2019-2020年初中毕业生学业考试和高中阶段招生考试说明(数学)
2019年滨州市初中数学学生学业水平考试说明

2019年滨州市初中学生学业水平考试说明数学一、考试内容滨州市2019年初中学生学业水平考试数学命题以教育部2011年颁布的《义务教育数学课程标准》所规定的教学内容及其要求为依据,以“数与代数”、“图形与几何”、“统计与概率”、“综合与实践”四个领域的内容为范围,考查的主要知识点如下:(一)数与代数1.数与式主要包括有理数、无理数、实数、代数式、整式、分式、二次根式的概念与运算(二次根式运算时根号下仅限于数),以及多项式的因式分解。
其中,有效数字不再作为考试内容。
2.方程与不等式主要包括方程、一元一次方程、一元二次方程、二元一次方程(组)、可化为一元一次方程的分式方程、一元一次不等式(组)的概念、解法、应用。
能用一元二次方程根的判别式判别方程是否有实根以及两个实根是否相等。
其中,一元一次不等式组的实际应用不再作为考试内容。
3.函数主要包括常量、变量的意义,函数的概念、图象、表示方法,一次函数、反比例函数、二次函数的概念、图象、性质、应用。
(二)图形与几何1.图形的性质主要包括点、线、面、角、相交线、平行线、三角形、四边形、圆等图形的概念、性质、判定,以及基本尺规作图方法与简单应用。
其中,梯形的性质与判定、圆与圆的位置关系、圆锥的侧面积与全面积不再作为考试内容。
2.图形的变化主要包括图形的轴对称、旋转、平移、相似(含锐角三角函数),常见几何体的视图与投影。
其中,视角(点)、盲区、平面图形的镶嵌不再作为考试内容。
3.图形与坐标主要包括坐标与图形位置、坐标与图形运动两部分内容。
(三)统计与概率1.抽样与数据分析主要包括数据的收集、整理、描述及简单分析。
其中,极差不再作为考试内容。
2.事件的概率主要包括概率的意义,会用列表、画树状图等方法求事件的概率,利用频率估计概率。
(四)综合与实践“综合与实践”的考查渗透于各知识点的考查之中。
二、考试形式、时间及分值采取闭卷、笔答形式,时间120分钟,满分150分。
2020年龙东地区中考数学学科考试说明

2020年龙东地区初中毕业学业考试数学学科考试说明一、命题范围以人教版“六·三”学制数学义务教育教材为准,以八、九年级教材为主。
二、考查内容与说明(一)考查内容数与代数1.有理数:(1)理解有理数的意义;(2)会比较有理数大小;(3)借助数轴理解相反数和绝对值的意义;(4)会求有理数的相反数;(5)会求有理数的绝对值;(6)掌握有理数的加、减、乘、除、乘方;(7)掌握简单的混合运算;(8)理解有理数的运算律;(9)能灵活处理较大数字的信息。
注:绝对值符号内不含字母;有理数的加、减、乘、除、乘方及简单的混合运算以三步为主.2.实数:(1)了解平(立)方根、算术平方根的概念;(2)会用根号表示数的平(立)方根;(3)了解最简二次根式的概念。
(4)会求平(立)方根;(5)了解无理数、实数的概念,理解实数与数轴上的点一一对应;(6)能用有理数估计无理数的大致范围;(7)了解近似数;(8)了解二次根式的概念及其加、减、乘、除运算法则;(9)会进行实数的简单四则运算。
注:实数的简单四则运算不要求分母有理化.3.代数式:(1)理解代数式的意义及表示;(2)理解代数式的实际背景或几何意义;(3)会求代数式的值。
4.整式与分式:(1)了解整数指数幂的意义及基本性质;(2)会用科学记数法表示数;(3)了解整式的概念,会进行简单的整式加、减运算及简单的乘法运算;(4)会推导乘法公式并能进行简单运算;(5)会用提公因式法、公式法进行因式分解;(6)掌握分式及基本性质;(7)会进行简单的分式加、减、乘、除运算。
注:简单的整式乘法运算中,多项式相乘仅指一次式相乘;乘法公式指:(a+b)(a-b)=a2-b2,(a±b)2=a2±2ab+b2;因式分解(指数是正整数)时,直接用公式不超过二次.5.方程(组):(1)会列方程解应用题;(2)用观察、画图或计算器等手段估计方程的解;(3)会解一元一次方程;(4)会解简单的二元一次方程组;(5)能解简单的三元一次方程组(6)会解可化为一元一次方程的分式方程;(7)掌握一元二次方程及其解法;(8)能用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等.(9)了解一元二次方程的根与系数的关系 (韦达定理)(10)根据具体问题的实际意义,检验结果是否合理.注:解可化为一元一次方程的分式方程,方程中的分式不超过两个;会用因式分解法、公式法、配方法解简单的数字系数的一元二次方程。
湖北荆州2019初中毕业生学业及升学考试试卷及解析-数学

湖北荆州2019初中毕业生学业及升学考试试卷及解析-数学数学本卷须知1、答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将准考证号条形码粘贴在答题卡指定位置、 2、选择题每题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号、答在试题卷上无效、 3、填空题和解答题用0.5毫米的黑色墨水签字笔答在答题卡上每题对应的答题区域内、答在试题卷上无效、4、考试结束,请将本试题卷和答题卡一并上交、【一】选择题(本大题10个小题,每题只有唯一正确答案,每题3分,共30分) 1、以下实数中,无理数是() A 、-52B 、πC、|-2| 2、用配方法解关于x 的一元二次方程x 2-2x -3=0,配方后的方程能够是()A 、(x -1)2=4B 、(x +1)2=4C 、(x -1)2=16D 、(x +1)2=16 3、:直线l 1∥l 2,一块含30°角的直角三角板如下图放置,∠1=25°,那么∠2等于()A 、30°B 、35°C 、40°D 、45°4|x -y -3|互为相反数,那么x +y 的值为() A 、3B 、9C 、12D 、275、关于一组统计数据:2,3,6,9,3,7,以下说法错误的选项是......() A 、众数是3B 、中位数是6C 、平均数是5D 、极差是7 6、点M (1-2m ,m -1)关于x 轴的对称点...在第一象限,那么m 的取值范围在数轴上表示正确的选项是()7、以下4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,那么与△ABC 相似的三角形所在的网格图形是()8、如图,点A 是反比例函数y =2x(x >0)的图象上任意一点,AB ∥x 轴交反比例函数y =-3x的图象于点B ,以AB 为边作□ABCD ,其中C 、D 在x 轴上,那么S □ABCD 为()A 、2B、3C 、4D 、5 9、如图,△ABC 是等边三角形,P 是∠ABC 的平分线BD 上一点,PE ⊥AB 于点E ,线段BP 的垂直平分线交BC 于点F ,垂足为点Q 、假设BF =2,那么PE 的长为()A CBl 1 1第3题图l 22第8题图第9题图ADE F P QCBA、2B、CD、310、:顺次连结矩形各边的中点,得到一个菱形,如图①;再顺次连结菱形各边的中点,得到一个新的矩形,如图②;然后顺次连结新的矩形各边的中点,得到一个新的菱形,如图③;如此反复操作下去,那么第2018个图形中直角三角形的个数有()A、8048个B、4024个C、2018个D、1066个【二】填空题(本大题共8个小题,每题3分,共24分)11-(-2)-2-2)0=__▲__、12.假设92+-yx与3--yx互为相反数,那么x+y=__▲__13.如图,正方形ABCD的对角线长为ABCD沿直线EF折叠,那么图中阴影部分的周长为__▲__14、:多项式x2-kx+1是一个完全平方式,那么反比例函数y=1kx-的解析式为_▲__ 15、如图,在直角坐标系中,四边形OABC是直角梯形,BC∥OA,⊙P(此处原题仍用字母O,与表示坐标原点的字母重复——录入者注)分别与OA、OC、BC相切于点E、D、B,与AB 交于点F、A(2,0),B(1,2),那么tan∠FDE=__▲__、16、如图是一个上下底密封纸盒的三视图,请你依照图中数据,计算那个密封纸盒的表面积为__▲__cm2、(结果可保留根号)17、新定义:[a,b]为一次函数y=ax+b(a≠0,a,b为实数)的“关联数”、假设“关联数”[1,m-2]的一次函数是正比例函数,那么关于x的方程11x-+1m=1的解为__▲__、18、如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B动身,点P沿折线BE—ED—DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度基本上1cm/秒、设P、Q同发t秒时,△BPQ的面积为y cm2、y与t的函数关系图象如图(2)(曲线OM 为抛物线的一部分),那么以下结论:AD=BE=5;cos∠ABE=35;当0<t≤5时,y=25t2;当t=294秒时,△ABE∽△QBP;其中正确的结论是__▲__(填序号)、【三】解答题19、(此题总分值7分)先化简,后求值:图(1) 图(2)第17题图Q第15题图图①图②图③第13题图211()(3)31a a a a +----,其中a+1、 20、(此题总分值8分)如图,Rt △ABC 中,∠C =90°,将△ABC 沿AB 向下翻折后,再绕点A 按顺时针方向旋转α度(α<∠BAC ),得到Rt △ADE ,其中斜边AE 交BC 于点F ,直角边DE 分别交AB 、BC 于点G 、H 、 (1)请依照题意用实线补全图形; (2)求证:△AFB ≌△AGE 、21、(此题总分值8分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗、我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A 、B 、C 、D 表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整)、请依照以上信息回答:(1)本次参加抽样调查的居民有多少人? (2)将两幅不完整的图补充完整;(3)假设居民区有8000人,请可能爱吃D 粽的人数;(4)假设有外型完全相同的A 、B 、C 、D 粽各一个,煮熟后,小王吃了两个、用列表或画树状图的方法,求他第二个吃到的恰好是C 粽的概率、22、(此题总分值9分)如下图为圆柱形大型储油罐固定在U 型槽上的横截面图、图中ABCD 为等腰梯形(AB ∥DC ),支点A 与B 相距8m ,罐底最低点到地面CD 距离为1m 、设油罐横截面圆心为O ,半径为5m ,∠D =56°,求:U 型槽的横截面(阴影部分)的面积、(参考数据:sin53°≈0.8,tan56°≈1.5,π≈3,结果保留整数)23、(此题总分值10分)荆州素有“中国淡水鱼都”之美誉、某水产经销商在荆州鱼博会上批发购进草鱼和乌鱼(俗称黑鱼)共75千克,且乌鱼的进货量大于40千克、草鱼的批发单价为8元/千克,乌鱼的批发单价与进货量的函数关系如下图、第22题图αA D EF G CBH第20题图CB(1)请直截了当写出批发购进乌鱼所需总金额y(元)与进货量x(千克)之间的函数关系式;(2)假设经销商将购进的这批鱼当日零售,草鱼和乌鱼分别可卖出89%、95%,要使总零售量不低于进货量的93%,问该经销商应怎么样安排进货,才能使进货费用最低?最低费用是多少?24、(此题总分值12):y关于x的函数y=(k-1)x2-2kx+k+2的图象与x轴有交点、(1)求k的取值范围;(2)假设x1,x2是函数图象与x轴两个交点的横坐标,且满足(k-1)x12+2kx2+k+2=4x1x2、①求k的值;②当k≤x≤k+2时,请结合函数图象确定y的最大值和最大值、25、(此题总分值12分)如图甲,四边形OABC的边OA、OC分别在x轴、y轴的正半轴上,顶点在B点的抛物线交x轴于点A、D,交y轴于点E,连结AB、AE、BE、tan∠CBE=13,A(3,0),D(-1,0),E(0,3)、(1)求抛物线的解析式及顶点B的坐标;(2)求证:CB是△ABE外接圆的切线;(3)试探究坐标轴上是否存在一点P,使以D、E、P为顶点的三角形与△ABE相似,假设存在,直截了当....写出..点P的坐标;假设不存在,请说明理由;(4)设△AOE沿x轴正方向平移t个单位长度(0<t≤3)时,△AOE与△ABE重叠部分的面积为s,求s与t之间的函数关系式,并指出t的取值范围、荆州市二O一二年初中毕业生学业及升学考试数学试题参考答案【一】选择题(每选对一题得3分,共30分)1、B2、A3、B4、D5、B6、A7、B8、D9、C10、B【二】填空题(每填对一题得3分,共24分)11、-112.2713.814.y=1x或y=-3x15、1216、+36017、x=318、①③④图甲图乙(备用图)) 第23题图19、解:原式=311a a ---=21a -、 当a+1、 20、解:(1)画图,如图1; (2)由题意得:△ABC ≌△AED 、∴AB =AE ,∠ABC =∠E 、在△AFB 和△AGE 中,,,,ABC E AB AE αα∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AFB ≌△AGE (ASA)、21、解:(1)60÷10%=600(人)、答:本次参加抽样调查的居民有600人、2分 (2)如图2;(3)8000×40%=3200(人)、答:该居民区有8000人,可能爱吃D 粽的人有3200人、 (4)如图3;(列表方法略,参照给分)、P (C 粽)=312=14、答:他第二个吃到的恰好是C 粽的概率是14、 22、解:如图4,连结AO 、BO 、过点A 作AE ⊥DC 于点E ,过点O 作ON ⊥DC 于点N ,ON 交⊙O 于点M ,交AB 于点F 、那么OF ⊥AB 、 ∵OA =OB =5m ,AB =8m ,∴AF =BF =12AB =4(m),∠AOB =2∠AOF 、 在Rt △AOF 中,sin ∠AOF =AFAO=0.8=sin53°、 ∴∠AOF =53°,那么∠AOB =106°、∵OF 3(m),由题意得:MN =1m ,开始A B C D B C D A C D A B D A B C图3图2α图1DEF G C B H 图4∴FN=OM-OF+MN=3(m)、∵四边形ABCD是等腰梯形,AE⊥DC,FN⊥AB,∴AE=FN=3m,DC=AB+2DE、在Rt△ADE中,tan56°=AEDE=32,∴DE=2m,DC=12m∴S阴=S梯形ABCD-(S扇OAB-S△OAB)=12(8+12)×3-(106360π×52-12×8×3)=20(m2)、答:U型槽的横截面积约为20m2、23、解:(1)y=26 (2040), 24 (40).x xx x⎧⎨>⎩≤≤(2)设该经销商购进乌鱼x千克,那么购进草鱼(75-x)千克,所需进货费用为w元、由题意得:40,89%(75)95%93%75. xx x>⎧⎨⨯-+⨯⎩≥解得x≥50、由题意得w=8(75-x)+24x=16x+600、∵16>0,∴w的值随x的增大而增大、∴当x=50时,75-x=25,W最小=1400(元)、答:该经销商应购进草鱼25千克,乌鱼50千克,才能使进货费用最低,最低费用为1400元、24、解:(1)当k=1时,函数为一次函数y=-2x+3,其图象与x轴有一个交点、当k≠1时,函数为二次函数,其图象与x轴有一个或两个交点,令y=0得(k-1)x2-2kx+k+2=0、△=(-2k)2-4(k-1)(k+2)≥0,解得k≤2、即k≤2且k=1、综上所述,k的取值范围是k≤2、(2)①∵x1≠x2,由(1)知k<2且k=1、由题意得(k-1)x12+(k+2)=2kx1、将(*)代入(k-1)x12+2kx2+k+2=4x1x2中得:2k(x1+x2)=4x1x2、又∵x1+x2=21kk-,x1x2=21kk+-,∴2k·21kk-=4·21kk+-、解得:k1=-1,k2=2(不合题意,舍去)、∴所求k值为-1、②如图5,∵k1=-1,y=-2x2+2x+1=-2(x-12)2+32、且-1≤x≤1、由图象知:当x=-1时,y最小=-3;当x=12时,y最大=32、∴y的最大值为32,最小值为-3、25、(1)解:由题意,设抛物线解析式为y=a(x-3)(x+1)、将E(0,3)代入上式,解得:a=-1、图5∴y=-x2+2x+3、那么点B(1,4)、 (2)分(2)如图6,证明:过点B作BM⊥y于点M,那么M(0,4)、在Rt△AOE中,OA=OE=3,∴∠1=∠2=45°,AE、在Rt△EMB中,EM=OM-OE=1=BM,∴∠MEB=∠MBE=45°,BE∴∠BEA=180°-∠1-∠MEB=90°、∴AB是△ABE在Rt△ABE中,tan∠BAE=BEAE=13=tan∠CBE,∴∠BAE=∠CBE、在Rt△ABE中,∠BAE+∠3=90°,∴∠CBE+∠3=90°、∴∠CBA=90°,即CB⊥AB、∴CB是△ABE外接圆的切线、………………………………………………………………5分(3)P1(0,0),P2(9,0),P3(0,-13)、 (8)分(4)解:设直线AB的解析式为y=kx+B、将A(3,0),B(1,4)代入,得30,4.k bk b+=⎧⎨+=⎩解得2,6.kb=-⎧⎨=⎩∴y=-2x+6、过点E作射线EF∥x轴交AB于点F,当y=3时,得x=32,∴F(32,3)、…………9分情况一:如图7,当0<t≤32时,设△AOE平移到△DNM的位置,MD交AB于点H,MN交AE 于点G、那么ON=AD=t,过点H作LK⊥x轴于点K,交EF于点L、由△AHD∽△FHM,得AD HKFM HL=、即332t HKHKt=--、解得HK=2t、∴S阴=S△MND-S△GNA-S△HAD=12×3×3-12(3-t)2-12t·2t=-32t2+3t、…………11分情况二:如图8,当32<t≤3时,设△AOE平移到△PQR的位置,PQ交AB于点I,交AE于图8图7图6点V 、由△IQA ∽△IPF ,得AQ IQ FP IP =、即3332IQ t IQt -=--、解得IQ =2(3-t )、∴S 阴=S △IQA -S △VQA =12×(3-t )×2(3-t )-12(3-t )2=12(3-t )2=12t 2-3t +92、 综上所述:s =22333 0),221933 (3).222t t t t t t ⎧-+<⎪⎪⎨⎪-+<⎪⎩≤≤(……………………………………………………12分。
四川省德阳市2020年中考数学试卷

德阳市2020年初中毕业生学业考试与高中阶段学校招生考试数学试卷说明:1.本试卷分第Ⅰ卷和第Ⅱ卷.第Ⅰ卷为选择题,第Ⅱ卷为非选择题.全卷共6页.考生作答时,须将答案写在答题卡上,在本试卷上、草稿纸上答题无效,考试结束后,将试卷及答题卡交回.2.本试卷满分150分,答题时间为120分钟.第I卷(选择题,共4分)一、选择题(本大题共12个小题,每小题4分,共48分)在每小题给出的四个选项中,有且仅有一项是符合题目要求的.1.的相反数是()A.3B.﹣3C.D.2.下列运算正确的是()A.a2•a3=a6B.(3a)3 =9a3C.3a﹣2a=1D.(﹣2a2)3=﹣8a63.如图所示,直线EF∥GH,射线AC分别交直线EF、GH于点B和点C,AD⊥EF于点D,如果∠A =20°,则∠ACG=()A.160°B.110°C.100°D.70°4.下列说法错误的是()A.方差可以衡量一组数据的波动大小B.抽样调查抽取的样本是否具有代表性,直接关系对总体估计的准确程度C.一组数据的众数有且只有一个D.抛掷一枚图钉针尖朝上的概率,不能用列举法求得5.多边形的内角和不可能为()A.180°B.540°C.1080°D.1200°6.某商场销售A,B,C,D四种商品,它们的单价依次是50元,30元,20元,10元.某天这四种商品销售数量的百分比如图所示,则这天销售的四种商品的平均单价是()A.19.5元B.21.5元C.22.5元D.27.5元7.半径为R的圆内接正三角形、正方形、正六边形的边心距分别为a,b,c,则a,b,c的大小关系是()A.a<b<c B.b<a<c C.a<c<b D.c<b<a8.已知函数y=,当函数值为3时,自变量x的值为()A.﹣2B.﹣C.﹣2或﹣D.﹣2或﹣9.如图是一个几何体的三视图,根据图中所示数据计算这个几何体的表面积是()A.20πB.18πC.16πD.14π10.如图,Rt△ABC中,∠A=30°,∠ABC=90°.将Rt△ABC绕点B逆时针方向旋转得到△A'BC'.此时恰好点C在A'C'上,A'B交AC于点E,则△ABE与△ABC的面积之比为()A.B.C.D.11.已知:等腰直角三角形ABC的腰长为4,点M在斜边AB上,点P为该平面内一动点,且满足PC =2,则PM的最小值为()A.2B.2﹣2C.2+2D.212.已知不等式ax+b>0的解集为x<2,则下列结论正确的个数是()(1)2a+b=0;(2)当c>a时,函数y=ax2+bx+c的图象与x轴没有公共点;(3)当c>0时,抛物线y=ax2+bx+c的顶点在直线y=ax+b的上方;(4)如果b<3且2a﹣mb﹣m=0,则m的取值范围是﹣<m<0.A.1B.2C.3D.4第II卷(非选择题,共102分)二、填空题(本大题共6个小题,每小题4分,共24分,将答案填在答题卡对应的题号后的横线上)13.小明在体考时选择了投掷实心球,如图是体育老师记录的小明在训练时投掷实心球的6次成绩的折线统计图.这6次成绩的中位数是.14.把ax2﹣4a分解因式的结果是.15.如图,在平行四边形ABCD中,BE平分∠ABC,CF⊥BE,连接AE,G是AB的中点,连接GF,若AE=4,则GF=.16.将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,我们称“4”是第2组第1个数字,“16”是第4组第2个数字,若2020是第m组第n个数字,则m+n=.17.若实数x,y满足x+y2=3,设s=x2+8y2,则s的取值范围是.18.如图,海中有一小岛A,它周围10.5海里内有暗礁,渔船跟踪鱼群由西向东航行.在B点测得小岛A在北偏东60°方向上,航行12海里到达D点,这时测得小岛A在北偏东30°方向上.如果渔船不改变航线继续向东航行,那么渔船还需航行海里就开始有触礁的危险.三、解答题(本大题共7小题,共78分.答应写出文字说明、证明过程或推演步骤)19.(7分)计算:(﹣2)﹣2﹣|﹣2|+(﹣)0﹣﹣2cos30°.20.(8分)如图,四边形ABCD为矩形,G是对角线BD的中点.连接GC并延长至F,使CF=GC,以DC,CF为邻边作菱形DCFE,连接CE.(1)判断四边形CEDG的形状,并证明你的结论.(2)连接DF,若BC=,求DF的长.21.(13分)为了加强学生的垃圾分类意识,某校对学生进行了一次系统全面的垃圾分类宣传.为了解这次宣传的效果,从全校学生中随机抽取部分学生进行了一次测试,测试结果共分为四个等级:A.优秀;B.良好;C.及格:D.不及格.根据调查统计结果,绘制了如图所示的不完整的统计表.垃圾分类知识测试成绩统计表测试等级百分比人数A.优秀5%20B.良好60C.及格45%mD.不及格n请结合统计表,回答下列问题:(1)求本次参与调查的学生人数及m,n的值;(2)如果测试结果为“良好”及以上即为对垃圾分类知识比较了解,已知该校学生总数为5600人,请根据本次抽样调查的数据估计全校比较了解垃圾分类知识的学生人数;(3)为了进一步在学生中普及垃圾分类知识,学校准备再开展一次关于垃圾分类的知识竞赛,要求每班派一人参加.某班要从在这次测试成绩为优秀的小明和小亮中选一人参加.班长设计了如下游戏来确定人选,具体规则是:把四个完全相同的乒乓球分别标上数字1,2,3,4.然后放到一个不透明的袋中充分摇匀,两人同时从袋中各摸出一个球.若摸出的两个球上的数字和为奇数,则小明参加,否则小亮参加.请用树状图或列表法说明这个游戏规则是否公平.22.(11分)如图,一次函数y1=ax+b与反比例函数y2=的图象交于A、B两点.点A的横坐标为2,点B的纵坐标为1.(1)求a,b的值.(2)在反比例y2=第三象限的图象上找一点P,使点P到直线AB的距离最短,求点P的坐标.23.(12分)推进农村土地集约式管理,提高土地的使用效率是新农村建设的一项重要举措.某村在小城镇建设中集约了2400亩土地,计划对其进行平整.经投标,由甲乙两个工程队来完成平整任务.甲工程队每天可平整土地45亩,乙工程队每天可平整土地30亩.已知乙工程队每天的工程费比甲工程队少500元,当甲工程队所需工程费为12000元,乙工程队所需工程费为9000元时,两工程队工作天数刚好相同.(1)甲乙两个工程队每天各需工程费多少元?(2)现由甲乙两个工程队共同参与土地平整,已知两个工程队工作天数均为正整数,且所有土地刚好平整完,总费用不超过110000元.①甲乙两工程队分别工作的天数共有多少种可能?②写出其中费用最少的一种方案,并求出最低费用.24.(13分)如图,在⊙O中,弦AB与直径CD垂直,垂足为M,CD的延长线上有一点P,满足∠PBD=∠DAB.过点P作PN⊥CD,交OA的延长线于点N,连接DN交AP于点H.(1)求证:BP是⊙O的切线;(2)如果OA=5,AM=4,求PN的值;(3)如果PD=PH,求证:AH•OP=HP•AP.25.(14分)如图1,抛物线y=ax2﹣2ax﹣3a(a≠0)与x轴交于点A,B.与y轴交于点C.连接AC,BC.已知△ABC的面积为2.(1)求抛物线的解析式;(2)平行于x轴的直线与抛物线从左到右依次交于P,Q两点.过P,Q向x轴作垂线,垂足分别为G,H.若四边形PGHQ为正方形,求正方形的边长;(3)如图2,平行于y轴的直线交抛物线于点M,交x轴于点N(2,0).点D是抛物线上A,M 之间的一动点,且点D不与A,M重合,连接DB交MN于点E.连接AD并延长交MN于点F.在点D运动过程中,3NE+NF是否为定值?若是,求出这个定值;若不是,请说明理由.2020年四川省德阳市中考数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题4分,共48分)在每小题给出的四个选项中,有且仅有一项是符合题目要求的.1.(4分)的相反数是()A.3B.﹣3C.D.【分析】在一个数前面放上“﹣”,就是该数的相反数.【解答】解:的相反数为﹣.故选:D.2.(4分)下列运算正确的是()A.a2•a3=a6B.(3a)3 =9a3C.3a﹣2a=1D.(﹣2a2)3=﹣8a6【分析】利用同底数幂的乘法法则、积的乘方运算法则、合并同类项法则分别进行计算即可.【解答】解:A、a2•a3=a5,故原题计算错误;B、(3a)3 =27a3,故原题计算错误;C、3a﹣2a=a,故原题计算错误;D、(﹣2a2)3=﹣8a6,故原题计算正确;故选:D.3.(4分)如图所示,直线EF∥GH,射线AC分别交直线EF、GH于点B和点C,AD⊥EF于点D,如果∠A=20°,则∠ACG=()A.160°B.110°C.100°D.70°【分析】利用三角形的内角和定理,由AD⊥EF,∠A=20°可得∠ABD=70°,由平行线的性质定理可得∠ACH,易得∠ACG.【解答】解:∵AD⊥EF,∠A=20°,∴∠ABD=180°﹣∠A﹣∠ABD=180°﹣20°﹣90°=70°,∵EF∥GH,∴∠ACH=∠ABD=70°,∴∠ACG=180°﹣∠ACH=180°﹣70°=110°,故选:B.4.(4分)下列说法错误的是()A.方差可以衡量一组数据的波动大小B.抽样调查抽取的样本是否具有代表性,直接关系对总体估计的准确程度C.一组数据的众数有且只有一个D.抛掷一枚图钉针尖朝上的概率,不能用列举法求得【分析】根据各个选项中的说法,可以判断是否正确,从而可以解答本题.【解答】解:方差可以衡量一组数据的波动大小,故选项A正确;抽样调查抽取的样本是否具有代表性,直接关系对总体估计的准确程度,故选项B正确;一组数据的众数有一个或者几个,故选项C错误;抛掷一枚图钉针尖朝上的概率,不能用列举法求得,故选项D正确;故选:C.5.(4分)多边形的内角和不可能为()A.180°B.540°C.1080°D.1200°【分析】多边形的内角和可以表示成(n﹣2)•180°(n≥3且n是整数),则多边形的内角和是180度的倍数,由此即可求出答案.【解答】解:因为在这四个选项中不是180°的倍数的只有1200°.故选:D.6.(4分)某商场销售A,B,C,D四种商品,它们的单价依次是50元,30元,20元,10元.某天这四种商品销售数量的百分比如图所示,则这天销售的四种商品的平均单价是()A.19.5元B.21.5元C.22.5元D.27.5元【分析】根据加权平均数定义即可求出这天销售的四种商品的平均单价.【解答】解:这天销售的四种商品的平均单价是:50×10%+30×15%+20×55%+10×20%=22.5(元),故选:C.7.(4分)半径为R的圆内接正三角形、正方形、正六边形的边心距分别为a,b,c,则a,b,c的大小关系是()A.a<b<c B.b<a<c C.a<c<b D.c<b<a【分析】根据三角函数即可求解.【解答】解:设圆的半径为R,则正三角形的边心距为a=R×cos60°=R.四边形的边心距为b=R×cos45°=R,正六边形的边心距为c=R×cos30°=R.∵R R R,∴c<b<a,故选:D.8.(4分)已知函数y=,当函数值为3时,自变量x的值为()A.﹣2B.﹣C.﹣2或﹣D.﹣2或﹣【分析】根据分段函数的解析式分别计算,即可得出结论.【解答】解:若x<2,当y=3时,﹣x+1=3,解得:x=﹣2;若x≥2,当y=3时,﹣=3,解得:x=﹣,不合题意舍去;∴x=﹣2,故选:A.9.(4分)如图是一个几何体的三视图,根据图中所示数据计算这个几何体的表面积是()A.20πB.18πC.16πD.14π【分析】由几何体的三视图可得出原几何体为圆锥和圆柱组合体,根据图中给定数据求出表面积即可.【解答】解:这个几何体的表面积=π•22+π•3•2+2π•2•2=18π,故选:B.10.(4分)如图,Rt△ABC中,∠A=30°,∠ABC=90°.将Rt△ABC绕点B逆时针方向旋转得到△A'BC'.此时恰好点C在A'C'上,A'B交AC于点E,则△ABE与△ABC的面积之比为()A.B.C.D.【分析】由旋转的性质得出BC=BC',∠ACB=∠A'C'B=60°,则△BCC'是等边三角形,∠CBC'=60°,得出∠BEA=90°,设CE=a,则BE=a,AE=3a,求出,可求出答案.【解答】解:∵∠A=30°,∠ABC=90°,∴∠ACB=60°,∵将Rt△ABC绕点B逆时针方向旋转得到△A'BC',∴BC=BC',∠ACB=∠A'C'B=60°,∴△BCC'是等边三角形,∴∠CBC'=60°,∴∠ABA'=60°,∴∠BEA=90°,设CE=a,则BE=a,AE=3a,∴,∴,∴△ABE与△ABC的面积之比为.故选:D.11.(4分)已知:等腰直角三角形ABC的腰长为4,点M在斜边AB上,点P为该平面内一动点,且满足PC=2,则PM的最小值为()A.2B.2﹣2C.2+2D.2【分析】根据等腰直角三角形的性质得到斜边AB=4,由已知条件得到点P在以C为圆心,PC 为半径的圆上,当点P在斜边AB的中线上时,PM的值最小,于是得到结论.【解答】解:∵等腰直角三角形ABC的腰长为4,∴斜边AB=4,∵点P为该平面内一动点,且满足PC=2,∴点P在以C为圆心,PC为半径的圆上,当点P在斜边AB的中线上时,PM的值最小,∵△ABC是等腰直角三角形,∴CM=AB=2,∵PC=2,∴PM=CM﹣CP=2﹣2,故选:B.12.(4分)已知不等式ax+b>0的解集为x<2,则下列结论正确的个数是()(1)2a+b=0;(2)当c>a时,函数y=ax2+bx+c的图象与x轴没有公共点;(3)当c>0时,抛物线y=ax2+bx+c的顶点在直线y=ax+b的上方;(4)如果b<3且2a﹣mb﹣m=0,则m的取值范围是﹣<m<0.A.1B.2C.3D.4【分析】由不等式的解集得出a<0,﹣=2,即b=﹣2a,从而得出2a+b=0,即可判断(1);根据△=4a(a﹣c)>0即可判断(2);求得抛物线的顶点为(1,a﹣c)即可判断(3);求得0<﹣<3,得出不等式组的解集为﹣<m<0即可判断(4).【解答】解:(1)∵不等式ax+b>0的解集为x<2,∴a<0,﹣=2,即b=﹣2a,∴2a+b=0,故结论正确;(2)函数y=ax2+bx+c中,令y=0,则ax2+bx+c=0,∵即b=﹣2a,∴△=b2﹣4ac=(﹣2a)2﹣4ac=4a(a﹣c),∵a<0,c>a,∴△=4a(a﹣c)>0,∴当c>a时,函数y=ax2+bx+c的图象与x轴有两个公共点,故结论错误;(3)∵b=﹣2a,∴﹣=1,==c﹣a,∴抛物线y=ax2+bx+c的顶点为(1,c﹣a),当x=1时,直线y=ax+b=a+b=a﹣2a=﹣a>0当c>0时,c﹣a>﹣a>0,∴抛物线y=ax2+bx+c的顶点在直线y=ax+b的上方,故结论正确;(4)∵b=﹣2a,∴由2a﹣mb﹣m=0,得到﹣b﹣mb﹣m=0,∴b=﹣,如果b<3,则0<﹣<3,∴﹣<m<0,故结论正确;故选:C.二、填空题(本大题共6个小题,每小题4分,共24分,将答案填在答题卡对应的题号后的横线上)13.(4分)小明在体考时选择了投掷实心球,如图是体育老师记录的小明在训练时投掷实心球的6次成绩的折线统计图.这6次成绩的中位数是9.75.【分析】根据中位数定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.即可得解.【解答】解:由6次成绩的折线统计图可知:这6次成绩从小到大排列为:9.5,9.6,9.7,9.8,10,10.2,所以这6次成绩的中位数是:=9.75.故答案为:9.75.14.(4分)把ax2﹣4a分解因式的结果是a(x+2)(x﹣2).【分析】先提出公因式a,再利用平方差公式因式分解.【解答】解:ax2﹣4a=a(x2﹣4)=a(x+2)(x﹣2).故答案为:a(x+2)(x﹣2).15.(4分)如图,在平行四边形ABCD中,BE平分∠ABC,CF⊥BE,连接AE,G是AB的中点,连接GF,若AE=4,则GF=2.【分析】根据平行四边形的性质结合角平分线的定义可求解∠CBE=∠BEC,即可得CB=CE,利用等腰三角形的性质可怎么BF=EF,进而可得GF是△ABE的中位线,根据三角形的中位线的性质可求解.【解答】解:在平行四边形ABCD中,AB∥CD,∴∠ABE=∠BEC.∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠CBE=∠BEC,∴CB=CE.∵CF⊥BE,∴BF=EF.∵G是AB的中点,∴GF是△ABE的中位线,∴GF=BE,∵BE=4,∴GF=2.故答案为2.16.(4分)将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,我们称“4”是第2组第1个数字,“16”是第4组第2个数字,若2020是第m组第n个数字,则m+n=65.【分析】根据题目中数字的特点,可知每组的个数依次增大,每组中的数字都是连续的偶数,然后即可求出2020是多少组第多少个数,从而可以得到m、n的值,然后即可得到m+n的值.【解答】解:∵将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,∴第m组有m个连续的偶数,∵2020=2×1010,∴2020是第1010个偶数,∵1+2+3+…+44==990,1+2+3+…+45==1035,∴2020是第45组第1010﹣990=20个数,∴m=45,n=20,∴m+n=65,故答案为:65.17.(4分)若实数x,y满足x+y2=3,设s=x2+8y2,则s的取值范围是s≥9.【分析】由已知等式表示出y2,代入s中利用二次函数最值即可确定出s范围.【解答】解:由x+y2=3,得:y2=﹣x+3≥0,∴x≤3,代入得:s=x2+8y2=x2+8(﹣x+3)=x2﹣8x+24=(x﹣4)2+8,当x=3时,s=(3﹣4)2+8=9,∴s≥9;故答案为:s≥9.18.(4分)如图,海中有一小岛A,它周围10.5海里内有暗礁,渔船跟踪鱼群由西向东航行.在B点测得小岛A在北偏东60°方向上,航行12海里到达D点,这时测得小岛A在北偏东30°方向上.如果渔船不改变航线继续向东航行,那么渔船还需航行 4.5海里就开始有触礁的危险.【分析】过A作AC⊥BD于点C,求出∠CAD、∠CAB的度数,求出∠BAD和∠ABD,根据等角对等边得出AD=BD=12,根据含30度角的直角三角形性质求出CD,根据勾股定理求出AC即可.【解答】解:只要求出A到BD的最短距离是否在以A为圆心,以10.5海里的圆内或圆上即可,如图,过A作AC⊥BD于点C,则AC的长是A到BD的最短距离,∵∠CAD=30°,∠CAB=60°,∴∠BAD=60°﹣30°=30°,∠ABD=90°﹣60°=30°,∴∠ABD=∠BAD,∴BD=AD=12海里,∵∠CAD=30°,∠ACD=90°,∴CD=AD=6海里,由勾股定理得:AC==6(海里),如图,设渔船还需航行x海里就开始有触礁的危险,即到达点D′时有触礁的危险,在直角△AD′C中,由勾股定理得:(6﹣x)2+(6)2=10.52.解得x=4.5.渔船还需航行4.5海里就开始有触礁的危险.故答案是:4.5.三、解答题(本大题共7小题,共78分.答应写出文字说明、证明过程或推演步骤)19.(7分)计算:(﹣2)﹣2﹣|﹣2|+(﹣)0﹣﹣2cos30°.【分析】首先计算乘方、开方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.【解答】解:(﹣2)﹣2﹣|﹣2|+(﹣)0﹣﹣2cos30°=﹣2++1﹣2﹣2×=﹣2.20.(8分)如图,四边形ABCD为矩形,G是对角线BD的中点.连接GC并延长至F,使CF=GC,以DC,CF为邻边作菱形DCFE,连接CE.(1)判断四边形CEDG的形状,并证明你的结论.(2)连接DF,若BC=,求DF的长.【分析】(1)证出GB=GC=GD=CF,由菱形的性质的CD=CF=DE,DE∥CG,则DE=GC,证出四边形CEDG是平行四边形,进而得出结论;(2)过点G作GH⊥BC于H,设DF交CE于点N,由等腰三角形的性质得CH=BH=BC=,证出△CDG是等边三角形,得∠GCD=60°,由三角函数定义求出CG=1,则CD=1,由菱形的性质得DN=FN,CN⊥DF,∠DCE=∠FCE=60°,由三角函数定义求出DN=,则DF=2DN=.【解答】解:(1)四边形CEDG是菱形,理由如下:∵四边形ABCD为矩形,G是对角线BD的中点,∴GB=GC=GD,∵CF=GC,∴GB=GC=GD=CF,∵四边形DCFE是菱形,∴CD=CF=DE,DE∥CG,∴DE=GC,∴四边形CEDG是平行四边形,∵GD=GC,∴四边形CEDG是菱形;(2)过点G作GH⊥BC于H,设DF交CE于点N,如图所示:∵CD=CF,GB=GD=GC=CF,∴CH=BH=BC=,△CDG是等边三角形,∴∠GCD=60°,∴∠DCF=180°﹣∠GCD=180°﹣60°=120°,∵四边形ABCD为矩形,∴∠BCD=90°,∴∠GCH=90°﹣60°=30°,∴CG===1,∴CD=1,∵四边形DCFE是菱形,∴DN=FN,CN⊥DF,∠DCE=∠FCE=∠DCF=×120°=60°,在Rt△CND中,DN=CD•sin∠DCE=1×sin60°=1×=,∴DF=2DN=2×=.21.(13分)为了加强学生的垃圾分类意识,某校对学生进行了一次系统全面的垃圾分类宣传.为了解这次宣传的效果,从全校学生中随机抽取部分学生进行了一次测试,测试结果共分为四个等级:A.优秀;B.良好;C.及格:D.不及格.根据调查统计结果,绘制了如图所示的不完整的统计表.垃圾分类知识测试成绩统计表测试等级百分比人数A.优秀5%20B.良好60C.及格45%mD.不及格n请结合统计表,回答下列问题:(1)求本次参与调查的学生人数及m,n的值;(2)如果测试结果为“良好”及以上即为对垃圾分类知识比较了解,已知该校学生总数为5600人,请根据本次抽样调查的数据估计全校比较了解垃圾分类知识的学生人数;(3)为了进一步在学生中普及垃圾分类知识,学校准备再开展一次关于垃圾分类的知识竞赛,要求每班派一人参加.某班要从在这次测试成绩为优秀的小明和小亮中选一人参加.班长设计了如下游戏来确定人选,具体规则是:把四个完全相同的乒乓球分别标上数字1,2,3,4.然后放到一个不透明的袋中充分摇匀,两人同时从袋中各摸出一个球.若摸出的两个球上的数字和为奇数,则小明参加,否则小亮参加.请用树状图或列表法说明这个游戏规则是否公平.【分析】(1)由优秀的人数除以所占比例得出本次参与调查的学生人数;进而求出m和n的值;(2)由总人数乘以良好和优秀所占比例即可;(3)先画树状图展示所有12种等可能的结果,找出和为奇数的结果有8种,再计算出小明参加和小亮参加的概率,比较两概率的大小可判断这个游戏规则是否公平.【解答】解:(1)本次参与调查的学生人数为:20÷5%=400(人),m=400×45%=180,∵400﹣20﹣60﹣180=140,∴n=140÷400×100%=35%;(2)5600×=1120(人),即估计全校比较了解垃圾分类知识的学生人数为1120人;(3)画树状图为:共有12种等可能的结果,其中和为奇数的结果有8种,∴P(小明参加)==,P(小亮参加)=1﹣=,∵≠,∴这个游戏规则不公平.22.(11分)如图,一次函数y1=ax+b与反比例函数y2=的图象交于A、B两点.点A的横坐标为2,点B的纵坐标为1.(1)求a,b的值.(2)在反比例y2=第三象限的图象上找一点P,使点P到直线AB的距离最短,求点P的坐标.【分析】(1)首先确定A,B两点坐标,再利用待定系数法求解即可.(2)过点P作直线PM∥AB,当直线PM与反比例函数只有一个交点时,点P到直线AB的距离最短,构建方程组把问题转化为一元二次方程,利用判别式=0,构建方程求解即可.【解答】解:(1)∵一次函数y1=ax+b与反比例函数y2=的图象交于A、B两点.点A的横坐标为2,点B的纵坐标为1,∴A(2,2),B(4,1),则有,解得.(2)过点P作直线PM∥AB,当直线PM与反比例函数只有一个交点时,点P到直线AB的距离最短,设直线PM的解析式为y=﹣x+n,由,消去y得到,x2﹣2nx+8=0,由题意,△=0,∴4n2﹣32=0,∴n=﹣2或2(舍弃),解得,∴P(﹣2,﹣).23.(12分)推进农村土地集约式管理,提高土地的使用效率是新农村建设的一项重要举措.某村在小城镇建设中集约了2400亩土地,计划对其进行平整.经投标,由甲乙两个工程队来完成平整任务.甲工程队每天可平整土地45亩,乙工程队每天可平整土地30亩.已知乙工程队每天的工程费比甲工程队少500元,当甲工程队所需工程费为12000元,乙工程队所需工程费为9000元时,两工程队工作天数刚好相同.(1)甲乙两个工程队每天各需工程费多少元?(2)现由甲乙两个工程队共同参与土地平整,已知两个工程队工作天数均为正整数,且所有土地刚好平整完,总费用不超过110000元.①甲乙两工程队分别工作的天数共有多少种可能?②写出其中费用最少的一种方案,并求出最低费用.【分析】(1)设甲每天需工程费x元、乙工程队每天需工程费(x﹣500)元,构建方程求解即可.(2)①设甲平整x天,则乙平整y天.由题意,45x+30y=2400 ①,且2000x+1500y≤110000 ②把问题转化为不等式解决即可.②总费用w=2000x+1500(80﹣1.5x)=﹣250x+120000,利用函数的性质解答即可.【解答】解:(1)设甲每天需工程费x元、乙工程队每天需工程费(x﹣500)元,由题意,=,解得x=2000,经检验,x=2000是分式方程的解.答:甲每天需工程费2000元、乙工程队每天需工程费1500元.(2)①设甲平整x天,则乙平整y天.由题意,45x+30y=2400 ①,且2000x+1500y≤110000 ②,由①得到y=80﹣1.5x③,把③代入②得到,2000x+1500(80﹣1.5x)≤110000,解得,x≥40,∵y>0,∴80﹣1.5x>0,x<53.3,∴40≤x<53.3,∵x,y是正整数,∴x=40,y=20或x=42,y=17或x=44,y=14或x=46,y=11或x=48,y=8,或x=50,y=5或x=52,y=2.∴甲乙两工程队分别工作的天数共有7种可能.②总费用w=2000x+1500(80﹣1.5x)=﹣250x+120000,∵﹣250<0,∴w随x的增大而减小,∴x=52时,w的最小值=107000(元).答:最低费用为107000元.24.(13分)如图,在⊙O中,弦AB与直径CD垂直,垂足为M,CD的延长线上有一点P,满足∠PBD=∠DAB.过点P作PN⊥CD,交OA的延长线于点N,连接DN交AP于点H.(1)求证:BP是⊙O的切线;(2)如果OA=5,AM=4,求PN的值;(3)如果PD=PH,求证:AH•OP=HP•AP.【分析】(1)连接BC,OB,证明OB⊥PB即可.(2)解直角三角形求出OM,利用相似三角形的性质求出OP,再利用平行线分线段成比例定理求出PN即可.(3)证明△NAH∽△NPD,推出=,证明△P AN∽△OAP,推出=,推出=可得结论.【解答】(1)证明:如图,连接BC,OB.∵CD是直径,∴∠CBD=90°,∵OC=OB,∴∠C=∠CBO,∵∠C=∠BAD,∠PBD=∠DAB,∴∠CBO=∠PBD,∴∠OBP=∠CBD=90°,∴PB⊥OB,∴PB是⊙O的切线.(2)解:∵CD⊥AB,∴P A=PB,∵OA=OB,OP=OP,∴△P AO≌△PBO(SSS),∴∠OAP=∠OBP=90°,∵∠AMO=90°,∴OM===3,∵∠AOM=∠AOP,∠OAP=∠AMO,∴△AOM∽△POA,∴=,∴=,∴OP=,∵PN⊥PC,∴∠NPC=∠AMO=90°,∴=,∴=,∴PN=.(3)证明:∵PD=PH,∴∠PDH=∠PHD,∵∠PDH=∠POA+∠OND,∠PHD=∠APN+∠PND,∴∠POA+∠APO=90°,∠APN+∠APO=90°,∴∠POA=∠ANP,∴∠ANH=∠PND,∵∠PDN=∠PHD=∠AHN,∴△NAH∽△NPD,∴=,∵∠APN=∠POA,∠P AN=∠P AO=90°,∴△P AN∽△OAP,∴=,∴=,∴==,∴AH•OP=HP•AP.25.(14分)如图1,抛物线y=ax2﹣2ax﹣3a(a≠0)与x轴交于点A,B.与y轴交于点C.连接AC,BC.已知△ABC的面积为2.(1)求抛物线的解析式;(2)平行于x轴的直线与抛物线从左到右依次交于P,Q两点.过P,Q向x轴作垂线,垂足分别为G,H.若四边形PGHQ为正方形,求正方形的边长;(3)如图2,平行于y轴的直线交抛物线于点M,交x轴于点N(2,0).点D是抛物线上A,M 之间的一动点,且点D不与A,M重合,连接DB交MN于点E.连接AD并延长交MN于点F.在点D运动过程中,3NE+NF是否为定值?若是,求出这个定值;若不是,请说明理由.【分析】(1)先将抛物线解析式变形,可得A和B的坐标,从而得AB=1+3=4,根据三角形ABC 的面积为2可得OC的长,确定点C的坐标,根据点C的坐标,利用待定系数法即可求出二次函数的解析式;(2)设点P的纵坐标为m,当y=m时,﹣x2+x+1=m,解方程可得P和Q两点的坐标,从而得G和H的坐标,再利用正方形的性质可得出关于m的方程,解之即可得出结论;(3)设点D(n,﹣n2+n+1),利用待定系数法求直线AD和BD的解析式,表示FN和OK的长,直接代入计算可得结论.【解答】解:(1)如图1,y=ax2﹣2ax﹣3a=a(x2﹣2x﹣3)=a(x﹣3)(x+1),∴A(﹣1,0),B(3,0),∴AB=4,∵△ABC的面积为2,即,∴,∴OC=1,∴C(0,1),将C(0,1)代入y=ax2﹣2ax﹣3a,得:﹣3a=1,∴a=﹣,∴该二次函数的解析式为y=﹣x2+x+1;(2)如图2,设点P的纵坐标为m,当y=m时,﹣x2+x+1=m,解得:x1=1+,x2=1﹣,∴点P的坐标为(1﹣,m),点Q的坐标为(1+,m),∴点G的坐标为(1﹣,0),点H的坐标为(1+,0),∵矩形PGHQ为正方形,∴1+﹣(1﹣)=m,解得:m1=﹣6﹣2,m2=﹣6+2,∴当四边形PGHQ为正方形时,边长为6+2或2﹣6;(3)如图3,设点D(n,﹣n2+n+1),延长BD交y轴于K,∵A(﹣1,0),设AD的解析式为:y=kx+b,则,解得:,∴AD的解析式为:y=(﹣)x﹣,当x=2时,y=﹣n+2﹣n+1=﹣n+3,∴F(2,3﹣n),∴FN=3﹣n,同理得直线BD的解析式为:y=(﹣)x+n+1,∴K(0,n+1),∴OK=n+1,∵N(2,0),B(3,0),∴,∵EN∥OK,∴,∴OK=3EN,∴3EN+FN=OK+FN=n+1+3﹣n=4,∴在点D运动过程中,3NE+NF为定值4.。
厦门市2019年中考数学试题含答案(word版)

2019年厦门市初中毕业及高中阶段各类学校招生考试数 学(试卷满分:150分 考试时间:120分钟)准考证号 姓名 座位号注意事项:1.全卷三大题,27小题,试卷共4页,另有答题卡. 2.答案一律写在答题卡上,否则不能得分.3.可直接用2B 铅笔画图.一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确) 1. 反比例函数y =1x的图象是A . 线段B .直线C .抛物线D .双曲线2. 一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,投掷这样的骰子一次,向上一面点数是偶数的结果有A .1种B . 2种C . 3种D .6种3. 已知一个单项式的系数是2,次数是3,则这个单项式可以是 A . -2xy 2 B . 3x 2 C . 2xy 3 D . 2x 34. 如图1,△ABC 是锐角三角形,过点C 作CD ⊥AB ,垂足为D ,则点C 到直线AB 的距离是 A . 线段CA 的长 B .线段CD 的长 C . 线段AD 的长 D .线段AB 的长 5. 2—3可以表示为A .22÷25B .25÷22C .22×25D .(-2)×(-2)×(-2)6.如图2,在△ABC 中,∠C =90°,点D ,E 分别在边AC ,AB 上, 若∠B =∠ADE ,则下列结论正确的是A .∠A 和∠B 互为补角 B . ∠B 和∠ADE 互为补角C .∠A 和∠ADE 互为余角D .∠AED 和∠DEB 互为余角图27. 某商店举办促销活动,促销的方法是将原价x 元的衣服以(45x -10) 元出售,则下列说法中,能正确表达该商店促销方法的是A . 原价减去10元后再打8折B . 原价打8折后再减去10元C . 原价减去10元后再打2折D . 原价打2折后再减去10元8. 已知sin6°=a ,sin36°=b ,则sin 2 6°=A . a 2B . 2aC . b 2D . b9.如图3,某个函数的图象由线段AB 和BC 组成,其中点 A (0,43),B (1,12),C (2,53),则此函数的最小值是A .0B .12C .1D .53图310.如图4,在△ABC 中,AB =AC ,D 是边BC 的中点,一个圆过点A ,交边AB 于点E ,且与BC 相切于点D ,则该圆的圆心是 A .线段AE 的中垂线与线段AC 的中垂线的交点 B .线段AB 的中垂线与线段AC 的中垂线的交点 C .线段AE 的中垂线与线段BC 的中垂线的交点 D .线段AB 的中垂线与线段BC 的中垂线的交点图4二、填空题(本大题有6小题,每小题4分,共24分)11.不透明的袋子里装有1个红球、1个白球,这些球除颜色外无其他差别.从袋子中随机摸出一个球,则摸出红球的概率是 . 12.方程x 2+x =0的解是 .13.已知A ,B ,C 三地位置如图5所示,∠C =90°,A ,C 两地的距离是B ,C 两地的距离是3 km ,则A ,B 两地的距离是 km ;若A 地在C 地的正东方向,则B地在C 地的 方向.14.如图6,在矩形ABCD 中,对角线AC ,BD 相交于点O ,E 是边AD 的中点, 图5若AC =10,DC =25,则BO = ,∠EBD 的大小约为 度 分.(参考数据:tan26°34′≈12)15.已知(39+813)×(40+913)=a +b ,若a 是整数,1<b <2,则a = . 图616.已知一组数据1,2,3,…,n (从左往右数,第1个数是1,第2个数是2,第3个数是3,依此类推,第n 个数是n ).设这组数据的各数之和是s ,中位数是k ,则s = (用只含有k 的代数式表示). 三、解答题(本大题有11小题,共86分)17.(本题满分7分)计算:1-2+2×(-3)2 . 18.(本题满分7分)在平面直角坐标系中,已知点A (-3,1),B (-2,0)C (0,1),请在图7中画出△ABC ,并画出与△ABC关于原点O 对称的图形. 图7 19.(本题满分7分)计算:xx +1+x +2x +1.20.(本题满分7分)如图8,在△ABC 中,点D ,E 分别在边AB ,AC 上,若DE ∥BC , AD =3 ,AB =5,求DEBC的值.21.(本题满分7分)解不等式组⎩⎨⎧2x >2,x +2≤6+3x .22.(本题满分7分)某公司欲招聘一名工作人员,对甲、乙两位应聘者进行面试和笔试,他们的成绩(百分制)如下表所示.若公司分别赋予面试成绩和笔试成绩6和4的权,计算甲、乙两人各自的平均成绩,谁将被录取?23.(本题满分7分)如图9,在△ABC 中,AB =AC ,点E ,F 分别是边AB ,AC 的中点,点D 在边BC 上. 若DE =DF ,AD =2,BC =6,求四边形AEDF 的周长.图924.(本题满分7分)已知实数a ,b 满足a -b =1,a 2-ab +2>0,当1≤x ≤2时,函数y =ax (a ≠0)的最大值与最小值之差是1,求a 的值.25.(本题满分7分)如图10,在平面直角坐标系中,点A (2,n ),B (m ,n )(m >2),D (p ,q )(q <n ),点B ,D 在直线y =12x +1上.四边形ABCD 的对角线AC ,BD 相交于点E ,且AB ∥CD ,CD =4,BE =DE ,△AEB 的面积是2.求证:四边形ABCD 是矩形.图1026.(本题满分11分)已知点A (-2,n )在抛物线y =x 2+bx +c 上. (1)若b =1,c =3,求n 的值; (2)若此抛物线经过点B (4,n ),且二次函数y =x 2+bx +c 的最小值是-4,请画出点P (x -1,x 2+bx +c )的纵坐标随横坐标变化的图象,并说明理由.27.(本题满分12分)已知四边形ABCD内接于⊙O,∠ADC=90°,∠DCB<90°,对角线AC平分∠DCB,延长DA,CB相交于点E.(1)如图11,EB=AD,求证:△ABE是等腰直角三角形;(2)如图12,连接OE,过点E作直线EF,使得∠OEF=30°.当∠ACE≥30°时,判断直线EF与⊙O的位置关系,并说明理由.图112019年厦门市初中毕业及高中阶段各类学校招生考试数学参考答案说明:解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照评分量表的要求相应评分.一、选择题(本大题共10小题,每小题4分,共40分)二、填空题(本大题共6小题,每题4分,共24分)11. 12 12. 0,-1 13. 5;正北14. 5,18,26 15. 1611 16. 2k 2-k三、解答题(本大题共9小题,共86分) 17.(本题满分7分)解: 1-2+2×(-3)2=-1+2×9=17. ……………………………7分 18.(本题满分7解:……………………………7分19.(本题满分7分) 解:xx +1+x +2x +1=2x +2x +1……………………………5分 =2 ……………………………7分 20.(本题满分7分)解:∵ DE ∥BC ,∴ △ADE ∽△ABC . ……………………………4 ∴ DE BC =ADAB . ……………………………6分 ∵ AD AB =35,∴ DE BC =35. ……………………………7分21.(本题满分7分)解:解不等式2x >2,得x >1. ……………………………3分解不等式x +2≤6+3x ,得x ≥-2. ……………………………6分不等式组⎩⎨⎧2x >2,x +2≤6+3x的解集是x >1. ……………………………7分22.(本题满分7分)解:由题意得,甲应聘者的加权平均数是6×87+4×906+4=88.2. ……………………………3分乙应聘者的加权平均数是6×91+4×826+4=87.4. ……………………………6分∵88.2>87.4,∴甲应聘者被录取. ……………………………7分 23.(本题满分7分)解:∵AB =AC ,E ,F 分别是边AB ,AC 的中点,∴AE =AF =12AB . ……………………………1分又∵DE =DF ,AD =AD ,∴△AED ≌△AFD . ……………………………2分 ∴∠EAD =∠F AD .∴AD ⊥BC , ……………………………3分 且D 是BC 的中点.在R t △ABD 中,∵E 是斜边AB 的中点,∴DE =AE . ……………………………6分 同理,DF =AF .∴四边形AEDF 的周长是2AB . ∵BC =6,∴BD =3.又AD =2,∴AB =13.∴四边形AEDF 的周长是213. ……………………………7分 24.(本题满分7分)解1:由a -b =1,a 2-ab +2>0得,a >-2. ……………………………2分∵a ≠0,(1)当-2<a <0时, ……………………………3分 在1≤x ≤2范围内y 随x 的增大而增大, ∴ a2-a =1. ∴ a =-2 ……………………………4分 不合题意,舍去.(2)当a >0时, ……………………………5分 在1≤x ≤2范围内y 随x 的增大而减小,∴ a -a2=1.∴ a =2. ……………………………6分 综上所述a =2. ……………………………7分解2:(1)当a <0时, ……………………………1分 在1≤x ≤2范围内y 随x 的增大而增大, ∴ a2-a =1. ∴ a =-2. ……………………………2分 ∴ b =-3.而a 2-ab +2=0,不合题意,∴a ≠-2. ……………………………3分 (2)当a >0时, ……………………………4分 在1≤x ≤2范围内y 随x 的增大而减小, ∴ a -a2=1.∴ a =2. ……………………………5分 ∴ b =1. 而a 2-ab +2=4>0,符合题意,∴ a =2. ……………………………6分 综上所述, a =2. ……………………………7分25.(本题满分7分)解1:∵ AB ∥CD ,∴∠EAB =∠ECD ,∠EBA =∠EDC . ∵ BE =DE ,∴ △AEB ≌△CED . ……………………………1分 ∴ AB =CD =4.∵AB ∥CD ,∴四边形ABCD 是平行四边形. ……………………………2分 A (2,n ),B (m ,n )(m >2), ∴ AB ∥x 轴,且CD ∥x 轴.∵ m >2,∴m =6. ……………………………3分 ∴n =12×6+1=4.∴ B (6,4). ∵△AEB 的面积是2,∴△AEB 的高是1. ……………………………4分 ∴平行四边形ABCD 的高是2. ∵ q <n , ∴q =2.∴p =2, ……………………………5分 即D (2,2). ∵点A (2,n ),∴DA ∥y 轴. ……………………………6分∴AD ⊥CD ,即∠ADC =90°.∴四边形ABCD 是矩形. ……………………………7分解2:∵AB ∥CD ,∴∠EAB =∠ECD ,∠EBA =∠EDC . ∵ BE =DE ,∴ △AEB ≌△CED . ……………………………1分∴ AB =CD =4. ∵AB ∥CD ,∴四边形ABCD 是平行四边形. ……………………………2分 ∵A (2,n ),B (m ,n )(m >2), ∴ AB ∥x 轴,且CD ∥x 轴.∵ m >2,∴m =6. ……………………………3分 ∴n =12×6+1=4.∴ B (6,4).过点E 作EF ⊥AB ,垂足为F , ∵△AEB 的面积是2,∴EF =1. ……………………………4分 ∵ q <n ,∴点E 的纵坐标是3. ∴点E 的横坐标是4.∴点F 的横坐标是4. ……………………………5分 ∴点F 是线段AB 的中点.∴直线EF 是线段AB 的中垂线.∴EA =EB . ……………………………6分 ∵四边形ABCD 是平行四边形, ∴AE =EC ,BE =ED .∴AC =BD .∴四边形ABCD 是矩形. ……………………………7分 26.(本题满分11分)(1)解:∵ b =1,c =3,∴ y =x 2+x +3. ……………………………2分 ∵点A (-2,n )在抛物线y =x 2+x +3上,∴n =4-2+3 ……………………………3分 =5. ……………………………4分 (2)解:∵点A (-2,n ),B (4,n )在抛物线y =x 2+bx +c 上,∴⎩⎨⎧4-2b +c =n ,16+4b +c =n .∴b =-2.∴顶点的横坐标是-b2=1.即顶点为(1,-4). ∴-4=1-2+c .∴c =-3. ……………………………7分∴P (x -1,x 2-2x -3).∵将点(x ,x 2-2x -3)向左平移一个单位得点P (x -1,x 2-2x -3), ∴将点(x ,x 2-2x -3)的纵坐标随横坐标变化的函数的图象向左平移 一个单位后可得点P (x -1,x 2-2x -3)的纵坐标随横坐标变化的函 数的图象. ……………………………8分 设p =x -1,q =x 2-2x -3,则q =p 2-4.画出抛物线q =p 2-4的图象. ……………………………11分 27.(本题满分12分)(1)证明:∵四边形ABCD 内接于⊙O ,∠ADC =90°,∴∠ABC =90°.∴∠ABE =90°. ……………………………1分 ∵AC 平分∠DCB ,∴∠ACB =∠ACD . ……………………………2分 ∴AB =AD . ……………………………3分 ∵EB =AD ,∴EB =AB . ……………………………4分∴△ABE 是等腰直角三角形. ……………………………5分(2)直线EF 与⊙O 相离.证明:过O 作OG ⊥EF ,垂足为G . 在Rt △OEG 中, ∵∠OEG =30°,∴OE =2OG . ……………………………6分∵∠ADC =90°,∴AC 是直径. 设∠ACE =α,AC =2r . 由(1)得∠DCE =2α,又∠ADC =90°, ∴∠AEC =90°-2α. ∵α≥30°,∴(90°-2α)-α≤0. ……………………………8分 ∴∠AEC ≤∠ACE .∴AC ≤AE . ……………………………9分 在△AEO 中,∠EAO =90°+α, ∴∠EAO >∠AOE .∴EO >AE . ……………………………10分 ∴EO -AE >0.由AC ≤AE 得AE -AC ≥0. ∴EO -AC =EO +AE -AE -AC=(EO -AE )+(AE -AC )>0. ∴EO >AC . 即2OG ≥2r .∴OG >r . ……………………………11分 ∴直线EF 与⊙O 相离. ……………………………12分。
2019年山东省普通高中学业水平考试数学试题(带答案)

2019年山东省普通高中学业水平考试数学试题(带答案)2019年山东省普通高中学业水平考试数学试题(带答案)一、选择题(共20小题,每小题3分,共60分)1.已知集合 $A=\{2,4,8\}$,$B=\{1,2,4\}$,则 $A\capB=$()A。
{4} B。
{2} C。
{2,4} D。
{1,2,4,8}2.周期为 $\pi$ 的函数是()A。
$y=\sin x$ B。
$y=\cos x$ C。
$y=\tan 2x$ D。
$y=\sin2x$3.在区间 $(1,2)$ 上为减函数的是()A。
$y=x$ B。
$y=x^2$ C。
$y=\frac{1}{x}$ D。
$y=\ln x$4.若角 $\alpha$ 的终边经过点 $(-1,2)$,则 $\cos\alpha=$()A。
$-\frac{5}{13}$ B。
$\frac{5}{13}$ C。
$-\frac{1}{13}$ D。
$\frac{1}{13}$5.把红、黄两张纸牌随机分给甲、乙两个人,每人分得一张,设事件 $P$ 为“甲分得黄牌”,设事件 $Q$ 为“乙分得黄牌”,则()A。
$P$ 是必然事件 B。
$Q$ 是不可能事件 C。
$P$ 与$Q$ 是互斥但不对立事件 D。
$P$ 与 $Q$ 是互斥且对立事件6.在数列 $\{a_n\}$ 中,若 $a_{n+1}=3a_n$,$a_1=2$,则$a_4=$()A。
18 B。
36 C。
54 D。
1087.采用系统抽样的方法,从编号为1~50的50件产品中随机抽取5件进行检验,则所选取的5件产品的编号可以是()A。
1,2,3,4,5 B。
2,4,8,16,32 C。
3,13,23,33,43 D。
5,10,15,20,258.已知 $x,y\in (0,+\infty)$,且 $x+y=1$,则 $xy$ 的最大值为()A。
1 B。
$\frac{1}{3}$ C。
$\frac{1}{4}$ D。
绵阳市2020年中考数学(解析版)

校区:_______________ 授课教师:_______________ 姓名:_______________ 考号:______________________·············密············封············线·············内············不············要·············答············题············ ···················································································································································绵阳市2020年高中阶段学校招生暨初中学业水平考试数 学(解析版)本试卷分试题卷和答题卡两部分.试题卷共6页,答题卡共6页,满分150分.考试时间120分钟. 注意事项:1.答题前,考生务必将自己的姓名、准考证号用0.5毫米的黑色墨迹签字笔填写在答题卡上,并认真核对条形码上的姓名、准考证号,考点、考场号.2.选择题答案伏用2B 始笔填涂在答题卡对应题目标号的位置上,非选择题答案使用0.5毫米的黑色墨迹签字笔书写在答题卡的对应枢内,超出答题区域书写的答常无效;在草稿纸,试题卷上答题无效. 3.考试结来后,将试题卷和答题卡一并交回. 4.本试卷由极客数学帮杰少解析.第Ⅰ卷(选择题,共36分)一、选择题:本大题共12小题,每小题3分,共36分.每小题只有一个选项符合题目要求. 1.-3的相反数是( ) A .-3 B .13−C .3D .3【答案】D【解析】本题考查相反数的定义,-3的相反数是-(-3)=3,故选D .2.如图是以正方形的边长为直径,在正方形内画半圆得到的图形,则此图形的对称轴有( ) A .2条B .4条C .6条D .8条【答案】B【解析】显然正方形的四条对称轴也是该图形的对称轴,故选B .3.近年来,华为手机越来越受到消费者的青睐.截至2019年12月底,华为5G 手机全球总发货量突破690万台.将690万用科学记数法表示为( ) A .0.69×107 B .69×105 C .6.9×105 D .6.9×106【答案】D【解析】科学记数法的表示方法是:a ×10n 的形式,其中1≤|a |<10,∴690万用科学记数法表示为:6.9×106,故选D .4.下列四个图形中,不能作为正方体的展开图的是( )A .B .C .D .【答案】D【解析】本题考查正方体的展开图,需要一定的空间想象能力,易知D 选项无法还原为正方体,故选D . 5.若1a −有意义,则a 的取值范围是( ) A .a ≥1 B .a ≤1C .a ≥0D .a ≤-1【答案】A【解析】二次根式要有意义,那么被开方数必须是非负数,∴a -1≥0,∴a ≥1,故选A .6.《九章算术》中记载“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?此问题中羊价为( ) A .160钱B .155钱C .150钱D .145钱【答案】C【解析】设合伙人数位x ,羊价钱为y 钱,则根据题意可得:54573x y x y+=⎧⎨+=⎩,解得21150x y =⎧⎨=⎩,∴羊价为150钱,故选C .7.如图,在四边形ABCD 中,∠A =∠C =90°,DF ∥BC ,∠ABC 的平分线BE 交DF 于点G ,GH ⊥DF ,点E 恰好为DH 的中点,若AE =3,CD =2,则GH =( ) A .1B .2C .3D .4【答案】B【解析】如图,过E 作EM ⊥BC 于M ,交DF 于N ,则由已知可得EM =AE =3,∵CD =2,∴EN =1, ∵E 为DH 中点,∴EN 是△HGD 的中位线, ∴HG =2EN =2,故选B .机密★启用前FGHEDCBANM FGHEDCBA···········密············封············线·············内············不············要·············答············题············ ················································································································································8.将一个篮球和一个足球随机放入三个不同的篮子中,则恰有一个篮子为空的概率为( ) A .23B .12C .13D .16【答案】A【解析】篮球放在篮子中总的情况有3种,足球放在篮子中总的情况也有3种,那么总的情况有N =3×3=9种,记三个不同篮子的顺序为(1,2,3).分别在(1,2,3)位置上放球. 恰有一个篮子为空时的情况有:——续写费马的一纸空白(空篮子,篮球,足球)、(空篮子,足球,篮球);(篮球,空篮子,足球)、(足球,空篮子,篮球); (篮球,足球,空篮子)、(足球,篮球,空篮子),总共n =6种情况,——杰少 ∴满足题意的概率6293n P N===,故选A .9.在螳螂的示意图中,AB ∥DE ,△ABC 是等腰三角形,∠ABC =124°,∠CDE =72°,则∠ACD =( ) A .16°B .28°C .44°D .45°【答案】C【解析】如图,延长CD 交AB 于F ,由已知易得∠ACB =∠BAC =28°,∠DFG =∠CDE =72°, ∴∠ACD =∠DFG -∠BAC =72°-28°=44°,故选C .10.甲、乙二人同驾一辆车出游,各匀速行驶一半路程,共用3小时,到达目的地后,甲对乙说:“我用你所花的时间,可以行驶180km ”,乙对甲说:“我用你所花的时间,只能行驶80km ”.从他们的交谈中可以判断,乙驾车的时长为( ) A .1.2小时B .1.6小时C .1.8小时D .2小时【答案】C【解析】设甲用时x 小时,乙用时y 小时,由已知可得:2318080x y y x +=⎧⎪⎨⎛⎫=⎪⎪⎝⎭⎩,解得1218..x y =⎧⎨=⎩,——续写费马的一纸空白 故选C .11.三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为( )A .43米B .52米C .213米D .7米【答案】B【解析】本题主要考察数学建模思想,如图,以大桥的顶点处建立平面直角坐标系xOy ,并把两小桥平移到与大桥的对称轴y 轴重合.那么本题就转化成已知MN =10,OP =1.5,EF =14,GH =4,AB =20,求CD 的值.∴M (-5,-1.5),∴大抛物线解析式21350y x =−,∵E 点横坐标为-7,∴E 点纵坐标为()2314775050−⨯−=−,G 点坐标为(-2,14750−),又P 点坐标(0,-1.5),∴小抛物线的解析式2293252y x =−−,——续写费马的一纸空白∵A 点横坐标为-10,∴A 点的纵坐标为()2310650−⨯−=−, 从而C 点的纵坐标也为-6,由2936252x −=−−,解得522x =±,——杰少∴CD =52,故选B .EDCBAGF E DCBAIH G F E N M Q P DCBAO yx校区:_______________ 授课教师:_______________ 姓名:_______________ 考号:______________________·············密············封············线·············内············不············要·············答············题············ ···················································································································································12.如图,在四边形ABCD 中,AD ∥BC ,∠ABC =90°,AB =27,AD =2,将△ABC 绕点C 顺时针方向旋转后得△A ′B ′C ,当A ′B ′恰好经过点D 时,△B ′CD 为等腰三角形,若BB ′=2,则AA ′=( ) A .11B .23C .13D .14【答案】错题【解析】说明:绵阳的这题中考选择压轴题是一道错题,原因是条件多余导致条件之间相互矛盾.苦了考生了,只希望这题改卷时都不扣分,不要以所谓的“正确”参考答案来批改!修改解答:删除BB ′=2这个条件其实用前面的条件,后面这个BB ′的长度是确定的,但一定不是2, 比如解答如下:【修改后的解答】作DE ⊥BC 于点E ,则BE =AD =2,DE =27, 设B ′C =BC =x ,则DC =2x ,CE =x -2,∴DC 2=DE 2+EC 2,即:2x 2=28+(x -2)2,解得x =4, ∴BC =4,AC =211,在AB 上取一点F ,使得BF =BC =4,连接DF , 则△DFC ∽△CB ′B ,相似比2∶1,∴AF =27-4,∵AD =2,∴DF =21227-, ∴BB ′=2672DF =-,--杰少显然△A ′AC ∽△B ′BC ,∴''A A AC B BBC=,∴A ′A =211267661174⨯−-=.—By :续写费马的一纸空白我估计命题组的人没有注意到此时BB ′为定值,然后就太草率的对BB ′赋值一个2, 从而利用△A ′AC ∽△B ′BC ,则A A ACB BBC''=,得到A ′A =2112114⨯=,然后就选A 了,如果保留BB ′=2这个条件,那么前面给的条件又得修改一个条件了. 希望这个题能够得到命题组的重视,希望可以给所有考生分数.以上来自极客杰少的分析及建议,当然,我们可以探讨这个题,企鹅:97407923.备注:A ′A 66117−=这个数据不太友好,可以修改一下数据避免出现开方开不尽的双重二次根式,我们这样修改“AD =4,AB =7”,其他条件不变,依然删除BB ′这个条件,那么同样的计算,可得到最终的AA ′=21855,相对66117−这个数据来说会友好一些.希望明年的绵阳中考会出得棒棒的,加油!第Ⅱ卷(非选择题,共114分)二、填空题:本大题共6小题,每小题4分,共24分.将答案填写在答题卡相应的横线上. 13.因式分解:x 3y -4xy 3= . 【答案】xy (x +2y )(x -2y )【解析】x 3y -4xy 3=xy (x 2-4y 2)=xy (x +2y )(x -2y ).14.平面直角坐标系中,将点A (-1,2)先向左平移2个单位,再向上平移1个单位后得到的点A 1的坐标为 . 【答案】(-3,3)【解析】由已知可得平移后的A 1点为(-1-2,2+1),即:A 1(-3,3).15.若多项式2221||()m n xy n x y +−+-是关于x ,y 的三次多项式,则mn = .【答案】0或8【解析】由已知四次项不存在,∴n -2=0,∴n =2,又原多项式为三次,∴1+|m -n |=3,解得m =0或m =4,∴mn =0或8.16.我市认真落实国家“精准扶贫”政策,计划在对口帮扶的贫困县种植甲、乙两种火龙果共100亩,根据市场调查,甲、乙两种火龙果每亩的种植成本分别为0.9万元、1.1万元,每亩的销售额分别为2万元、2.5万元,如果要求种植成本不少于98万元,但不超过100万元,且所有火龙果能全部售出,则该县在此项目中获得的最大利润是 万元.(利润=销售额-种植成本) 【答案】125【解析】设甲火龙果种植共x 亩,则乙种火龙果种植(100-x )亩,根据题意可得:98≤0.9x +1.1(100-x )≤100,解得:50≤x ≤60, ∴火龙果的利润w =(2-0.9)x +(2.5-1.1)(100-x )=-0.3x +140, ∴当x =50时,w max =-0.3×50+140=125(万元)FEDB'BAA'CDB'BAA'C···········密············封············线·············内············不············要·············答············题············ ················································································································································17.如图,四边形ABCD 中,AB ∥CD ,∠ABC =60°,AD =BC =CD =4,点M 是四边形ABCD 内的一个动点,满足∠AMD =90°,则点M 到直线BC 的距离的最小值为 .【答案】33-2【解析】如图,取AD 中点O ,连接OM 、∵∠AMD =90°,AD =4,∴OM =12AD =2,过M 作ME ⊥BC 于E ,过O 作OF ⊥BC 于点F 交DC 于点G , 则OM +ME ≥OF ,--续写费马的一纸空白 ∵AB ∥CD ,∴∠GCF =60°, ∴∠DGO =∠FGC =30°, 而∠ADC =∠DCB =120°,∴∠DOG =30°=∠DGO , ∴DG =OD =2,从而GC =2, ∴OC =23,GF =3,--杰少 ∴ME ≥OF -OOM =33-2. 当O 、M 、E 三点共线时取等.18.若不等式52x +−>x 72−的解都能使不等式(m -6)x <2m +1成立,则实数m 的取值范围是 .【答案】2366m ≤≤【解析】由已知可得52x +>-x -72的解集为x >-4,又x >-4都能使不等式(m -6)x <2m +1成立,1°若m -6=0,即m =6,则x >-4都能使0·x <13恒成立; 2°若m -6≠0,即m ≠6,则不等式(m -6)x <2m +1的解要改变方向,∴m -6<0,即m <6,--杰少 从而(m -6)x <2m +1的解集是x >216m m +-,∵x >-4都能使得x >216m m +-成立,∴-4≥216m m +-,∴-4m +24≤2m +1,∴m ≥236,∴236≤m <6.综上所述,m 的取值范围是236≤m ≤6.--续写费马的一纸空白三、解答题:本大题共7小题,共计90分.解答应写出文字说明、证明过程或演算步骤.19.(1)计算:|5−3|+25cos60°182−⨯−(22−)0. 【答案】0 【解析】原式=135252102−+⨯−−=——续写费马的一纸空白(2)先化简,再求值:(x +232x +−)2122x x x ++÷−,其中x 2=−1.【答案】化简结果11x x −+,计算结果:12−【解析】原式=()22121·211x x x x x x−−−=−++,——杰少把x 2=−1代入可得,原式=12−.20.4月23日是“世界读书日”,甲、乙两个书店在这一天举行了购书优惠活动. 甲书店:所有书籍按标价8折出售;乙书店:一次购书中标价总额不超过100元的按原价计费,超过100元后的部分打6折.(1)以x (单位:元)表示标价总额,y (单位:元)表示应支付金额,分别就两家书店的优惠方式,求y 关于x 的函数解析式;(2)“世界读书日”这一天,如何选择这两家书店去购书更省钱?GOF E MCBADDABCM校区:_______________ 授课教师:_______________ 姓名:_______________ 考号:______________________·············密············封············线·············内············不············要·············答············题············ ···················································································································································【答案】(1)甲:y =0.8x ;乙:1000640100,.,x x y x x ≤⎧=⎨+>⎩;(2)见解析.【解析】(1)甲书店:y =0.8x ;乙书店:当x ≤100时,y =x ;当x >100时,y =100+0.6(x -100)=0.6x +40,综上所述,1000640100,.,x x y x x ≤⎧=⎨+>⎩.——续写费马的一纸空白(2)令0.8x =0.6x +40解得x =200, ∴1°当x <200时,选择甲书店更省钱; 2°当x =200时,甲乙书店省钱一样多; 3°当x >200时,选择乙书店更省钱——杰少21.为助力新冠肺炎疫情后经济的复苏,天天快餐公司积极投入到复工复产中.现有A 、B 两家农副产品加工厂到该公司推销鸡腿,两家鸡腿的价格相同,品质相近.该公司决定通过检查质量来确定选购哪家的鸡腿.检察人员从两家分别抽取100个鸡腿,然后再从中随机各抽取10个,记录它们的质量(单位:克)如表:A 加工厂 74 75 75 75 73 77 78 72 76 75B 加工厂78747873747574747575(1)根据表中数据,求A 加工厂的10个鸡腿质量的中位数、众数、平均数; (2)估计B 加工厂这100个鸡腿中,质量为75克的鸡腿有多少个? (3)根据鸡腿质量的稳定性,该快餐公司应选购哪家加工厂的鸡腿?【答案】(1)中位数:75、众数:75、平均数:75;(2)30个(3)选B 加工厂的鸡腿.【解析】(1)把A 加工厂的数据从小到大排序为:72,73,74,75,75,75,75,76,77,78,∴中位数为:75;——续写费马的一纸空白 75是出现频数最多的,∴众数为:75; 平均数为:747575757377787276757510+++++++++=;(2)B 鸡腿中质量为75克的鸡腿在10个鸡腿中的占比为:310,∴100个鸡腿中,质量为75克的鸡腿有:100×310=30个;(3)经过计算,A 、B 加工厂的鸡腿质量的平均值一样,而B 的方差比A 的方差小,B 更加稳定, ∴选B 加工厂的鸡腿——杰少22.如图,△ABC 内接于⊙O ,点D 在⊙O 外,∠ADC =90°,BD 交⊙O 于点E ,交AC 于点F ,∠EAC =∠DCE ,∠CEB =∠DCA ,CD =6,AD =8. (1)求证:AB ∥CD ; (2)求证:CD 是⊙O 的切线; (3)求tan ∠ACB 的值. 【答案】(1)(2)见解析;(3)247.【解析】(1)证明:由已知可得∠BAC =∠CEB =∠DCA ,∴AB ∥CD ;(2)∠EAC =∠DCE 【其实这就是弦切角】, 中考不能直接使用,转化一下就可以了.连接EO 并延长交⊙O 于G ,连接CG 、OC ,则EG 为直径,∴∠ECG =90°,∠DCE =∠EAC =∠EBC =∠EGC =∠OCG =90°-∠OCE , ∴∠DCE +∠OCE =90°, 即:∠DCO =90°,而OC 是半径, ∴CD 是⊙O 的切线;--杰少 (3)∵CD =6,AD =8,∠ADC =90°, ∴AC =10,cos ∠ACD =35,∵CD 是⊙O 的切线,AB ∥CD ,∴∠ABC =∠ACD =∠CAB ,——续写费马的一纸空白 ∴BC =AC =10,AB =2BC ·cos ∠ABC =12, 作BG ⊥AC 于点G ,设GC =x ,则AG =10-x , ∴AB 2-AG 2=BG 2=BC 2-GC 2, ∴122-(10-x )2=102-x 2, ∴x =145,∴BG =485,∴tan ∠ACB =247.--续写费马的一纸空白GAD ECFOBAD ECF OB···········密············封············线·············内············不············要·············答············题············ ················································································································································23.如图,在平面直角坐标系xOy 中,一次函数的图象与反比例函数y =k x(k <0)的图象在第二象限交于A (-3,m ),B (n ,2)两点. (1)当m =1时,求一次函数的解析式;(2)若点E 在x 轴上,满足∠AEB =90°,且AE =2-m ,求反比例函数的解析式.【答案】(1)y =23x +3;(2)y =-53x.【解析】(1)当m =1时,A (-3,1),∴2n =-3,n =-32,设AB :y =k ′x +b ,代入解得k ′=23,b =3,∴y =23x +3.(2)这个第二问确实把同学们难倒了,很多同学用的一线三等角+勾股,最后出现三次方程,然后就没有然后了,哎!注意到B 、A 的纵坐标之差为2-m ,而AE =2-m ,是不是发现新大陆了?BF ⊥x 轴于N ,过A 作AF ⊥BN 于F ,交BE 于G ,则BF =2-m =AE , 则△AGE ≌△BGF ,∴AG =GB ,EG =GF , 又-3m =2n ,∴m =-23n ,∴BE =BG +GE =AG +GF =AF =n +3,∴tan ∠BAF =222333nBF AF n +==+,--杰少备注:到这里是关键,突破前面,就可以绕开三次方程. △AME ∽△ENB ,∴ME =23BN =43,∵AM =m ,AE =2-m ,∴AM 2+ME 2=AE 2, 即:m 2+169=(2-m )2,解得m =59,∴k =-3m =-53.—续写费马的一纸空白∴反比例函数的解析式为y =-53x.24.如图,抛物线过点A (0,1)和C ,顶点为D ,直线AC 与抛物线的对称轴BD 的交点为B (3,0),平行于y 轴的直线EF 与抛物线交于点E ,与直线AC 交于点F ,点F 的横坐标为433,四边形BDEF 为平行四边形.(1)求点F 的坐标及抛物线的解析式;(2)若点P 为抛物线上的动点,且在直线AC 上方,当△PAB 面积最大时,求点P 的坐标及△PAB 面积的最大值;(3)在抛物线的对称轴上取一点Q ,同时在抛物线上取一点R ,使以AC 为一边且以A C ,Q ,R 为顶点的四边形为平行四边形,求点Q 和点R 的坐标.备用图【答案】(1)y =-x 2+23x +1;(2)P (736,4712),面积最大值为49324;(3)Q (3,-443),R (-433,-373);或Q (3,-10),R (1033,-373).【解析】(1)设抛物线的解析式为y =ax 2+bx +c (a ≠0),∵A (0,1),B (3,0),∴AB :y =-33x +1,∵F 的横坐标为433,∴F 的纵坐标为-33×433+1=-13,∴F 点的坐标为(433,-1).又∵A 在抛物线上,∴c =1,——续写费马的一纸空白 对称轴:x =-32b a=,∴b =-23a ,∴解析式化为:y =ax 2-23a x +1, ∵四边形DBFE 为平行四边形,∴BD =EF ,D EC FB OA y xxyAOBCxyF GNMAEBOxyAEBO校区:_______________ 授课教师:_______________ 姓名:_______________ 考号:______________________·············密············封············线·············内············不············要·············答············题············ ···················································································································································∴-3a +1=163a -8a +1-(-13),解得a =-1,∴抛物线解析式为y =-x 2+23x +1;(2)设P (p ,-p 2+23p +1),作PP ′⊥x 轴交AC 于点P ′, 则P ′(p ,-33p +1),∴PP ′=-p 2+733p ,∴S △ABP =12·OB ·PP ′=-32p 2+72p =-32(p -736)2+49324,∴当p =736时,△ABP 的面积最大为49324,此时P (736,4712).(3)设Q (3,m ),易得A (0,1),C (733,-43),1°当AQ 为对角线时,则A +Q =R +C , ∴R =A +Q -C =(-433,m +73),∵R 在抛物线y =-(x -3)2+4上,∴m +73=-(-4333-)2+4,解得m =-443,∴Q (3,-443),R (-433,-373);--杰少2°当AR 为对角线时,则A +R =Q +C , ∴R = Q +C -A =(1033,m -73),∵R 在抛物线y =-(x -3)2+4上,∴m -73=-(10333-)2+4,解得m =-10, ∴Q (3,-10),R (1033,-373).--续写费马的一纸空白综上所述,Q (3,-443),R (-433,-373);或Q (3,-10),R (1033,-373).25.如图,在矩形ABCD 中,对角线相交于点O ,⊙M 为△BCD 的内切圆,切点分别为P ,Q , DN =4,BN =6. (1)求BC ,CD ;(2)点H 从点A 出发,沿线段AD 向点D 以每秒3个单位长度的速度运动,当点H 运动到点D 时停止,过点HI ∥BD 交AC 于点l ,设运动时间为t 秒.①将△AHI 沿AC 翻折得△AH ′I ,是否存在时刻t ,使点H ′恰好落在边BC 上?若存在,求t 的值;若不存在,请说明理由;②若点F 为线段CD 上的动点,当△OFH 为正三角形时,求t 的值.(备用图) (备用图)【答案】(1)BC =8,CD =6;(2)①2512;②4-3.【解析】(1)由已知易得BP =BN =6,DQ =DN =4,PC =QC =a ,∴BC 2+CD 2=BD 2,即:(6+a )2+(4+a )2=102,∴a =2; ∴BC =8,CD =6;(2)①【法1】如图,∵HI ∥OD ,∴∠AH ′I =∠AHI =∠ADO =∠OAD =∠ACH ′,∴△AIH ′∽△AH ′C ,∴AH ′2=AI ·AC , ∵AH ′=AH =3t ,AI =AH AD ·AC =38t ×10=154t ,∴9t 2=154t ×5,∴t =2512.--续写费马的一纸空白【法2】易得∠H ′CA =∠CAH =∠CAH ′,∴H ′C =AH ′=AH =3t ,∴BH ′=8-3t ,∴在Rt △ABH ′中,有AB 2+BH ′2=AH ′2, 即:62+(8-3t )2=(3t )2,解得:t =2512.②如图,作PH ⊥OH 于H ,交OF 延长线于P , 过O 、P 分别作OM ⊥AD 于M ,PN ⊥AD 于N , 则△OMH ∽△HNP ,相似比1∶3,∴HN =3OM =33,DN =DM =4,--杰少∴DH =33-4,∴AH =AD -DH =12-33, ∴t =3AH =4-3.--以上来自极客杰少的全卷解析,感谢阅读.DH IH'ONMP QCB AABCOD ABCODDH'IAB CQP MNOHPNM FH OD CBA。
江苏省徐州市中考2019年中考数学考试说明

江苏省徐州市中考2019年中考数学考试说明一、命题的指导思想全面贯彻党的教育方针,坚持公正、全面、科学的原则,充分发挥考试和评价在促进学生发展方面的作用,积极推进素质教育。
依据《全日制义务教育数学课程标准》(2011年版)(以下简称《课程标准》),努力克服过分注重知识掌握的偏向,促进学生形成终身学习所必需的数学基础知识、基本技能、基本思想、基本活动经验,关注学生学习和成长的整个过程,关注学生情感、态度和价值观的和谐发展,鼓励学生的创新和实践,引导学生的个性成长。
结合我市初中数学课程改革实际,正确地反映和评价我市初中数学教学水平,全面促进初中数学教学质量的提升,便于高一级学校选拔人才。
二、命题的基本原则1.导向性原则命题要依据《课程标准》,充分发挥数学教育的育人导向作用,要有利于促进数学教育和数学教学的改进,有利于展示学生的数学素养,学习和应用能力,体现学业水平测试与选拔测试的有机结合2.科学性原则命题应符合《课程标准》的要求,遵循义务教育阶段学生的心理特征和认识规律,体现数学学科的本质,命题时要避免和杜绝出现政治性,科学性和技术性的错误,力争做到(1)命题的内容不能超出《课程标准》要求;(2)命题的知识结构要合理;(3)命题的难度比例要适当;(4)试题的文字、语言表达、图形、序号、标点符号等要准确无误;(5)题型的设计要符合测试的目标和要求;(6)试题的参考答案和评分标准要全面、准确,易于操作。
3.整体性原则命题要整体把握《课程标准》,体现义务教育数学学科内容体系,落实义务教育数学课程目标,全面考察学生数学素养的达成情况,应整体设计情境各问题,重视问题解决过程与问题展现形式的多样化,应关注学生的学习和应用能力4.适应性原则体现义务教育性质,命题要面向全体学生,根据学生的年龄特征、思维特点、数学背景和生活经验编制试题,力求公正、客观、全面、准确地评价学生通过义务教育阶段的数学学习所获得的相应发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
咸宁市2014年初中毕业生学业考试和高中阶段招生考试数学学科说明一、考试性质:初中生学业考试和高中阶段招生考试,是由合格的初中毕业生参加的选拔性考试. 二、指导思想:1.初中生学业考试和高中阶段招生考试是为高中招收新生而举行的选拔性考试.命题依据为教育部颁布的义务教育《数学课程标准》.2.命题要遵循“有助于高中选拔人才,有助于初中实施素质教育”的原则,确保科学、规范.3.命题要结合我市数学教学实际,有利于贯彻课程标准,考查考生进入高中继续学习数学的能力.命题注重考查考生的数学基础知识、基本技能和数学思想方法的理解和掌握水平. 4.坚持稳定为主,着力内容创新. 注重命题试题基础性、实践性、创新性、多样性和选择性,具有一定的探究性和开放性.重点考查学生对核心数学概念、思想方法的理解和掌握程度.既要考查考生的共同基础,又要满足不同考生的选择需求.5.试卷应具有较高的效度、信度,适当的难度和必要的区分度.三、考试内容和要求:(一)考试内容考试教材选用课程教材研究所、中学数学教材研究开发中心编著、人民教育出版社出版、经全国中小学教材审定委员会通过的义务教育课程标准实验教科书七~九年级《数学》(各年级分上、下册,共6册,修订版).数学学业考试应以《数学课程标准》所规定的四大学习领域,即数与代数、图形与几何、统计与概率、综合与实践的内容为依据,主要考查基础知识、基本技能、基本思想和基本体验.1.关注“基础知识与基本技能”(1)了解数的意义,理解数和代数运算的算理和算法,能够合理地进行基本运算与估算;能够在实际情境中有效地使用代数运算、代数模型及相关概念解决问题.(2)能够借助不同的方法探索几何对象的有关性质;能够使用不同的方式表达几何对象的大小、位置与特征;能够在头脑里构建几何对象,进行几何图形的分解与组合,能够对某些图形进行简单的变换;能够借助数学证明的方法确认数学命题的正确性.(3)正确理解数据的含义,能够结合实际需要有效地表达数据特征,会根据数据结果做合理的预测;了解概率的涵义,能够借助概率模型或通过设计活动解释事件发生的概率.2.关注“数学活动过程”包括数学活动过程中所表现出来的思维方式、思维水平,对活动对象、相关知识与方法的理解深度;从事探究的意识、能力和信心等。
也包括能否通过观察、实验、归纳、类比等活动获得数学猜想,并寻求证明猜想的合理性;能否使用恰当的语言有条理地表达数学的思考过程.3.关注“数学思考”“数学思考”是指学生在数感与符号感、空间观念、统计意识、推理能力、应用数学的意识等方面的发展情况。
其主要内容包括:(1)能用数来表达和交流信息;(2)能够使用符号表达数量关系,并借助符号转换获得对事物的理解;(3)能够观察到现实生活中的基本几何现象;(4)能够运用图形形象地表达问题、借助直观进行思考与推理;(5)能意识到做一个合理的决策需要借助统计活动去收集信息;(6)面对数据时能对它的来源、处理方法和由此而得到的推测性结论做合理的质疑;(7)能正确地认识生活中的一些确定或不确定现象;(8)能从事基本的观察、分析、实验、猜想和推理活动,并能够有条理地、清晰地阐述自己的观点。
4.关注“问题解决能力”(1)能从数学角度提出问题、理解问题、并综合运用数学知识解决问题;(2)具有一定的解决问题的基本策略;能合乎逻辑地与他人交流;(3)具有初步的反思意识.5.关注“对数学的基本认识”形成对数学内容统一性的认识(不同数学知识之间的联系、不同数学方法之间的相似性等);深化对数学与现实或其他学科知识之间联系的认识等等.(二)考试要求初中生学业考试和高中阶段招生考试根据普通高级中学对文化素质的要求,重点是考查学生基础知识(指全日制义务教育《数学课程标准》(实验稿)要求的七~九年级所规定的教学内容中的数学概念、性质、法则、公式、公理、定理.包括基本的数学思想和数学方法)和基本技能,全面考查学生的基本数学素养和进入高一年级进一步学习的潜能。
在考查学生基础知识的同时,注重考查学生运用知识的能力,特别是学生创新精神、应用意识和实践能力,增加情境性、开放性、探究性、实践性试题.将知识、能力和学生的数学素养融为一体.要重视运算能力、逻辑思维能力、空间观念的考查.1.《数学课程标准》规定了初中数学的教学要求(1)使学生获得适用未来社会生活和进一步发展所必需的重要数学知识,以及基本的数学思想方法和必要的应用技能;(2)初步学会运用数学的思维方式观察、分析现实社会,解决日常生活和其他学科学习中的问题,增强应用数学的意识;(3)体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心;(4)具有初步的创新精神和实践能力,在情感态度和一般能力方面都能得到充分发展.2.《数学课程标准》阐述的教学要求具体分以下几个层次知识技能要求:(1)了解:能从具体事例中,知道或能举例说明对象的有关特征(或意义);能根据对象的特征,从具体情境中辨认出这一对象.(2)理解:能描述对象特征和由来;能明确地阐述对象与相关对象之间的区别和联系.(3)掌握:能在理解的基础上,把对象运用到新的情境中去.(4)运用:能综合运用知识,灵活、合理地选择与运用有关的方法完成特定的数学任务.过程性要求:(5)经历(感受):在特定的数学活动中,获得一些初步的感受.(6)体验(体会):参与特定的数学活动,在具体情境中认识对象的特征,获得一些经验.(7)探索:主动参与特定的数学活动,通过观察、实验、推理等活动发现对象的某些特征或与其他对象的区别和联系.这些要求从不同角度表明了数学学业考试要求的层次性.(三)具体内容与考试要求细目列表(表中“目标要求”栏中的序号和“(二)2.”中的规定一致)(四)本学科考试分值、时间长度、考试形式。
(1)时间长度:数学科是120分钟.(2)考试形式:数学科是闭卷笔试.四、试题结构:1.数学科题目类型.(1)选择题:安排四选一的单项选择题.(2)填空题:只需直接填写正确结果.(3)解答题:要求写出文字说明、证明过程或演算步骤.2.数学科各部分分数比例.(1)数学各部分分数比例:义务教育课程标准实验教科书七~九年级《数学》按照目前教育部的初中课时计划要求,初中总课时数为352学时。
《课程标准》规定的四大领域“数与代数”180学时,占51%;“图形与几何”91学时,占26%;“统计与概率”44学时,占13%;“综合与实践”35学时,占10%.考试试题分数分布原则上与授课课时比例保持一致,按各部分学时数分配分数如下:“数与代数”约占总分数的51%,为62分左右;“图形与几何”约占总分数的26%,为32分左右;“统计与概率”约占总分数的13%,为16分左右;“实践与综合应用”约占总分数的10%,为10分左右。
编制中考题时,“综合与实践”的分数相机分配在前面三项内容之中,不再单独命题.(2)覆盖面初中阶段的知识点有200个左右,一套试题通常能覆盖其中的60%~80%。
每一章的内容肯定都或多或少涉及到,重点内容、主干知识还会在多题中出现。
(3)主、客题的分值比例:①选择题:8题,每小题3分.共24分.②填空题:8题,每小题3分.共24分.③解答题: 7~8题,每小题6~12分.共72分.3.数学科试题难度值.全卷难度通常控制在(通过率或得分率)0.55~0.65;低档题:得分率控制在0.7以上,中档题:得分率控制在0.5~0.7之间,高档题:得分率控制在0.3~0.5之间。
命题设计时,低、中、高的比例一般为3:5:2或4:4:2。
低、中档题是试卷的主体,综合性、灵活性较强的难题2~3道.在拼卷安排上通常三类题型是从易到难的,而每一类题型内部又是从易到难的,所以,前一类题型的难题有可能比后一类题型的易题难.五、命题要求1.数学课程学业水平测试应有利于引导学生改善数学学习方式,提高学生数学学习的效率,有效地评价初中学生数学学习状况,有利于高中阶段的教学.2.数学课程学业水平测试将根据我市使用《义务教育课程标准》数学科目实验教科书的教学实际,注重对《课程标准》中最重要的基础知识、基本技能、数学基本方法和核心概念的考查.3.数学课程学业水平测试将着力体现新课程理念,突出对学生基本数学素养的评价,关注对学生各方面能力的考查,如观察、实验、操作、猜想、验证、推理等等。
关注学生在具体情境中运用所学知识与基本技能分析解决实际问题的能力。
关注学生的模仿与创新能力. 4.数学课程学业水平测试面向全体学生,根据学生的年龄特征、思维特点,遵循初中学生的认知规律,满足不同层次学生的需求。
试题背景材料从学生熟悉的生活现实中选取,试题力求能公正、客观、全面、准确地评价学生初中阶段的数学学习状况和发展潜能.5.数学课程学业水平测试试题内容与结构科学、合理,试题表述力求简明、准确、规范。
题量适当.6.试卷的有效性。
关注学生学习数学结果与过程的考查,加强对学生思维水平与思维特征的考查.中考试卷要有效发挥选择题、填空题、计算(求解)题、证明题、开放性问题、应用性问题、阅读分析题、探索性问题及其它各种题型的功能,试题设计必须与其评价的目标相一致.试题的求解思考过程力求体现《数学课程标准》所倡导的数学活动方式,如观察、实验、猜测、验证、推理等等.六、题型示例(略)(一).精心选一选(每小题只有一个正确选项,请把正确选项的字母代号填在题后的括号内)(二).细心填一填(请把正确的答案直接填写在题中的横线上)(三).专心解一解(解答应写出文字说明、证明过程或运算步骤)七、复习要求.1.重基础.九年级数学复习教学必须夯实基础,注重规范,不回避容易的考点,尤其到最后冲刺期,不宜将基础抛在一边,专攻难题、偏题、怪题.①数与代数部分的命题会从“数与式”到“方程与不等式”再到“函数”也呈递增趋势;考察“三基”,淡化特殊技巧.②图形与几何部分将通过探索基本图形的基本性质及其相互关系,进一步丰富对空间图形的认识和感受;通过考查图形的平移、旋转、对称的基本性质,欣赏并体验图形的变换在现实生活中的应用。
要注意图形变化的规律,培养发现问题、解决问题的能力.③统计与概率部分虽然所占分值较小,但概念多。
考试重点仍然为“平均数”等基础概念的理解和计算;但也考查了学生对概率的理解和应用。
复习时应注意将统计与概率问题与其他领域知识相结合,提高综合实践能力.2.重能力.①善于提出适合学生的有一定思维价值、有探索性和挑战性的问题.②教学中提高学生的参与度,切实培养学生的能力.培养能力还要在培养学生解题的准确性上下工夫,解决好学生突出存在的会而不对的情况.③突出数学思想方法的教学.④第二轮复习时,不回避常规题型,应针对学生的实际,设计出一些复习专题.⑤关注数学与生活的联系,通过解决实际问题培养学生分析问题、解决问题的能力. 3.重过程.让学生用学到的方法和策略,在解决具有新情境问题的过程中,感悟出如何进行正确的思考.中考数学命题都是围绕“三基”和“四能”展开的。