 为平行四边形,BE =EC ,AE ⊥BE ,M 为CE 上一点,且BM ⊥平面ACE .(1)求证:AE ⊥BC ;(2)如果点N 为线段AB 的中点,求证:MN ∥平面ADE .[解析] (1)因为BM ⊥平面ACE ,AE ⊂平面ACE ,所以BM ⊥AE .因为AE ⊥BE ,且BE ∩BM =B ,BE 、BM ⊂平面EBC ,所以AE ⊥平面EBC . 因为BC ⊂平面EBC ,所以AE ⊥BC . (2)解法1:取DE 中点H ,连接MH 、AH .因为BM ⊥平面ACE ,EC ⊂平面ACE ,所以BM ⊥EC . 因为BE =BC ,所以M 为CE 的中点. 所以MH 为△EDC 的中位线,所以MH 綊12DC .因为四边形ABCD 为平行四边形,所以DC 綊AB . 故MH 綊12AB .因为N 为AB 的中点,所以MH 綊AN .所以四边形ANMH 为平行四边形,所以MN ∥AH . 因为MN ⊄平面ADE ,AH ⊂平面ADE , 所以MN ∥平面ADE .解法2:取EB 的中点F ,连接MF 、NF .因为BM ⊥平面ACE ,EC ⊂平面ACE ,所以BM ⊥EC . 因为BE =BC ,所以M 为CE 的中点,所以MF ∥BC .因为N 为AB 的中点,所以NF ∥AE , 因为四边形ABCD 为平行四边形, 所以AD ∥BC .所以MF ∥AD .因为NF 、MF ⊄平面ADE ,AD 、AE ⊂平面ADE , 所以NF ∥平面ADE ,MF ∥平面ADE . 因为MF ∩NF =F ,MF 、NF ⊂平面MNF , 所以平面MNF ∥平面ADE .因为MN ⊂平面MNF ,所以MN ∥平面ADE .(理)(2010·厦门市质检)如图所示的几何体中,△ABC 为正三角形,AE 和CD 都垂直于平面ABC ,且AE =AB =2,CD =1,F 为BE 的中点.(1)若点G 在AB 上,试确定G 点位置,使FG ∥平面ADE ,并加以证明;(2)在(1)的条件下,求三棱锥D -ABF 的体积. [解析] (1)当G 是AB 的中点时,GF ∥平面ADE . ∵G 是AB 的中点,F 是BE 的中点, ∴GF ∥AE ,又GF ⊄平面ADE ,AE ⊂平面ADE , ∴GF ∥平面ADE . (2)连接CG ,由(1)可知: GF ∥AE ,且GF =12AE .又AE ⊥平面ABC ,CD ⊥平面ABC ,∴CD ∥AE , 又CD =12AE ,∴GF ∥CD ,GF =CD ,∴四边形CDFG 为平行四边形, ∴DF ∥CG ,且DF =CG .又∵AE ⊥平面ABC ,CG ⊂平面ABC ,∴AE ⊥CG . ∵△ABC 为正三角形,G 为AB 的中点, ∴CG ⊥AB ,又AB ∩AE =A ,∴CG ⊥平面ABE . 又CG ∥DF ,且CG =DF ,∴DF 为三棱锥D -ABF 的高,且DF = 3. 又AE ⊥平面ABC ,AB ⊂平面ABC ,∴AE ⊥AB . ∵在Rt △ABE 中,AB =AE =2,F 为BE 的中点,∴S △ABF =12S △ABE =12×12×2×2=1.∴V D -ABF =13S △ABF ·DF =13×1×3=33,∴三棱锥D -ABF 的体积为33. 16.(文)(2010·安徽合肥质检)如图,PO ⊥平面ABCD ,点O 在AB 上,EA ∥PO ,四边形ABCD 为直角梯形,BC ⊥AB ,BC =CD =BO =PO ,EA =AO =12CD .(1)求证:BC ⊥平面ABPE ;(2)直线PE 上是否存在点M ,使DM ∥平面PBC ,若存在,求出点M ;若不存在,说明理由.[解析] (1)∵PO ⊥平面ABCD , BC ⊂平面ABCD ,∴BC ⊥PO ,又BC ⊥AB ,AB ∩PO =O ,AB ⊂平面ABP ,PO ⊂平面ABP ,∴BC ⊥平面ABP , 又EA ∥PO ,AO ⊂平面ABP , ∴EA ⊂平面ABP ,∴BC ⊥平面ABPE . (2)点E 即为所求的点,即点M 与点E 重合. 取PO 的中点N ,连结EN 并延长交PB 于F , ∵EA =1,PO =2,∴NO =1,又EA 与PO 都与平面ABCD 垂直,∴EF ∥AB , ∴F 为PB 的中点,∴NF =12OB =1,∴EF =2,又CD =2,EF ∥AB ∥CD ,∴四边形DCFE 为平行四边形,∴DE ∥CF , ∵CF ⊂平面PBC ,DE ⊄平面PBC , ∴DE ∥平面PBC .∴当M 与E 重合时即可.(理)在长方体ABCD -A 1B 1C 1D 1中,O 为底面正方形的中心,过A 1、C 1、B 三点的平面截去长方体的一个角后,得到如图所示的几何体ABCD -A 1C 1D 1及其三视图.(1)求证:D1O∥平面A1BC1;(2)是否存在过点A1与直线DC1垂直的平面A1PQ,与线段BC1交于点P,与线段CC1交于点Q?若存在,求出线段PQ的长;若不存在,请说明理由.[分析]要证D1O∥平面A1BC1,∵O为DB的中点,∴取A1C1中点E,只须证D1E綊OB,或利用长方体为正四棱柱的特性,证明平面ACD1∥平面A1C1B,假设存在平面A1PQ ⊥DC1,利用正四棱柱中,BC⊥平面DCC1D1,故有BC⊥DC1,从而平面A1PQ与平面BCC1的交线PQ⊥DC1,故只须在面DCC1D1的边CC1上寻找点Q,使D1Q⊥DC1即可.[解析](1)连接AC,AD1,D1C,易知点O在AC上.D1、四边形A1D1CB均为平行四边根据长方体的性质得四边形ABC Array 1形,∴AD1∥BC1,A1B∥D1C,又∵AD1⊄平面A1C1B,BC1⊂平面A1C1B,∴AD1∥平面A1C1B,同理D1C∥平面A1BC1,又∵D1C∩AD1=D1,∴根据面面平行的判定定理知平面ACD1∥平面A1BC1.∵D1O⊂平面ACD1,∴D1O∥平面A1BC1.(2)假设存在过点A1与直线DC1垂直的平面A1PQ,与线段BC1交于点P,与线段CC1交于点Q.D,过点D1作C1D的垂线交C1C于点Q,过点Q作PQ连接C Array 1∥BC交BC1于点P,连接A1P,A1Q.∵C1D⊥D1Q,C1D⊥A1D1,D1Q∩A1D1=D1,∴C1D⊥平面A1D1Q.∵A1Q⊂平面A1D1Q,∴C1D⊥A1Q.∵PQ∥BC∥A1D1,∴C1D⊥PQ,∵A1Q∩PQ=Q,∴C1D⊥平面A1PQ.∴存在过点A1与直线DC1垂直的平面A1PQ,与线段BC1交于点P,与线段CC1交于点Q.在矩形CDD 1C 1中,∵Rt △D 1C 1Q ∽Rt △C 1CD ,∴C 1Q CD =D 1C 1C 1C ,结合三视图得C 1Q 2=24,∴C 1Q =1. ∵PQ ∥BC ,∴PQ BC =C 1Q CC 1=14,∴PQ =14BC =12. 17.(文)(2010·东北师大附中)如图所示,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为DD 1、DB 的中点.(1)求证:EF ∥平面ABC 1D 1;(2)求证:EF ⊥B 1C ;(3)求三棱锥B 1-EFC 的体积.[解析] (1)证明:连结BD 1,在△DD 1B 中,E 、F 分别为D 1D ,DB 的中点,则EF ∥D 1B ,又EF ⊄平面ABC 1D 1,D 1B ⊂平面ABC 1D 1,∴EF ∥平面ABC 1D 1.(2)证明:∵B 1C ⊥AB ,B 1C ⊥BC 1,AB ∩BC 1=B ,∴B 1C ⊥平面ABC 1D 1,又BD 1⊂平面ABC 1D 1,∴B 1C ⊥BD 1,又EF ∥BD 1,∴EF ⊥B 1C .(3)解:∵CF ⊥BD ,CF ⊥BB 1,∴CF ⊥平面BDD 1B 1,即CF ⊥平面EFB 1,且CF =BF = 2∵EF =12BD 1=3,B 1F =BF 2+BB 12=(2)2+22=6,B 1E =B 1D 12+D 1E 2=12+(22)2=3,∴EF 2+B 1F 2=B 1E 2,即∠EFB 1=90°,∴VB 1-EFC =VC -B 1EF =13·S △B 1EF ·CF =13×12·EF ·B 1F ·CF =13×12×3×6×2=1. (理)(2010·河北唐山)如图,在四棱锥V -ABCD 中,底面ABCD 是矩形,侧棱VA ⊥底面ABCD ,E 、F 、G 分别为VA 、VB 、BC 的中点.(1)求证:平面EFG ∥平面VCD ;(2)当二面角V -BC -A 、V -DC -A 依次为45°、30°时,求直线VB 与平面EFG 所成的角.[解析] (1)∵E 、F 、G 分别为VA 、VB 、BC 的中点,∴EF ∥AB ,FG ∥VC ,又ABCD 是矩形,∴AB ∥CD ,∴EF ∥CD ,又∵EF ⊄平面VCD ,FG ⊄平面VCD ,∴EF ∥平面VCD ,FG ∥平面VCD ,又EF ∩FG =F ,∴平面EFG ∥平面VCD .(2)∵VA ⊥平面ABCD ,CD ⊥AD ,∴CD ⊥VD .则∠VDA 为二面角V -DC -A 的平面角,∴∠VDA =30°.同理∠VBA =45°.作AH ⊥VD ,垂足为H ,由上可知CD ⊥平面VAD ,则AH ⊥平面VCD .∵AB ∥平面VCD ,∴AH 即为B 到平面VCD 的距离.由(1)知,平面EFG ∥平面VCD ,则直线VB 与平面EFG 所成的角等于直线VB 与平面VCD 所成的角,记这个角为θ.∵AH =VA sin60°=32VA ,VB =2VA ,∴sin θ=AH VB =64, 故直线VB 与平面EFG 所成的角是arcsin64.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考《立体几何》判断命题题型集锦
练习一.
1.(安徽文理).已知,m n 是两条不同直线,,,αβγ是三个不同平面,下列命题中正确的是( )
A.,,αγβγαβ⊥⊥若则‖ﻩ
B.,,m n m n αα⊥⊥若则‖
C.,,m n m n αα若则‖‖‖ ﻩ D.,,m m αβαβ若则‖‖‖
2.(宁夏文)已知平面α⊥平面β,l αβ=,点A α∈,A l ∉,直线AB l ∥,直线AC l ⊥,
直线m m αβ∥,∥,则下列四种位置关系中,不一定...
成立的是( ) A .AB m ∥ ﻩ B.AC m ⊥ ﻩC.AB β∥ﻩﻩ D .AC β⊥
3.(湖南文)已知直线m,n和平面βα,满足βα⊥⊥⊥,,a m n m ,则 ( )
.A n β⊥ ,//.βn B 或β⊂n α⊥n C . ,//.αn D 或α⊂n
4(湖南理)设有直线m、n 和平面α、β.下列四个命题中,正确的是( )
A.若m ∥α,n∥α,则m∥n
B.若m⊂α,n ⊂α,m ∥β,n ∥β,则α∥β
C.若α⊥β,m ⊂α,则m ⊥β D.若α⊥β,m⊥β,m ⊄α,则m ∥α
5.(江西文).设直线m 与平面α相交但不.
垂直,则下列说法中正确的是( ) A.在平面α内有且只有一条直线与直线m 垂直
B.过直线m 有且只有一个平面与平面α垂直
C .与直线m 垂直的直线不.
可能与平面α平行 D .与直线m 平行的平面不.
可能与平面α垂直 6.(上海文理)给定空间中的直线l 及平面α.条件“直线l与平面α内两条相交直线都垂直”
是“直线l 与平面α垂直”的( )
A .充分非必要条件
B .必要非充分条件
C .充要条件 D.既非充分又非必要条件
7.(天津文理) 设a b ,是两条直线,αβ,是两个平面,则a b ⊥的一个充分条件是( )
A .a b αβαβ⊥⊥,∥,ﻩﻩ
B .a b αβαβ⊥⊥,,∥
C.a b αβαβ⊂⊥,,∥ﻩﻩ
D.a b αβαβ⊂⊥,∥,
8. (浙江9)对两条不相交的空间直线a 和b ,必定存在平面α,使得 ( )
A.,a b αα⊂⊂ B.,//a b αα⊂ C.,a b αα⊥⊥ D .,a b αα⊂⊥
练习二.
1.(北京)平面α∥平面β的一个充分条件是( )
A.存在一条直线a a ααβ,∥,∥
B.存在一条直线
a a a αβ⊂,,∥
C.存在两条平行直线a b a b a b αββα⊂⊂,,,,∥,∥
D .存在两条异面直线a b a a b αβα⊂,,,∥,∥
2.(安徽)设l ,m ,n 均为直线,其中m ,n 在平面α内,“l α⊥”是l m ⊥且“l n ⊥”的( )
A .充分不必要条件 B.必要不充分条件 C.充分必要条件 D .既不充分也不必要
条件
3.(福建)已知m ,n 为两条不同的直线,α,β为两个不同的平面,则下列命题中正确的是( )
A .,,//,////m n m n ααββαβ⊂⊂⇒ B.,//m m n n αα⊥⊥⇒
C. //,,//m n m n αβαβ⊂⊂⇒ D. //,m n n m αα⊥⇒⊥
4.(湖北)平面α外有两条直线m 和n ,如果m 和n 在平面α内的射影分别是1m 和1n ,给出下列四个命题:①1m ⊥1n ⇒m ⊥n ; ②m ⊥n ⇒1m ⊥1n ;
③1m 与1n 相交⇒m 与n 相交或重合; ④1m 与1n 平行⇒m 与n 平行或重合;
其中不正确的命题个数是( )
A.1 B.2 C.3
D .4
5.(江苏)已知两条直线,m n ,两个平面,αβ,给出下面四个命题:
①//,m n m n αα⊥⇒⊥ ②//,,//m n m n αβαβ⊂⊂⇒
③//,////m n m n αα⇒ ④//,//,m n m n αβαβ⊥⇒⊥
其中正确命题的序号是( )
A.①③ B.②④ C .①④ D.②③
6.(辽宁 )若m n ,是两条不同的直线,αβγ,,是三个不同的平面,则下列命题中的真命题是( )
A.若m βαβ⊂⊥,,则m α⊥ﻩﻩB .若m α
γ=n βγ=,m n ∥,则αβ∥ C .若m β⊥,m α∥,则αβ⊥ﻩ D.若αγ⊥,αβ⊥,则βγ⊥
7.(天津)设a b ,为两条直线,αβ,为两个平面,下列四个命题中,正确的命题是( ) A.若a b ,与α所成的角相等,则a b ∥ B.若a b αβ,∥∥,αβ∥,则a b ∥ C.若a b a b αβ⊂⊂,,∥,则αβ∥ D .若a b αβ⊥⊥,,αβ⊥,则a b ⊥
8.(浙江)若P是两条异面直线,l m 外的任意一点,则( )
A.过点P 有且仅有一条直线与,l m 都平行 B .过点P 有且仅有一条直线与,l m 都垂直
C.过点P 有且仅有一条直线与,l m 都相交
D.过点P 有且仅有一条直线与,l m 都异面
练习三.
1.若空间中有四个点,则“这四个点中有三点在同一直线上”是“这四个点在同一平面上”的
A.充分非必要条件 B .必要非充分条件 C.充要条件 D .既非充分又非必要条件
2.设A 、B 、C、D 是空间四个不同的点,在下列命题中,不正确...
的是( ) (A )若A C与BD 共面,则AD 与B C共面
(B)若AC与BD 是异面直线,则AD 与BC 是异面直线
(C ) 若A B=AC ,DB =D C,则A D=B C
(D) 若AB =AC ,DB =DC,则A D ⊥BC
3. 对于任意的直线l 与平同a ,在平面a 内必有直线m ,使m与l ( )
(A)平行 (B)相交 (C)垂直 (D)互为异面直线
4.m 、n 是空间两条不同直线,αβ、是空间两条不同平面,下面有四个命题:
①,;m n m n αβαβ⊥⇒⊥, ②,,;m n m n αβαβ⊥⊥⇒ 
③,,;m n m n αβαβ⊥⇒⊥ 
④,,;m m n n ααββ⊥⇒⊥ 其中真命题的编号是________(写出所有真命题的编号)。

5.若l 为一条直线,αβγ,,为三个互不重合的平面,给出下面三个命题:
①αγβγαβ⊥⊥⇒⊥,;②αγβγαβ⊥⇒⊥,∥;③l l αβαβ⊥⇒⊥,∥.
其中正确的命题有( )
A .0个ﻩ
B .1个 C.2个ﻩﻩD.3个
6. 关于直线m 、n与平面α与β,有下列四个命题:
①若//,//m n αβ且//αβ,则//m n ; ②若,m n αβ⊥⊥且αβ⊥,则m n ⊥; ③若,//m n αβ⊥且//αβ,则m n ⊥; ④若//,m n αβ⊥且αβ⊥,则//m n ; 其中真命题的序号是
A .①②
B .③④ C.①④ D .②③
7. 对于平面α和共面的直线m 、,n 下列命题中真命题是
A .若,,m m n α⊥⊥则n α∥ B.若m αα∥,n ∥,则m ∥n
C .若,m n αα⊂∥,则m ∥n
D .若m 、n 与α所成的角相等,则m ∥n
8. 给出下列四个命题:
①垂直于同一直线的两条直线互相平行; ②垂直于同一平面的两个平面互相平行.
③若直线12,l l 与同一平面所成的角相等,则12,l l 互相平行.
④若直线12,l l 是异面直线,则与12,l l 都相交的两条直线是异面直线.
其中假.
命题的个数是: (A )1 (B)2 (C)3 (D)4 9.已知平面α外不共线的三点A,B,C 到α的距离都相等,则正确的结论是( )
A.平面AB C必平行于α B.平面ABC 必与α相交
C.平面ABC 必不垂直于α D .存在△ABC 的一条中位线平行于α或在α内
10. 给出以下四个命题:
错误!如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

错误!如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。

错误!如果两条直线都平行于一个平面,那么这两条直线互相平行。

错误!如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

其中真命题的个数是( )
A .4ﻩﻩ ﻩB.3 ﻩﻩC.2 ﻩ D.1。

相关文档
最新文档