高中数学学业水平考试复习必背知识点

合集下载

高中数学学业水平考试复习必背知识点

高中数学学业水平考试复习必背知识点

高中数学会考复习必背知识点第一章 集合与简易逻辑 1、含n 个元素的集合的所有子集有n 2个 第二章 函数 1、求)(x f y =的反函数:解出)(1y f x -=,y x ,互换,写出)(1x fy -=的定义域;2、对数:①:负数和零没有对数,②、1的对数等于0:01log =a ,③、底的对数等于1:1log =a a ,④、积的对数:N M MN a a a log log )(log +=, 商的对数:N M NMa a alog log log -=,幂的对数:M n M a n a log log =;b mnb a na m log log =, 第三章 数列1、数列的前n 项和:n n a a a a S ++++= 321; 数列前n 项和与通项的关系:⎩⎨⎧≥-===-)2()1(111n S S n S a a n n n2、等差数列 :(1)、定义:等差数列从第2项起,每一项与它的前一项的差等于同一个常数; (2)、通项公式:d n a a n )1(1-+= (其中首项是1a ,公差是d ;) (3)、前n 项和:1.2)(1n n a a n S +=d n n na 2)1(1-+=(整理后是关于n 的没有常数项的二次函数)(4)、等差中项: A 是a 与b 的等差中项:2ba A +=或b a A +=2,三个数成等差常设:a-d ,a ,a+d3、等比数列:(1)、定义:等比数列从第2项起,每一项与它的前一项的比等于同一个常数,(0≠q )。

(2)、通项公式:11-=n n q a a (其中:首项是1a ,公比是q )(3)、前n 项和:⎪⎩⎪⎨⎧≠--=--==)1(,1)1(1)1(,111q q q a qq a a q na S nn n(4)、等比中项: G 是a 与b 的等比中项:Gb a G =,即ab G =2(或ab G ±=,等比中项有两个)第四章 三角函数1、弧度制:(1)、π=180弧度,1弧度'1857)180( ≈=π;弧长公式:r l ||α= (α是角的弧度数)2、三角函数 (1)、定义:yr x r y x x y r x r y ======ααααααcsc sec cot tan cos sin 4、同角三角函数基本关系式:1cos sin22=+αα ααc o st a n =1c o t t a n =αα 5、诱导公式:(奇变偶不变,符号看象限) 正弦上为正;余弦右为正;正切一三为正 公式二: 公式三: 公式四: 公式五:ααααααtan )180tan(cos )180cos(sin )180sin(-=-︒-=-︒=-︒ ααααααt a n )180tan(cos )180cos(sin )180sin(=+︒-=+︒-=+︒ ααααααt a n )t a n (c o s )c o s (s i n )s i n (-=-=--=- 6、两角和与差的正弦、余弦、正切)(βα+S :βαβαβαsin cos cos sin )sin(+=+ )(βα-S :βαβαβαsin cos cos sin )sin(-=-)(βα+C :βαβαβsin sin cos cos )cos(-=+a )(βα-C :βαβαβsin sin cos cos )cos(+=-a )(βα+T : βαβαβαtan tan 1tan tan )tan(-+=+)(βα-T : βαβαβαtan tan 1tan tan )tan(+-=-7、辅助角公式:⎪⎪⎭⎫⎝⎛++++=+x b a b x b a a b a x b x a cos sin cos sin 222222 )sin()sin cos cos (sin 2222ϕϕϕ+⋅+=⋅+⋅+=x b a x x b a8、二倍角公式:(1)α2S : αααcos sin 22sin =α2C : ααα22sin cos 2cos -= 1cos 2sin 2122-=-=ααα2T : ααα2t a n 1t a n22t a n -=ααααααtan )360tan(cos )360cos(sin )360sin(-=-︒=-︒-=-︒ (2)、降次公式:(多用于研究性质)ααα2sin 21cos sin =212cos 2122cos 1sin 2+-=-=ααα212cos 2122cos 1cos 2+=+=ααα10、解三角形:(1)、三角形的面积公式:A bc B ac C ab S sin 2sin 2sin 2===∆ (2)正弦定理:sin 2sin 2,sin 2,2sin sin sin R c B R b A R a R CcB b A a ======, 边用角表示: (3)余弦定理:)1(2)(cos 2cos 2cos 22222222222cocC ab b a C ab b a c Bac c a b A bc c b a +-+=-+=⋅-+=⋅-+=求角:abc b a C ac b c a B bc a c b A 2cos 2cos 2cos 222222222-+=-+=-+= 第五章、平面向量1、坐标运算:(1)设()()2211,,,y x b y x a ==→→,则()2121,y y x x b a ±±=±→→ 数与向量的积:λ()()1111,,y x y x a λλλ==→,数量积:2121y y x x b a +=⋅→→(2)、设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则()1212,y y x x AB --=→.(终点减起点)221221)()(||y y x x -+-=;向量a 的模|a |:⋅=2||22y x +=;(3)、平面向量的数量积: θcos →→→→⋅=⋅b a b a , 注意:00=⋅→→a ,→→=⋅00a ,)(=-+(4)、向量()()2211,,,y x b y x a ==→→的夹角θ,则222221212121cos y x y x y y x x +++=θ,2、重要结论:(1)、两个向量平行: →→→→=⇔b a b a λ// )(R ∈λ,⇔→→b a //01221=-y x y x(2)、两个非零向量垂直0=⋅⇔⊥→→→→b a b a ,02121=+⇔⊥→→y y x x b a(3)、P 分有向线段21P P 的:设P (x ,y ) ,P 1(x 1,y 1) ,P 2(x 2则定比分点坐标公式⎪⎪⎩⎪⎪⎨⎧++=++=λλλλ112121y y y x x x , 中点坐标公式⎪⎪⎩⎪⎪⎨⎧==y x 第六章:不等式1、 均值不等式:(1)、 ab b a 222≥+ (222b a ab +≤) (2)、a >0,b >0;ab b a 2≥+或2)2(b a ab +≤ 2、解指数、对数不等式的方法:同底法,同时对数的真数大于第七章:直线和圆的方程1、斜 率:αtan =k ,),(+∞-∞∈k ;直线上两点),(),,(222111y x P y x P ,则斜率为1212x x y y k --=2、直线方程:(1)、点斜式:)(11x x k y y -=-;(2)、斜截式:b kx y +=; (3)、一般式:0=++C By Ax (A 、B 不同时为0) 斜率B A k -=,y 轴截距为BC- 3、两直线的位置关系(1)、平行:212121//b b k k l l ≠=⇔且 212121C C B B A A ≠= 时 ,21//l l ;垂直: 21211l l k k ⊥⇔-=⋅ 2121210l l B B A A ⊥⇒=+;(2)、到角范围:()π,0 到角公式 : 12121tan k k k k +-=θ 21k k 、都存在,0121≠+k k夹角范围:]2,0(π夹角公式:12121tan k k k k +-=α 21k k 、都存在,0121≠+k k(3)、点到直线的距离公式2200B A C By Ax d +++=(直线方程必须化为一般式)6、圆的方程:(1)、圆的标准方程 222)()(r b y a x =-+-,圆心为),(b a C ,半径为r (2)圆的一般方程022=++++F Ey Dx y x(配方:44)2()2(2222F E D E y D x -+=+++)0422>-+F E D 时,表示一个以)2,2(E D --为圆心,半径为F E D 42122-+的圆;第八章:圆锥曲线 1、椭圆标准方程:)0(12222>>=+b a by a x ,半焦距:222b a c -= , 离心率的范围:10<<e ,准线方程:ca x 2±=, 参数方程:⎩⎨⎧==ϕϕsin cos b y a x 2、 双曲线标准方程:)0,0(,12222>>=-b a by a x ,半焦距:222b a c +=,离心率的范围:1>e准线方程:c a x 2±=,渐近线方程用02222=-by a x 求得:x a b y ±=,等轴双曲线离心率2=e3、抛物线:p 是焦点到准线的距离0>p ,离心率:1=epx y 22=:准线方程2p x -=焦点坐标)0,2(p ;px y 22-=:准线方程2p x = 焦点坐标)0,2(p-py x 22=:准线方程2p y -=焦点坐标)2,0(p ;py x 22-=:准线方程2p y = 焦点坐标)2,0(p-第九章 直线 平面 简单的几何体1、长方体的对角线长2222c b a l ++=;正方体的对角线长a l 3=2、两点的球面距离求法:球心角的弧度数乘以球半径,即R l ⋅=α;3、球的体积公式:334 R V π=,球的表面积公式:24 R S π= 4、柱体h s V ⋅=,锥体h s V ⋅=31,锥体截面积比:222121h h S S =A A‘O BαβAA‘OBαβ第十章 排列 组合 二项式定理1、排列:(1)、排列数公式: mn A =)1()1(+--m n n n =!!)(m n n -.(n ,m ∈N *,且m n ≤).0!=1(3)、全排列:n 个不同元素全部取出的一个排列;!n A nn =)!1(123)2)(1(-⋅=⋅⋅⋅⋅--=n n n n n ; 2、组合:(1)、组合数公式: mnC =m n m mA A =m m n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ,m ∈N *,且m n ≤);10=n C ;(3)组合数的两个性质:mn C =mn n C - ;m n C +1-m nC =mn C 1+;3、二项式定理 :(1)、定理:nn n r r n r n n n n n n n n b C b a C b a C b a C a C b a ++++++=+--- 222110)( ;(2)、二项展开式的通项公式(第r +1项):r r n r n r b a C T -+=1)210(n r ,,, =各二项式系数和:C n 0+C n 1+C n 2+ C n 3+ C n 4+…+C n r +…+C n n =2n(表示含n 个元素的集合的所有子集的个数)。

高中数学学业水平考知识点总结

高中数学学业水平考知识点总结

高中数学学业水平考知识点总结
高中数学学业水平考试涵盖了广泛的数学知识点,以下是一些需要重点复习的知识点总结:
1. 函数与方程:
- 一次函数、二次函数、指数函数、对数函数、三角函数等的性质和图像
- 方程与不等式的解法:一元一次方程、一元二次方程、一元高次方程等的解法
- 常见函数的运算与复合
2. 空间几何:
- 点、直线、平面的性质与相互关系
- 三角形、四边形、圆的性质与相互关系
- 空间立体图形的性质与计算
3. 概率与统计:
- 事件的概率与计算
- 随机变量与概率分布
- 统计分析与推断:样本调查、参数估计、假设检验等
4. 导数与微分:
- 函数的导数与求导法则
- 函数的极值与最值
- 函数的微分与近似计算
5. 积分与微分方程:
- 不定积分与定积分
- 积分的性质与计算方法
- 常微分方程的解法和应用
6. 数列与数学归纳法:
- 等差数列、等比数列、递推数列的性质与求和公式
- 数列极限与收敛性
这些只是其中的一部分重要知识点,考试还可能涉及其他知识,建议整体复习并进行大量的练习,以提高自己的数学水平。

高中数学学业水平考试知识点

高中数学学业水平考试知识点

高中数学学业水平考试知识点(必修一)第一章集合与函数概念1. 集合的含义(1)元素:。

(2)集合:。

2. 集合的表示方法a.列举法: 。

b.描述法: 。

3. 集合之间的包含与相等的含义(1)子集:。

(2)A=B:。

4. 全集与空集的含义(1)空集:,记为:。

(2)全集:,记为:。

5. 两个集合的并集与交集的含义及计算(1)并集:,记为:。

(2)交集:,记为:。

6. 补集的含义及求法补集:,记为:。

7.用Venn图表示集合的关系及运算8. 函数的概念函数:。

9.映射的概念映射:。

10. 求简单函数的定义域和值域(1)求函数的定义域时列不等式组的主要依据是:a.分式: ;b.偶次方根: ;c.对数式的真数: ;d.指数、对数式的底: .e.如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.f.零指数的底:;g.实际问题中的函数的定义域还要保证实际问题有意义.(2)求函数值域的方法:a.观察法; b.配凑法;c.分离常数法;d.判别法;e.换元法等。

11. 函数的表示法(1)解析法:;(2)图象法:;(3) 列表法:.12. 简单的分段函数(1) 定义:;(2) 定义域:;(3) 值域:;13. 分段函数的简单应用(略)14. 函数的单调性、最大(小)值及其几何意义(1)单调性设函数y=f(x)的定义域为I,a.如果对于定义域I内的某个区间D内的任意两个自变量x1、x2,当时,都有,那么就说f(x)在区间D上是增函数.区间D称为y=f(x)的单调增区间;b.如果对于区间D上的任意两个自变量的值x1、x2,当,都有,那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.注意:函数的单调性是函数的局部性质!(2)单调性的几何意义如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间具有(严格的)单调性,在单调区间上增函数的图象从左到右是的,减函数的图象从左到右是的.(3). 函数最大(小)值a. 最大值:。

高中数学水平考知识点归纳

高中数学水平考知识点归纳

高中数学水平考知识点归纳高中数学学业水平考知识点11、导数的定义:在点处的导数记作.2.导数的几何物理意义:曲线在点处切线的斜率①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。

V=s/(t)表示即时速度。

a=v/(t)表示加速度。

3.常见函数的导数公式:①;②;③;⑤;⑥;⑦;⑧。

4.导数的四则运算法则:5.导数的应用:(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;注意:如果已知为减函数求字母取值范围,那么不等式恒成立。

(2)求极值的步骤:①求导数;②求方程的根;③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;(3)求可导函数值与最小值的步骤:ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。

高中数学学业水平考知识点2函数的表示方法1.函数的三种表示方法列表法图象法解析法2.分段函数:定义域的不同部分,有不同的对应法则的函数。

注意两点:①分段函数是一个函数,不要误认为是几个函数。

②分段函数的定义域是各段定义域的并集,值域是各段值域的并集。

考点四、求定义域的几种情况①若f(x)是整式,则函数的定义域是实数集R;②若f(x)是分式,则函数的定义域是使分母不等于0的实数集;③若f(x)是二次根式,则函数的定义域是使根号内的式子大于或等于0的实数集合;④若f(x)是对数函数,真数应大于零。

⑤.因为零的零次幂没有意义,所以底数和指数不能同时为零。

⑥若f(x)是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数集合;⑦若f(x)是由实际问题抽象出来的函数,则函数的定义域应符合实际问题高中数学水平考知识点归纳高中数学学业水平考知识点31、圆的定义平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。

2、圆的方程(1)标准方程,圆心,半径为r;(2)一般方程当时,方程表示圆,此时圆心为,半径为当时,表示一个点;当时,方程不表示任何图形。

高三数学学业水平知识点

高三数学学业水平知识点

高三数学学业水平知识点一、数与代数高三数学学业水平考察的第一个知识点是数与代数。

这一部分主要包括实数的性质与运算、数的性质与运算、代数式的等式与不等式、函数概念与性质等内容。

实数的性质与运算部分涉及有理数与无理数的性质、实数之间的大小关系、实数的运算规律等;数的性质与运算部分包括整式、分式的性质与运算、实数的根式化简等;代数式的等式与不等式部分主要考察代数式的等式与不等式的性质与解法;函数概念与性质部分则关注函数的定义、性质、图像与应用等方面。

二、平面与立体几何平面与立体几何是高三数学学业水平考试中的第二个重要知识点。

主要内容包括平面几何、向量与平面、空间几何等。

其中,平面几何部分包括平面上的点、直线与角的性质与判定,平面图形的性质与应用等;向量与平面部分考察向量的定义、运算与应用,以及向量与平面的位置关系等内容;空间几何部分则关注空间中的点、直线与面的性质与判定,空间图形的性质与应用。

三、函数与方程函数与方程是高三数学学业水平考试中的第三个知识点。

这一部分主要包括函数与方程的性质与解法、二次函数、指数与对数函数等内容。

函数与方程的性质与解法考察函数的奇偶性、周期性、单调性等性质,以及方程的解法与应用;二次函数部分主要关注二次函数的性质与图像,二次函数的最值与应用等;指数与对数函数部分考察指数函数与对数函数的基本性质,指数方程与对数方程的解法与应用等内容。

四、概率与统计概率与统计是高三数学学业水平考试的第四个重要考点。

这部分主要包括概率的基本概念与计算、统计的基本概念与分析等内容。

其中,概率的基本概念与计算包括样本空间、事件、概率的计算等;统计的基本概念与分析部分主要考察统计数据的收集与整理、统计图表的应用与分析等。

五、数学思想方法与解决问题能力数学思想方法与解决问题能力是高三数学学业水平考试的最后一个考察点。

这部分考察学生的数学思维能力、创新能力与解决问题的方法与策略。

题目种类多样,涉及证明、计算、应用等不同领域的数学问题,要求学生运用所学的数学知识与方法,独立思考并给出合理解答。

高中数学学业水平测试必背知识点(精选.)

高中数学学业水平测试必背知识点(精选.)

高中数学学业水平测试必背知识点(精选.)高中数学学业水平测试必背知识点 必修一一、 集合与函数概念并集:由集合A 和集合B 的元素合并在一起组成的集合,如果遇到重复的只取一次。

记作:A ∪B 交集:由集合A 和集合B 的公共元素所组成的集合,如果遇到重复的只取一次记作:A ∩B 补集:就是作差。

1、集合{}n a a a ,...,,21的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子有2n –2个.2、求)(x f y =的反函数:解出)(1y fx -=,y x ,互换,写出)(1x fy -=的定义域;函数图象关于y=x 对称。

3、(1)函数定义域:①分母不为0;②开偶次方被开方数0≥;③指数的真数属于R 、对数的真数0>.4、函数的单调性:如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f(x 1)<(>)f(x 2),那么就说f(x)在区间D 上是增(减)函数,函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质。

5、奇函数:是()()f x f x ,函数图象关于原点对称(若0x =在其定义域内,则(0)0f =); 偶函数:是()()f x f x ,函数图象关于y 轴对称。

6、指数幂的含义及其运算性质:(1)函数)10(≠>=a a a y x 且叫做指数函数。

(2)指数函数(0,1)x y a a a =>≠当01a <<为减函数,当 1a >为增函数;①r s r s a a a +⋅=;②()r s rs a a =;③()(0,0,,)r r r ab a b a b r s Q =>>∈。

(3)指数函数的图象和性质x a y =0 < a < 1 a > 1图 象性 质定义域 R 值域(0 , +∞)定点过定点(0,1),即x = 0时,y = 1(1)a > 1,当x > 0时,y > 1;当x < 0时,0 < y < 1。

高中数学学业水平考知识点大全

高中数学学业水平考知识点大全

高中数学学业水平考知识点大全高中数学学业水平主要考察以下知识点:
1. 数与代数:
- 实数和有理数的性质与运算
- 数的次方与根式
- 四则运算与基本代数式的运算
- 一元一次方程和不等式
- 一元二次方程和不等式
- 二次根式和无理方程
- 平面直角坐标系与图形的性质
- 函数与方程
- 等差数列与等比数列
2. 几何与空间:
- 几何图形的性质与运动
- 三角形与三角函数
- 平面向量和空间向量
- 直线与平面的位置关系
- 空间中的几何体与轨迹
- 空间解析几何
3. 解析几何:
- 向量与坐标
- 直线的方程与性质
- 圆的方程与性质
- 圆锥曲线的方程与性质
4. 概率与统计:
- 随机试验与事件
- 概率及其性质
- 离散型随机变量
- 连续型随机变量
- 统计与统计图表
5. 数学思维与证明:
- 数学思维方法
- 证明与推理
- 逻辑与推理
- 数学问题的解答方法
以上是高中数学学业水平考试中需要掌握的主要知识点,希望对你有帮助。

高中数学会考知识点总结_(超级经典)

高中数学会考知识点总结_(超级经典)

数学学业水平复习知识点第一章 集合与简易逻辑1、 集合(1)、定义:某些指定的对象集在一起叫集合;集合中的每个对象叫集合的元素。

集合中的元素具有确定性、互异性和无序性;表示一个集合要用{ }。

(2)、集合的表示法:列举法()、描述法()、图示法();(3)、集合的分类:有限集、无限集和空集(记作φ,φ是任何集合的子集,是任何非空集合的真子集); (4)、元素a 和集合A 之间的关系:a ∈A ,或a ∉A ;(5)、常用数集:自然数集:N ;正整数集:N ;整数集:Z ;整数:Z ;有理数集:Q ;实数集:R 。

2、子集(1)、定义:A 中的任何元素都属于B ,则A 叫B 的子集 ;记作:A ⊆B , 注意:A ⊆B 时,A 有两种情况:A =φ与A ≠φ(2)、性质:①、A A A ⊆⊆φ,;②、若C B B A ⊆⊆,,则C A ⊆;③、若A B B A ⊆⊆,则A =B ; 3、真子集(1)、定义:A 是B 的子集 ,且B 中至少有一个元素不属于A ;记作:B A ⊂; (2)、性质:①、A A ⊆≠φφ,;②、若C B B A ⊆⊆,,则C A ⊆4、补集①、定义:记作:},|{A x U x x A C U ∉∈=且;②、性质:A A C C U A C A A C A U U U U ===)(,, φ; 5、交集与并集(1)、交集:}|{B x A x x B A ∈∈=且性质:①、φφ== A A A A , ②、若B B A = ,则A B ⊆ (2)、并集:}|{B x A x x B A ∈∈=或性质:①、A A A A A ==φ , ②、若B B A = ,则B A ⊆ABBA6、一元二次不等式的解法:(二次函数、二次方程、二次不等式三者之间的关系)不等式解集的边界值是相应方程的解含参数的不等式ax 2+b x +c>0恒成立问题⇔含参不等式ax 2+b x +c>0的解集是R ; 其解答分a =0(验证bx +c>0是否恒成立)、a ≠0(a<0且△<0)两种情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学会考复习必背知识点
第一章 集合与简易逻辑 1、含n个元素得集合得所有子集有个 第二章 函数 1、求得反函数:解出,互换,写出得定义域;
2、对数:①:负数与零没有对数,②、1得对数等于0:,③、底得对数等于1:, ④、积得对数:, 商得对数:,
幂得对数:;, 第三章 数列
1、数列得前n 项与:; 数列前n项与与通项得关系: 2、等差数列 :(1)、定义:等差数列从第2项起,每一项与它得前一项得差等于同一个常数; (2)、通项公式: (其中首项就是,公差就是;)
(3)、前n项与:1、(整理后就是关于n 得没有常数项得二次函数)
(4)、等差中项: 就是与得等差中项:或,三个数成等差常设:a-d ,a ,a+d
3、等比数列:(1)、定义:等比数列从第2项起,每一项与它得前一项得比等于同一个常数,()、
(2)、通项公式:(其中:首项就是,公比就是) (3)、前n项与:
(4)、等比中项: 就是与得等比中项:,即(或,等比中项有两个) 第四章 三角函数
1、弧度制:(1)、弧度,1弧度;弧长公式: (就是角得弧度数)
2、三角函数 (1)、定义:
y r
x r y x x y r x r y ======ααααααcsc sec cot tan cos sin
4、同角三角函数基本关系式:
5、诱导公式:(奇变偶不变,符号瞧象限) 正弦上为正;余弦右为正;正切一三为正
公式二: 公式三: 公式四: 公式五:
6、两角与与差得正弦、余弦、正切 : : : :
: :
7、辅助角公式:⎪⎪⎭

⎝⎛
++++=+x b a b x b a a b a x b x a cos sin cos sin 2
22222
)sin()sin cos cos (sin 2222ϕϕϕ+⋅+=⋅+⋅+=x b a x x b a
8、二倍角公式:(1):
:
:
(2)、降次公式:(多用于研究性质)
10、解三角形:(1)、三角形得面积公式
: (2)正弦定理:
sin 2sin 2,sin 2,2sin sin sin R c B R b A R a R C
c
B b A a ======, 边用角表示: (3)余弦定理:
求角:
ab
c b a C ac b c a B bc a c b A 2cos 2cos 2cos 2
22222222-+=
-+=-+= 第五章、平面向量 1、坐标运算:(1)设,则 数与向量得积:λ,数量积:
(2)、设A 、B两点得坐标分别为(x 1,y 1),(x 2,y 2),则。

(终点减起点) ;向量得模||:;
(3)、平面向量得数量积: , 注意:,, (4)、向量得夹角,则,
2、重要结论:(1)、两个向量平行: , (2)、两个非零向量垂直 ,
(3)、P 分有向线段得:设P(x,y) ,P 1(x 1,y1) ,P 2(x 2,y 2) ,且 , 则定比分点坐标公式 , 中点坐标公式
第六章:不等式
1、 均值不等式:(1)、 ()
(2)、a〉0,b 〉0;或 一正、二定、三相等
2、解指数、对数不等式得方法:同底法,同时对数得真数大于0; 第七章:直线与圆得方程
1、斜 率:,;直线上两点,则斜率为
2、直线方程:(1)、点斜式:;(2)、斜截式:; (3)、一般式: (A 、B 不同时为0) 斜率,轴截距为
3、两直线得位置关系 (1)、平行: 时 ,;
垂直: ;
(2)、到角范围: 到角公式 : 都存在,
夹角范围: 夹角公式: 都存在,
(3)、点到直线得距离公式(直线方程必须化为一般式) 6、圆得方程:
(1)、圆得标准方程 ,圆心为,半径为 (2)圆得一般方程 (配方:)
时,表示一个以为圆心,半径为得圆;
第八章:圆锥曲线 1、椭圆标准方程:, 半焦距: , 离心率得范围:,准线方程:, 参数方程:
2、 双曲线标准方程:, 半焦距:,离心率得范围:
准线方程:,渐近线方程用求得:, 等轴双曲线离心率
3、抛物线:就是焦点到准线得距离,离心率: :准线方程焦点坐标;:准线方程 焦点坐标
:准线方程焦点坐标;:准线方程 焦点坐标
第九章 直线 平面 简单得几何体
1、长方体得对角线长;正方体得对角线长
2、两点得球面距离求法:球心角得弧度数乘以球半径,即;
3、球得体积公式:,球得表面积公式: 4、柱体,锥体,锥体截面积比: 第十章 排列 组合 二项式定理
1、排列:(1)、排列数公式: ==。

(,∈N *
,且)、0!=1 (3)、全排列:
n个不同元素全部取出得一个排列;; 2、组合:
(1)、组合数公式: ===(,∈N *
,且);; (3)组合数得两个性质:= ;+=; 3、二项式定理 :(1)、定
理:n
n n r r n r n n n n n n n n b C b a C b a C b a C a C b a ++++++=+--- 222110)( ;
(2)、二项展开式得通项公式(第r +1项):
A A

O B
A
A

O
B
各二项式系数与:C n0+C n1+Cn2+ C n3+ C n4+…+C n r+…+Cnn=2n (表示含n个元素得集合得所有子集得个数)。

奇数项二项式系数得与=偶数项二项式系数得与:C n0+C n2+Cn4+ C n6+…=Cn1+C n3+C n5+ C n7+…=2n —1
第十一章:概率:
1、概率(范围):0≤P(A) ≤1(必然事件: P(A)=1,不可能事件: P(A)=0)
2、等可能性事件得概率:、
3、互斥事件有一个发生得概率:
A,B互斥: P(A+B)=P(A)+P(B);A、B对立:P(A)+P(B)=1
4、独立事件同时发生得概率:独立事件A,B同时发生得概率:P(A·B)= P(A)·P(B)。

n次独立重复试验中某事件恰好发生k次得概率。

相关文档
最新文档