中考真题 2014年湖北省黄冈市中考数学试卷及答案
2014湖北黄冈中考数学

黄冈市2014年初中毕业生学业水平考试数学试题(满分120分,考试时间120分钟)一、选择题(下列各题A、B、C、D四个选项中,有且仅有一个是正确的,每小题3分,共24分)1.(2014湖北黄冈市,1,3分)-8的立方根是()A.-2 B.2±C.2 D.-1 2【答案】A2. (2014湖北黄冈市,2,3分)如果α与β互为余角,则()A.α+β=180°B.α-β=180°C.α-β=90°D.α+β=90°【答案】D3. (2014湖北黄冈市,3,3分)下列运算正确的是()A.x2x3=x6 B.x6÷x5=x C.(-x2)4=x8 D.x2+x3=x5【答案】B4. (2014湖北黄冈市,4,3分)如图所示的几何体的主视图是()【答案】D5(2014湖北黄冈市,5,3分).函数y=x中,自变量x的取值范围是()A.x≠0 B.x≥2 C.x>2且x≠0 D.x≥2且x≠0【答案】B6. (2014湖北黄冈市,6,3分)若α,β是一元二次方程x2+2x-6=0的两根,则α2+β2=()A.-8 B.32 C.16 D.40【答案】C7. (2014湖北黄冈市,7,3分)如图,圆柱体的高h r=2cm,则圆锥体的全面积为()cm2A .π B .8π C .12π D .()π【答案】C8. (2014湖北黄冈市,8,3分)已知,在△ABC 中,BC =10,BC 边上的高h =5,点E 在边AB 上,过点E 作EF ∥BC ,交AC 边于点F ,点D 为BC 边上一点,连接DE ,DF ,设点E 到BC 的距离这x ,则△DEF 的面积s 关于x 的函数图象大致为( )【答案】D二、填空题(共7小题,每小题3分,共21分) 9. (2014湖北黄冈市,9,3分)计算:13-= 【答案】1310. (2014湖北黄冈市,10,3分)分解因式:(2a +1)2-a 2= 【答案】(3a +1)(a +1)11. (2014湖北黄冈市,11,3-=【答案】212. (2014湖北黄冈市,12,3分)如图,若AD ∥BE ,且∠ACB =90°,∠CBE =30°,则∠CAD = °.ABCE F D【答案】6013. (2014湖北黄冈市,13,3分)当x-1时,代数式222111x x x x x x x-+-÷+++的值是 . 【答案】3-14. (2014湖北黄冈市,14,3分)如图,在⊙O 中,弦CD 垂直于直径AB 于点E ,若∠BAD =30°,且BE =2,则CD = . 【答案】15. (2014湖北黄冈市,15,3分)如图,在一张长为8cm ,宽为6cm 的矩形纸片上,现要剪下一个腰长为5cm 的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上),则剪下的等腰三角形的面积为 cm . 【答案】252或或10三、解答题(本大题共10小题,满分共75分)16. (2014湖北黄冈市,16,5分)(5分)解不等式组:2153112x x x -⎧⎪⎨+-≥⎪⎩,并在数轴上表示出不等式组的解集.【答案】解:解不等式①得x >3,解不等式②得x ≥1∴原不等式组的解集为x >3,不等式组的解集在数轴上表示如下:17. (2014湖北黄冈市,17,6分)(6分)浠州县为了改善全县中、小学办学条件,计划集中采购一批电子白板和投影机,已知购买2块白板比购买3台投影机多4000元,购买4块电子白板和3台投影机共需44000元,问购买一块电子白板和一台投影机各需要多少元? 【答案】解:设购买一块电子白板需x 元,设购买一台投影机需y 元,依题意列方程组:BCDAEB第12题图第14题图第15题图2340004344000x y x y -=⎧⎨+=⎩ / 解之得:40004000x y =⎧⎨=⎩答:购买一台电子白板需8000元,一台投影机需4000元18.(6分)已知,如图所示,AB =AC ,BD =CD ,DE ⊥AB 于点E ,DF ⊥AC 于点F ,求证:DE =DF .【答案】证法一:连接AD ∵AB =AC ,BD =CD ,AD =AD∴△ABD ≌△ACD ∴∠BAD =∠CAD∴AD 是∠EAF 的平分线 又∵DE ⊥AB ,DF ⊥AC ,∴DE =DF 证法二:证△ABD ≌△ACD 得∠ACD =∠ABD ∴∠DCF =∠DBE又∵∠DFC =∠DEB =90°,DC =DB .∴△DFC ≌△DEB ∴DE =DF19. (2014湖北黄冈市,19,6分)红花中学现要从甲、乙两位男生和丙丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛. (1)请用树形图或列表法列举出各种可能选派的结果; (2)求恰好选派一男一女两位同学参赛的概率. 【答案】解:树形图:ABEDCF共有12种选派方案(2)恰有一男一女参赛共有8种可能,所以P 一男一女=12320. (2014湖北黄冈市,20,7分)(7分)如图,在Rt △ABC 中 ,∠ACB =90°,C 以AC 为直径的⊙O 与AB 边交于点D ,过点D 作⊙O 的切线,交BC 于点E (1)求证:EB =EC ;(2)若以点O 、D 、E 、C 、为顶点的四边形是正方形,试判断△ABC 的形状,并说明理由.【答案】证法一:(1)如图,连接CD . ∵AC 为⊙O 的直径,∠ACB =90°∴CB 为⊙O 的切线 又∵DE 切⊙O 于D ,∴ED =EC .∴∠CDE =∠DCE . ∵AC 为⊙O 的直径,∴∠ADC =90° / ∴∠CDE +∠EDB =90°,∠DCE +∠CBD =90°∴∠EDB =∠CBD . ∴ED =EB .∴EB =EC . 证法二:如图连接OD .∵AC 为⊙O 的直径,∠ACB =90°,∴CB 为⊙O 的切线.开始①号选手甲乙丙丁②号选手 甲 乙 丙丁 甲 乙 丙丁 甲 乙 丙丁 选派方案B又∵DE 切⊙O 于D ,∴ED =EC ,∠ODE =90°. ∴∠ODA +∠EDB =90° / .∵OA =OD ,∴∠ODA =∠OAD . 又∵∠OAD +∠DBE =90°∴∠EDB =∠DBE . ∴ED =EB .∴EB =EC (2)△ACB 为等腰三角形.理由:∵四边形ODEC 为正方形. ∴OC =CE ,∠ACB =90°. ∵OC =12AC ,CE =EB =12BC , / ∴AC =BC .∴△ACB 为等腰直角三角形21. (2014湖北黄冈市,21,7分)(7分)某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味,草莓味,菠萝味,香橙味,核桃味五种口味的牛奶供学生饮用,海马中学为了了解学生对不同味的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同.,绘制了如下两张不完整的人数统计图)(1)本次被调查的学生有 名(2)[补全上面的条形统计图,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图中所占圆心角的度数. (3)该校共有1200名学生订购了该品牌的牛奶。
最新湖北省黄冈市中考数学试卷及解析资料

2014年湖北省黄冈市中考数学试卷一、选择题(下列个题四个选项中,有且仅有一个是正确的.每小题3分,共24分) ﹣D5.(3分)(2014•黄冈)函数y=中,自变量x 的取值范围是( )7.(3分)(2014•黄冈)如图,圆锥体的高h=2cm ,底面半径r=2cm ,则圆锥体的全面积为( )cm 2.π作EF ∥BC ,交AC 边于点F .点D 为BC 上一点,连接DE 、DF .设点E 到BC 的距离为x ,则△DEF 的面积S 关于x 的函数图象大致为( )D二、填空题(共7小题,每小题3分,共21分) 9.(3分)(2014•黄冈)计算:|﹣|= .10.(3分)(2014•黄冈)分解因式:(2a+1)2﹣a 2= . 11.(3分)(2014•黄冈)计算:﹣= .12.(3分)(2014•黄冈)如图,若AD ∥BE ,且∠ACB=90°,∠CBE=30°,则∠CAD= 度.13.(3分)(2014•黄冈)当x=﹣1时,代数式÷+x 的值是 .14.(3分)(2014•黄冈)如图,在⊙O 中,弦CD 垂直于直径AB 于点E ,若∠BAD=30°,且BE=2,则CD= .15.(3分)(2014•黄冈)如图,在一张长为8cm ,宽为6cm 的矩形纸片上,现要剪下一个腰长为5cm 的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上).则剪下的等腰三角形的面积为 cm 2.三、解答题(本大题共10小题,满分共75分)16.(5分)(2014•黄冈)解不等式组:,并在数轴上表示出不等式组的解集.17.(6分)(2014•黄冈)浠州县为了改善全县中、小学办学条件,计划集中采购一批电子白板和投影机.已知购买2块电子白板比购买3台投影机多4000元,购买4块电子白板和3台投影机共需44000元.问购买一块电子白板和一台投影机各需要多少元?18.(6分)(2014•黄冈)已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.19.(6分)(2014•黄冈)红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.20.(7分)(2014•黄冈)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D的切线,交BC于点E.(1)求证:EB=EC;(2)若以点O、D、E、C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.21.(7分)(2014•黄冈)某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶提供学生饮用.浠马中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:(1)本次被调查的学生有名;(2)补全上面的条形统计图1,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数;(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?22.(9分)(2014•黄冈)如图,已知双曲线y=﹣与两直线y=﹣x,y=﹣kx(k>0,且k≠)分别相交于A、B、C、D四点.(1)当点C的坐标为(﹣1,1)时,A、B、D三点坐标分别是A(,),B(,),D(,).(2)证明:以点A、D、B、C为顶点的四边形是平行四边形.(3)当k为何值时,▱ADBC是矩形.23.(7分)(2014•黄冈)如图,在南北方向的海岸线MN上,有A、B两艘巡逻船,现均收到故障船C的求救信号.已知A、B两船相距100(+1)海里,船C在船A的北偏东60°方向上,船C 在船B的东南方向上,MN上有一观测点D,测得船C正好在观测点D的南偏东75°方向上.(1)分别求出A与C,A与D之间的距离AC和AD(如果运算结果有根号,请保留根号).(2)已知距观测点D处100海里范围内有暗礁.若巡逻船A沿直线AC去营救船C,在去营救的途中有无触暗礁危险?(参考数据:≈1.41,≈1.73)24.(9分)(2014•黄冈)某地实行医疗保险(以下简称“医保”)制度.医保机构规定:一:每位居民年初缴纳医保基金70元;二:居民每个人当年治病所花的医疗费(以定点医院的治疗发票为准),年底按下列方式(见表一)担部分和年初缴纳的医保基金)记为y元.(1)当0≤x≤n时,y=70;当n<x≤6000时,y=(用含n、k、x的式子表示).(2)表二是该地A、B、C三位居民2013年治病所花费的医疗费和个人实际承担的医疗费用,根据表中的数据,求出n、k的值.(3)该地居民周大爷2013年治病所花费的医疗费共32000元,那么这一年他个人实际承担的医疗费用是多少元?25.(13分)(2014•黄冈)已知:如图,在四边形OABC中,AB∥OC,BC⊥x轴于点C,A(1,﹣1),B(3,﹣1),动点P从点O出发,沿着x轴正方向以每秒2个单位长度的速度移动.过点P 作PQ垂直于直线OA,垂足为点Q,设点P移动的时间t秒(0<t<2),△OPQ与四边形OABC重叠部分的面积为S.(1)求经过O、A、B三点的抛物线的解析式,并确定顶点M的坐标;(2)用含t的代数式表示点P、点Q的坐标;(3)如果将△OPQ绕着点P按逆时针方向旋转90°,是否存在t,使得△OPQ的顶点O或顶点Q在抛物线上?若存在,请求出t的值;若不存在,请说明理由;(4)求出S与t的函数关系式.2014年湖北省黄冈市中考数学试卷一、选择题(下列个题四个选项中,有且仅有一个是正确的.每小题3分,共24分)1.(3分)考点:立方根.分析:如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.解答:解:∵﹣2的立方等于﹣8,∴﹣8的立方根等于﹣2.故选A.点评:此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.,×=EF=(),)(二、填空题(共7小题,每小题3分,共21分)|=故答案为:﹣故答案为:+x﹣﹣=3..=即,OE=2CD=2DE=4=OE=2.4AE×5==2厘米,×2厘米=4×故答案为:三、解答题(本大题共10小题,满分共75分).18.(6分)=.与直线﹣与直线﹣联立得:得:﹣x=,即;当y=,),﹣,,﹣,﹣x)分别相交于联立得:得:﹣=,x=﹣时,﹣时,,(﹣,,﹣)= k=BE=CE=x AB=AE+BE=x++1xBE=CE=xx=100(yy=200﹣﹣×(,;y=﹣x x=(,)OP=×在抛物线上,则×t=在抛物线上,则×t=或S=××=t××﹣×t﹣××;.。
年湖北省黄冈市中考数学试题及答案

黄冈市2014年初中毕业生学业水平考试数学试题(考试时间】20分钟满分120分)注密事项:1. 善毎前*琴生齐必需自己的旌名、准才注号堆寄在试题峑和答題卡上•幷牌色寿证号春僉碣君贴在答题卡上的控屯位JL2. 选擇罐令小题选出當第后,用2B搐笔杷苓题卡上对竝题目的答素标号涂黑•如需效眾用橡皮樓千净后*耳逸涂其他答案标号。
答准以姻卷上无效。
.1菲產择題的作答:用0. 5走来黑色晏水签字笔直接答圧答題卡止对应的答題(4域內。
塞在试趙卷上无4.考生必须保持答题卡的楚洁.考试结束后,请將本试題惠舸学题卡一并上丈。
一、选择题芾列备题A t HA.\E四个选项中上且仅有-个是正确的•每小題3分,共创分)】.一8的立方根赴A.-2B■二22.如果。
与0互为余角,则C2 D一*L* 2A. 口+卩—180" K 180° C. 口一加财D。
+皆9L3.下列运算止确的是/V jr2*文‘ ▼ j-!i B,.护十H‘=ar C. (-z®r-x e D* .r s+卡=J4.如图所示的几何休的主视图是5. 函数y 中*自变虽区的取(fl范国是A.丄HQB.^2Gx>2 且 hMO D山孑2 且.详06. 若6尸足—•元二次方程工叶2工一6=0的两根,则小+卩* =A. -K B, 32 C. 16 IA U)7*如图*师徳体的高h^2、陌rm*底面圆半輕r—2cm*则圆锥体的全面积为()cm fA+4V3ff B.瓯 C I2»r D. (4/3 + 4)^ 〔第了收圈)(站融砂8*巳知:&/MBC中,也:=10・BC边上的高A-5,点E在边Aii上•过点E柞EF/BC,交DAC边于点F”点D为边上一点,连接DE. DF.设点E到BC:的距离为丁•则ADEF的黄冈*数学试题殆I页(其4呢}面枳吕关于丁的函数用酸尢致为JO*分稱因式江如十】尸一沪1<如團、在@0中屉GJ 垂直于威轻AB 于点&若ZBAD=30\K 旳22侧C7>= ___________________ . 15. 如图,在一张快:为計E 宽为6cm 的审形纸片上,現要剪下一个腰长为5cm 的等腰三角形 〈要求:等腰三角形的一个顶点与矩形的一个頂点重合•其余的两个顶点在矩形的边上)•则 列下的等腰三角形的面积为 _________________ rm\ 三.解答鬆(本大題共10小題,满分共75分)16. ( 5分)解不等式组』3工卡1 X ” 并在数轴上表示曲不等武组的解栗・—亍—_ ]耳不 W17. (6分】漏州县为r •改善全县中、小学办学条件,计划集中采购1批电子白槪和投影机,已知 购买2块电子白板比购买3台投彭机多4000元,购买4块电子白板和3台投影机共需 44000云问购买一块电子白板和一台投膨机备需要筝少元?1& (6分尼知,如图所示,AR^AC t Bl )^CD, DE r [. A B 于点 E t DF 丄AC于点F *求证’ DE=DK】9. (6分)红花中学现護从甲、乙两位男牛和丙、「两位女生 中,选派两位同学分别作为①号选手和②号选手代衷学控 參加全且Ct 字听写大钱+(1)<用裤形图或列表袪列举出各种可能选潦的结果*V )求恰好选派一男一女两位同学参赛的概率*度.二、填空題(共了小懸,毎小融3分,共昭分》9・计 If ; I —y| = __________11,计算:y T?- 12* 如图•若 AD//BE,且£AC3=9冗ZG3E=3y 侧黄冈•数学试题第2页(共斗页》20. (7 分)如图•.在 RtAAfiC 中,AC 为 直径的QD 与AB 边交于点D,过点DftQO 的切 线*交于点E. (1) 求证:EB = EC ;(2) 若以点O,D,E*C 为匝点的四边影是正方形*试 判新△ABC 的形状,井说明理由.21* (7分〉某市为了增强学生体质•全面实施“学生饮用奶”價养工程.臬品牌牛奶供应商捉供了原味■草偉味,菠萝味、香橙味、核桃味五种口昧的 牛奶供学生饮用•淆马中学为了了解学生对不同II 味牛奶的喜好'对全校订购牛奶的学生 进行了随机调査(毎盘各种口味牛奶的体积相同几绘制了如下两张不完整的人数统计图:(1)本次被個叠的学生看 ___________ 名.⑵补全上面的条形统计图■并计命岀喜好“疲鸭?T 牛奶的学生人數在唏形统计图中所占 圆心角的度数.(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商馮天只为笹名订购牛奶的学生 配送一盒牛奶.娈使学生每只祁能喝到自己喜好的口味的牛奶,中奶供应廊每天送往该 按的牛奶中*草無味要比原味多送多少盒?22.(9分)如图,已知取曲线与两直线叶一士”=一虹(心0,且 &¥)分别相交JC4 4于儿E£QPq 点.-(1) 当点C 的坐标为<-bl)时忍上山三点坐标井拥是DC__,_).(2) 证明;以点A.D,H,C 为頂点的四边形是平行四边形 ⑶当h 为何值时t UADBC.是矩形.黄冈•数学试聽第3页]共4页)A<^20MS )瓯(7分)如图准南北方向的海岸线MN 上,有A,B 两艘巡逻船,现均收到故障船C 的求救 信号.已知儿B 两麗相距100(73 +1)海里,SJ 匚崔船A 的北偏东抄方向上,船C 在船E 的东隋方向上,上有一观测点测得船匚正好在观测点D 的南偏东7节方向上.(1〉分别求出A 与匚人与D 间的距WAC 和AD (如果运算结果有根号*晴保留根号X (2)已知距观测点D 处100海里范围内有暗礁.若巡逻船人沿宜线AC 去营救船C,在去 营救的途中有无触施危险?(参考数据,V2^L 41 .鹿41. 73 )21. (9分)某地卖行医疗保险(以下简称“医保”)制度.医保机构规定:一、每位居民年初撤纳医保基金70元'二民每卜人当年治病所花的医疗费(戌定点医院的治疗发票为椎儿年底按卜列方 式(见表一)报销所治病的医疗费用、 表亠:如果设-位居民当年治病花费的医疔费为工元,他个人实际承担的医疗费用(包括医 疗费中个人承担部分和年初墩纳的任保辜金)记为y 元.⑴当OWC 挖时了 = 70;当«<x<6000时』一 _____________ ©用含n t k^的式子表示).表二是该地A,乩(;三位居民2Q13年治病所花费的厌疗费和个人实际承担的医疗费 用,根据表中的数据,求出n.k 的值. •表二*饭(13分)已知:如图所示,在四边形OABC 中# AR//OC, BC± x 轴于点 C, 4 < 1t - l>t B (乳一 1儿动点P 从点0出发,沿着工轴正方 向以毎秒2个单位长度的速度移动+过点P 作 PQ 垂宜于直线0A ,垂足为点Q 设点P 移动 的时间为r 秒(0</<2), AOFQ 与四边形 OABC$®部分的面积为S.(1) 求经过O, A 用三点的抛物线的解析式*并确定顶点M 的坐标卡(2) 用含t 的代数式表示点尸、点Q 的坐标; (3) 如果将△OPQ 绕着点P 按逆时针方简废转90°,是否存在4使得△OPQ 的顶点O 或顶点Q 在抛物线上?若存在•请求出t 的 值:若不存在,请说明理由;(4》求出S 与f 的函数关系式.居民个人当年治病所花费的医疗费F医疗费的报销办法不超过n 元的都分全部由匿保基金承担(即全玮报悄)超过«元但不超过60CO 元的部分 个人承担h%,其余部井由医保基金吸担超过6000元的部分牛人服担20% '其余部分由医保墓金感担層民A r BC 棊次恰爛所花费的洁疗猜用巩元)400 800 1500 个人实际承押的医疗丸用jK 元)7019047Q(仍该地居民周大爷2S3年洽病所花费的厌疗费共3ZQ00元,那么这-年他个人宾际承担 的医疗费用是參少元?黄冈•数学试题第4贡(共4页〉参考答案—泄择题侮頼分,共24分)1.A II) IB 4.D 氐C 7X SJ)一填邸題(毎題3分拱21分)9.|j 10, (3a-l)(a+l)? IL^J 12* 6叫11 3-2^2;14「1 為1需或5励10•他答对一个盘丨分)Li三JS答题(共75分)血(5分)解播不等式①得x>3f解不等式②得无鼻匕爲原不竽式组的解集为£>乱不等式组的解集莖数轴匕表示如下:C 1 2 3 1Il C6 分)解:设购买•块电子tl板需工元,购买哈投影机需y元■依题意列方程组: :2T_3J_4000・3y= 44'I J W).羽购买哈电子匕板需8000元败买哈投母机蛊個)0元IS. (6 分)证法一琏接加丄TAK-AC,刃)一口入加)一加入r^A^i^AAcaAZB4D=/CAD, 咒是ZEAF的平分线.又':DELABd)FlAC, A DE- DK 证法二uEAABI^ZiACD,fgZACD-ZABa ;.ZDCF=ZDBE_ 乂':ZDFC=ZD£B=90rt< DC=DB, 化△DJTPZV)刖•二DE—DE 11 (6 分)化共有12种选派方案或解法:』俵法:、◎驅手②揃、、乙肉T甲、、甲乙甲丙甲厂乙内乙甲内耳、'、乙丙乙丁内丁丁丁甲丁乙丁丙、乙丙丁甲丙丁甲乙丁甲己丙⑵檢冇•男女參赛共冇8种可能・・P•• J< 训如 _ 12 一3,20. (7 分)(I)证法一:如图■连接CUTAC为£0^直径上址另一笫二门3为©0的切统X7DEW)于D.:.KD-EC.・:4DE=4)CE・VAC为00的施•'也ADC—9化:./CC£+Z^DB-30%ZDC'f;+ZCBP-9讥/*ED=£B,:.E/i-比证法二;如图'连接0D.为@0的直徐/MB—9心二CB为00的切我又TDE切®。
2014年湖北省黄冈市中考数学试卷(附答案与解析)

数学试卷 第1页(共32页) 数学试卷 第2页(共32页)绝密★启用前湖北省黄冈市2014年初中毕业生学业水平考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共24分)一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.8-的立方根是( ) A .2-B .2±C .2D .12- 2.如果α与β互为余角,则( ) A .180αβ+=︒B .180αβ-=︒C .90αβ-=︒D .90αβ+=︒ 3.下列运算正确的是( )A .236x x x =B .65x x x ÷=C .246()x x -=D .235x x x +=4.如图所示的几何体的主视图是( )ABC D 5.函数y =,自变量x 的取值范围是( ) A .0x ≠B .2x ≥C .20x x ≠>且D .20x x ≠≥且 6.若α、β是一元二次方程0622=-+x x 的两根,则22αβ+=( ) A .8-B .32C .16D .407.如图,圆锥体的高cm h =,底面圆半径2cm r =,则圆锥体的全面积为( )A.2cm B .28πcm C .212πcm D.24)πcm8.已知,在ABC △中,=10BC ,BC 边上的高5h =,点E 在边AB 上,过点E 作EF BC ∥,交AC 边于点F .点D 为BC 边上一点,连接DE ,DF .设点E 到BC 的距离为x ,则DEF △的面积S 关于x 的函数图象大致为( )ABCD第Ⅱ卷(非选择题 共96分)二、填空题(本大题共7小题,每小题3分,共21分.把答案填写在题中的横线上)9.计算:1||3-= .10.分解因式:22(21)a a +-= . 11.. 12.如图,若AD BE ∥,且90ACB ∠=︒,30CBE ∠=︒,则CAD ∠= 度.13.当12-=x 时,代数式222111x x x x x x x-+-÷+++的值是 .14.如图,在O 中,弦CD 垂直于直径AB 于点E ,若30BAD ∠=︒,且2BE =,则毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共32页) 数学试卷 第4页(共32页)CD = .15.如图,在一张长为8cm ,宽为6cm 的矩形纸片上,现要剪下一个腰长为5cm 的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上),则剪下的等腰三角形的面积为 cm .三、解答题(本大题共10小题,共75分.解答应写出文字说明、证明过程或演算步骤) 16.(本小题满分5分)解不等式组:215,311.2x x x -⎧⎪⎨+-⎪⎩>①≥②并在数轴上表示出不等式组的解集.17.(本小题满分6分)浠州县为了改善全县中、小学办学条件,计划集中采购一批电子白板和投影机,已知购买2块电子白板比购买3台投影机多4000元,购买4块电子白板和3台投影机共需44000元.问购买一块电子白板和一台投影机各需多少元?18.(本小题满分6分)已知,如图所示,AB AC =,BD CD =,DE AB ⊥于E ,DF AC ⊥于点F ,求证:DE DF =.19.(本小题满分6分)红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛. (1)请用树形图或列表法列举出各种可能选派的结果; (2)求恰好选派一男一女两位同学参赛的概率.20.(本小题满分7分)如图,在Rt ABC △中,90ACB ∠=︒,以AC 为直径的O 与AB 交于点D ,过点D 作O 的切线,交BC 于点E .(1)求证:EB EC =;(2)若以点O ,D ,E ,C 为顶点的四边形是正方形,试判断ABC △的形状,并说明理由.数学试卷 第5页(共32页) 数学试卷 第6页(共32页)21.(本小题满分7分)某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶供学生饮用.浠马中学为了了解学生对不同口味的牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如下两张不完整的人数统计图.(1)本次被调查的学生有 名;(2)补全上面的条形统计图,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图中所占圆心角的度数;(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都能喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味牛奶要比原味多送多少盒?22.(本小题满分9分) 如图,已知双曲线1y x =-与两直线x y 41-=,kx y -=(0>k 且41≠k )分别相交于A ,B ,C ,D 四点.(1)当点C 的坐标为(1,1)-时,A ,B ,D 三点坐标分别是A ( , ),B ( , ),D ( , );(2)证明:以A ,D ,B ,C 为顶点的四边形是平行四边形; (3)当k 为何值时,□ADBC 是矩形;23.(本小题满分7分)如图,在南北方向的海岸线MN 上,有A ,B 两艘巡逻船,现均收到故障船C 的求救信号.已知A ,B两船相距1)海里,船C 在船A 的北偏东60︒方向上,船C 在船B 的东南方向上,MN 上有一观测点D ,测得船C 正好在观测点D 的南偏东75︒方向上.(1)分别求出A 与C ,A 与D 间的距离AC 和AD (如果运算结果有根号,请保留根号);(2)已知距观测点D 处100海里范围内有暗礁.若巡逻船A 沿直线AC 去营救船C ,在毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共32页) 数学试卷 第8页(共32页)去营救的途中有无触礁危险?(1.411.73≈)24.(本小题满分9分)某地实行医疗保险(以下简称“医保”)制度,医保机构规定: 一、每位居民年初缴纳医保基金70元;二、居民每个人当年治病所花的医疗费(以定点医院的医疗发票为准),年底按下列方式(见表一)报销所治病的医疗费用.如果设一位居民当年治病花费的医疗费为x 元,他个人实际承担的医疗费用(包括医疗费中个人承担的部分和年初缴纳的医保基金)记为y 元.(1)当0x n ≤≤时,70y =;当6000n x <≤时,y = (用含n 、k 、x 的代数式表示);(2)表二是该地A ,B ,C 三位居民2013年治病所花费的医疗费和个人实际承担的医疗费用,根据表中的数据,求出n 、k 的值;(3)该地居民周大爷2013年看病的医疗费用共32000元,那么这一年他个人实际承担的医疗费用是多少元?25.(本小题满分13分)已知,如图所示,在四边形OABC 中,AB OC ∥,BC x ⊥轴于C ,(1,1)A -,(3,1)B -,动点P 从O 点出发,沿着x 轴正方向以每秒2个单位长度的速度移动.过点P 作PQ 垂直于直线OA ,垂足为点Q .设点P 移动的时间为t 秒02)t (<<,OPQ △与四边形OABC 重叠部分的面积为S .(1)求经过O ,A ,B 三点的抛物线的解析式并确定顶点M 的坐标; (2)用含t 的代数式表示点P 、点Q 的坐标;(3)如果将OPQ △绕点P 按逆时针方向旋转90︒,是否存在t ,使得OPQ △的顶点O 或Q 落在抛物线上?若存在,直接写出t 的值;若不存在,请说明理由; (4)求出S 与t 的函数关系式;5 / 16湖北省黄冈市2014年初中毕业生学业水平考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】根据立方根的定义,3(2)8-=-Q ,8∴-的立方根是2-,故选A. 【考点】立方根. 2.【答案】D【解析】若两个角的和是90︒,则这两个角互余,故90αβ+=︒,故选D. 【考点】互余. 3.【答案】B【解析】同底数幂相乘,底数不变,指数相加,故23235x x xx +==g ,A 错误;同底数幂相除,底数不变,指数相减,故6565x x x x -÷==,B 正确;幂的乘方,底数不变,指数相乘,故24248()x x x ⨯-==,C错误;2x 与3x 不是同类项,不能合并,故D 错误,故选B. 【考点】幂. 4.【答案】D【解析】根据几何体的形状可知从正面看到的图象为D ,故选D. 【考点】几何体的三视图,难度较小. 5.【答案】B【解析】根据二次根式被开方数是非负数,分式的分母不能等于0,得20,0,x x -⎧⎨≠⎩≥解得2x ≥,故选B.【考点】函数自变量的取值范围. 6.【答案】C 【解析】若α,β是方程2260x x +-=的两根,则2b aαβ+=-=-,6c aαβ==-,所以2222()2(2)2(6)16αβαβαβ+=+-=--⨯-=,故选C.【考点】一元二次方程的根与系数的关系. 7.【答案】C数学试卷 第11页(共32页)数学试卷 第12页(共32页)【解析】设圆锥的母线长为l ,根据勾股定理,4l ==,故圆锥的全面积22πππ24π212πrl r =+=⨯⨯+=g ,故选C. 【考点】圆锥表面积的计算. 8.【答案】D【解析】EF BC ∥Q ,AEF ABC ∴△△:,相似三角形对应边上的高之比等于相似比,5510x EF-∴=,102EF x ∴=-,21(102)52S x x x x ∴=-=-+(05x ≤≤),由此可知,S 是关于x 的二次函数且图象开口向下,故选D.【考点】动点问题的函数图象,相似三角形的性质,三角形的面积.第Ⅱ卷二、填空题9.【答案】13【解析】根据负数的绝对值等于它的相反数,故1133-=. 【考点】绝对值. 10.【答案】(31)(1)a a ++【解析】原式(21)(21)(31)(1)a a a a a a =+++-=++g . 【考点】平方差公式分解因式. 11.【答案】2【解析】原式22=-=. 【考点】二次根式的化简与计算. 12.【答案】60【解析】A D B E ∥Q ,180DAB ABE ∴∠+∠=︒,即180DAC CAB ABC CBE ∠+∠+∠+∠=︒,又90ACB ∠=︒Q ,90CAB ABC ∴∠+∠=︒,90DAC CBE ∴∠+∠=︒,而30CBE ∠=︒,60DAC ∴∠=︒.【考点】直角三角形的性质,平行线的性质. 13.【答案】3-7 / 16【解析】原式22(1)(1)(1)11x x x x x x x x x x -+=+=-+=+-g,当1x =时,原式21)3==-【考点】代数式的化简与求值. 14.【答案】【解析】连接OD ,根据同弧所对的圆周角等于圆心角的一半,260BOD BAD ∴∠=∠=︒,设O e 半径是r ,则2OE r =-,在Rt DOE △中,cos OE BOE OD ∠=,即2cos60r r-︒=,解得4r =,2OE ∴=,4OD =,又由勾股定理得DE =,根据垂径定理2CD DE ==. 【考点】圆周角定理,垂径定理,解直角三角形.15.【答案】252或10【解析】分类谈论:(1)等腰三角形的顶角的顶点与矩形的顶点重合,如图a ,则5AE AF ==,此时,112555222AEF S AE AF ==⨯⨯=△g ;(2)等腰三角形的底角的顶点与矩形的顶点重合,腰AE 与宽AB 上,如图b ,此时5EF AE ==,651BE =-=,在Rt EBF △中,根据勾股定理,BF ==,11522AEF S AE BF ==⨯⨯=△g (3)等腰三角形的底角的顶点与矩形的顶点重合,腰AE 在长AD 上,如图c ,此时5EF AE ==,853DE =-=,在Rt EDF △中,根据勾股定理,4DF ==,11541022S AE DF ==⨯⨯=△AEF g ;故答案是252或10.【考点】等腰三角形的画法,三角形的面积计算. 三、解答题16.【答案】解:解不等式①得3x >; 解不等式②的1x ≥.∴原不等式组的解集为3x >,不等式组的解集在数轴上表示如下:数学试卷 第15页(共32页)数学试卷 第16页(共32页)【考点】一元一次不等式组.17.【答案】购买一台电子白板需8 000元,购买一台投影机需4 000元.【解析】解:设购买一块电子白板需x 元,购买一台投影机需y 元,依题意列方程组234000,4344000.x y x y -=⎧⎨+=⎩解得8000,4000.x y =⎧⎨=⎩答:购买一台电子白板需8 000元,购买一台投影机需4 000元. 【考点】二元一次方程组在实际问题中的应用. 18.【答案】证法一:连接AD.AB AC =Q ,BD CD =,AD AD =,ABD ACD ∴△≌△.BAD CAD ∴∠=∠.AD ∴是EAF ∠的平分线.又DE AB ⊥Q ,DF AC ⊥,DE DF ∴=. 证法二:证ABD ACD △≌△,得ACD ABD ∠=∠.DCF DBE ∴∠=∠.又90DFC DEB ∠=∠=︒Q ,DC DB =,DFC DEB ∴△≌△.DE DF ∴=.【考点】全等三角形的判定和性质. 19.【答案】解:(1)树形图:∴共有12种选派方案.(2)恰有一男一女参赛共有8种可能,82123P∴==(一男一女).【考点】列举法或树状图求概率.20.【答案】(1)解:(1)证法一:如图,连接CD.ACQ为Oe的直径,90ACB∠=︒,CB∴为Oe的切线.又DEQ切Oe于点D,ED EC∴=.CDE DCE∴∠=∠.ACQ为Oe直径,90ADC∴∠=︒.90CDE EDB∴∠+∠=︒,90DCE CBD∠+∠=︒.9 / 16数学试卷 第19页(共32页)数学试卷 第20页(共32页)EDB CBD ∴∠=∠.ED EB ∴=.EB EC ∴=.证法二:如图,连接OD .AC Q 为O e 的直径,90ACB ∠=︒,CB ∴为O e 的切线.又DE Q 切O e 与点D ,EB EC ∴=,90ODE ∠=︒.90ODA EDB ∴∠+∠=︒. OA OD =Q ,ODA OAD ∴∠=∠.又90OAD DBE ∠+∠=︒Q ,EDB DBE ∴∠=∠.ED EB ∴=.EB EC ∴=.(2)ACB △为等腰直角三角形. 理由:Q 四边形ODEC 为正方形,OC CE ∴=,90ACB ∠=︒.又12OC AC =Q ,12CE EB BC ==,AC BC ∴=.ACB ∴△为等腰直角三角形.【考点】圆的切线的判定和性质,等腰三角形的判定和性质,正方形的性质,等腰直角三角形的判定. 21.【答案】(1)200. (2)40.90︒.(3)144.【解析】解:(1)200(2)如图,补全条形图(40人)喜好“菠萝味”学生人数在扇形统计图中所占圆心角度数为5036090200⨯︒=︒. (3)6238241200()1200144200200200⨯-=⨯=(盒) 答:每次草莓味要比原味多送144盒.【考点】条形统计图,扇形统计图的理解与应用.22.【答案】解:(1)1(2,)2A -,1(2,)2B -,(1,1)D -. (2)证法一:Q 反比例函数1y x =-的图象关于原点对称,过原点的直线14y x =-也关于原点对称,OA OB ∴=.同理OC OD =. ∴四边形ADBC 是平行四边形. 证法二:14y x =-Q 与1y x=-交于A ,B 两点, 1(2,)2A ∴-,1(2,)2B -. ∴由勾股定理知222117(2)()24OA =-+=, 2221172()24OB =+-=. 22OA OB ∴=.OA OB ∴=.y kx =-Q 与1y x =-交于C ,D 两点,(C k ∴,(D k. 21OC k k ∴=+,21OD k k =+.数学试卷 第23页(共32页)22OC OD ∴=.OC OD ∴=.∴四边形ADBC 是平行四边形.(3)当4k =时,ADBC Y 为矩形.理由:当OA OC =时,22AB OA OC CD ===.ADBC ∴Y 为矩形.此时由22OA OC =得1174k k +=,217104k k -+=, 14k ∴=,214k =. 又14k ≠Q ,4k ∴=. 4k ∴=时,ADBC Y 为矩形.【考点】待定系数法求函数的解析式,平行四边形的判定,矩形的判定,勾股定理. 23.【答案】(1)A 与C 间距离为200海里,A 与D间距离为1)-海里. (2)船A 沿直线AC 航行,前往船C 处途中无触礁危险.【解析】解:(1)如图,过C 作CE AB ⊥于点E .设AE a =海里,则1)BE AB AE a =-=-(海里).在Rt ACE △中,90AEC ∠=︒,60EAC ∠=︒,21cos602AE a AC a ∴===︒海里,tan 60CE AE =︒g 海里.在Rt BCE △中,BE CE =,1)a ∴-=.100a ∴=海里.2200AC a ∴==海里.在ACD △和ABC △中,180456075ACB ADC ∠=︒-︒-=︒=∠,CAD BAC ∠=∠,ACD ABC ∴△△:,AD AC AC AB∴=. 即200AD =1)AD ∴=.答:A 与C 间距离为200海里,A 与D 间距离为1)海里.(2)如图,过D 作DF AC ⊥于点F .在Rt ADF △,60DAF ∠=︒,sin601)2DF AD ∴=︒=⨯g100(3127100=-≈>. ∴船A 沿直线AC 航行,前往船C 处途中无触礁危险.【考点】解直角三角形.24.【答案】(1)()%70y x n k =-+g .(2)50040.n k =⎧⎨=⎩, (3)7 470【解析】解:(1)()%70y x n k =-+g .(2)由表二易知400n ≥,且800x =时,190y =,1500x =时,470y =.(800)%70190,(1500)%70470.n k n k -+=⎧∴⎨-+=⎩g g 解得500,40.n k =⎧⎨=⎩(3)当6000x >时,(6000500)40%(6000)20%70y x =-⨯+-⨯+数学试卷 第27页(共32页)0.21070x =+,∴当32000x =时,0.23200010707470y =⨯+=(元).(直接代入计算也可)【考点】列代数式的应用,二元一次方程组的应用.25.【答案】(1)4(2,)3-. (2)(2,0)P t ,(,)Q t t -.(3)①12t =. ②1t =(4)见解析.【解析】解:(1)Q 抛物线过原点(0,0)O , ∴可设经过A ,B ,O 三点的抛物线解析式为2y ax bx =+(或直接设2y ax bx c =++).将(1,1)A -,(3,1)B -代入2y ax bx =+中,得1,93 1.a b a b +=-⎧⎨+=-⎩1,34.3a b ⎧=⎪⎪∴⎨⎪=-⎪⎩ 21433y x x ∴=-. ∴抛物线221414(2)3333y x x x =-=--,顶点M 的坐标为4(2,)3-.(2)Q 点A 坐标为(1,1)-,45COA ∴∠=︒.OPQ ∴△为等腰直角三角形.过Q 作QD x ⊥轴于D.2OP t =Q ,11222OD OP t t ∴==⨯=,12DQ OP t ==. ∴点P 坐标为(2,0)P t ,点Q 坐标为(,)Q t t -.(3)当OPQ △绕点P 逆时针旋转90︒后,点O 坐标为(2,2)t t -,点Q 的坐标为(3,)t t -.①若点O 在21433y x x =-上, 则214(2)2233t t t ⨯-⨯=-,220t t -=. 10t ∴=,212t =.02t <<Q ,12t ∴=. 12t ∴=时点(1,1)O -在21433y x x =-上.(只需求出t 的值即可). ②若点Q 在21433y x x =-上, 则214(3)(3)33t t t ⨯-⨯=-,20t t -=. 10t ∴=,21t =.又02t <<Q ,1t ∴=.1t ∴=时点(3,1)Q -在21433y x x =-上.(只需求出t 的值即可). (4)如图,分三种情况讨论:①当01t <≤时, 211222OPQ Q S S OP y t t t ===⨯⨯=△g . (方法二:212OPQ S S OQ ==△) ②当312t <≤时,设P Q ''交AB 与E . OP Q ABQ S S S '''=-△△.AB OC ∥Q ,45Q AE '∴∠=︒,数学试卷 第31页(共32页)AEQ '∴△为等腰直角三角形.cos4522OQ OP t ''∴=︒==g. 1)AQ OQ OA t ''∴=--.221(1)2AEQ S AQ t ''∴==-△. 22(1)21S t t t ∴=--=-.(方法二:OAEP S S '=梯形) ③如图,当322t <<时,设P Q ''''交BC 于点F ,交AB 于点E ', 则OP Q AE Q CFP S S S S '''''''''=--△△△.221(1)2AE Q S AQ t '''''==-△Q , 2211(23)22CFP S CP t ''''==-△, 2222111(1)(23)2822S t t t t t ∴=----=-+-. (方法二:BE F OABC S S S '=-△梯形)22(01),321(1),211328(2).22t t S t t t t t ⎧⎪⎪⎪∴=-⎨⎪⎪-+-⎪⎩<≤<≤<< 【考点】求抛物线解析式,抛物线顶点坐标,动点问题,面积的计算,点的存在.。
2014年湖北省黄冈市中考试题(word版含答案)

黄冈市2014年初中毕业生学业水平考试数学试题(满分120分,考试时间120分钟)一、选择题(下列各题A、B、C、D四个选项中,有且仅有一个是正确的,每小题3分,共24分)1.(2014湖北黄冈市,1,3分)-8的立方根是()A.-2 B.2±C.2 D.-1 22. (2014湖北黄冈市,2,3分)如果α与β互为余角,则()A.α+β=180°B.α-β=180°C.α-β=90°D.α+β=90°3. (2014湖北黄冈市,3,3分)下列运算正确的是()A.x2x3=x6 B.x6÷x5=x C.(-x2)4=x8 D.x2+x3=x54. (2014湖北黄冈市,4,3分)如图所示的几何体的主视图是()5(2014湖北黄冈市,5,3分).函数y x的取值范围是()A.x≠0 B.x≥2 C.x>2且x≠0 D.x≥2且x≠06. (2014湖北黄冈市,6,3分)若α,β是一元二次方程x2+2x-6=0的两根,则α2+β2=()A.-8 B.32 C.16 D.407. (2014湖北黄冈市,7,3分)如图,圆柱体的高h r=2cm,则圆锥体的全面积为()cm2A.πB.8πC.12πD.()π8. (2014湖北黄冈市,8,3分)已知,在△ABC 中,BC =10,BC 边上的高h =5,点E 在边AB 上,过点E 作EF ∥BC ,交AC 边于点F ,点D 为BC 边上一点,连接DE ,DF ,设点E 到BC 的距离这x ,则△DEF 的面积s 关于x 的函数图象大致为( )二、填空题(共7小题,每小题3分,共21分) 9. (2014湖北黄冈市,9,3分)计算:13-=10. (2014湖北黄冈市,10,3分)分解因式:(2a +1)2-a 2=11. (2014湖北黄冈市,11,3-=12. (2014湖北黄冈市,12,3分)如图,若AD ∥BE ,且∠ACB =90°,∠CBE =30°,则∠CAD = °.13. (2014湖北黄冈市,13,3分)当x-1时,代数式222111x x x x x x x-+-÷+++的值是 .ABCE F D14. (2014湖北黄冈市,14,3分)如图,在⊙O 中,弦CD 垂直于直径AB 于点E ,若∠BAD =30°,且BE =2,则CD = .15. (2014湖北黄冈市,15,3分)如图,在一张长为8cm ,宽为6cm 的矩形纸片上,现要剪下一个腰长为5cm 的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上),则剪下的等腰三角形的面积为 cm .三、解答题(本大题共10小题,满分共75分)16. (2014湖北黄冈市,16,5分)(5分)解不等式组:2153112x x x -⎧⎪⎨+-≥⎪⎩,并在数轴上表示出不等式组的解集.17. (2014湖北黄冈市,17,6分)(6分)浠州县为了改善全县中、小学办学条件,计划集中采购一批电子白板和投影机,已知购买2块白板比购买3台投影机多4000元,购买4块电子白板和3台投影机共需44000元,问购买一块电子白板和一台投影机各需要多少元?18.(6分)已知,如图所示,AB =AC ,BD =CD ,DE ⊥AB 于点E ,DF ⊥AC 于点F ,求证:DE =DF .19. (2014湖北黄冈市,19,6分)红花中学现要从甲、乙两位男生和丙丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛. (1)请用树形图或列表法列举出各种可能选派的结果;BCDAEB第12题图第14题图第15题图ABEDCF(2)求恰好选派一男一女两位同学参赛的概率.20. (2014湖北黄冈市,20,7分)(7分)如图,在Rt △ABC 中 ,∠ACB =90°,C 以AC 为直径的⊙O 与AB 边交于点D ,过点D 作⊙O 的切线,交BC 于点E (1)求证:EB =EC ;(2)若以点O 、D 、E 、C 、为顶点的四边形是正方形,试判断△ABC 的形状,并说明理由.21. (2014湖北黄冈市,21,7分)(7分)某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味,草莓味,菠萝味,香橙味,核桃味五种口味的牛奶供学生饮用,海马中学为了了解学生对不同味的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同.,绘制了如下两张不完整的人数统计图)(1)本次被调查的学生有 名(2)[补全上面的条形统计图,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图中所占圆心角的度数. (3)该校共有1200名学生订购了该品牌的牛奶。
2014黄冈中考数学试题及答案

2014黄冈中考数学试题及答案第一部分选择题1. 已知函数 f(x) 的图象经过点 (2, 4),则以下哪个函数图象也经过点 (2, 4)?A. f(x) + 2B. f(x + 2)C. f(x - 2)D. f(2x)2. 如果两个相同半径的圆的面积之和是8π,那么这两个相同半径的圆的周长之和是多少?A. 4πB. 8πC. 16πD. 32π3. 某数的百分之五十是 7,求这个数。
A. 14B. 21C. 35D. 704. a、b 是正整数,a + b = 25,a^2 + b^2 的最小值是多少?A. 125B. 250C. 300D. 3255. 当 x = 2 时,若 f(x) = x^2 - 4x + k,则 f(0) 的值为多少?A. 4 - kB. 4 + kC. -4 + kD. -4 - k第二部分解答题1. 设集合 P = {2, 4, 6, 8, 10},集合 Q = {3, 6, 9},则 P ∪ Q =2. 一块田地,长和宽的比为 3:2,如果长为 15 米,面积是多少平方米?3. 温度计从摄氏度转为华氏度的计算公式为:F = 1.8C + 32。
如果一个物体的温度为 20℃,则它的华氏温度是多少度?4. 若一名学生的体重是 60 千克,占全班总体重的 20%,全班有多少名学生?5. 三角形的三边长分别为 5,6,7,它的面积是多少平方单位?第三部分答案选择题答案:1. B2. D3. C4. C5. B解答题答案:1. {2, 3, 4, 6, 8, 9, 10}2. 长为 15 米,宽即为 (2/3) * 15 = 10 米,面积为 15 * 10 = 150 平方米3. 华氏温度 = 1.8 * 20 + 32 = 68 ℉4. 全班有 60 / 0.2 = 300 名学生5. 根据海伦公式,三角形的面积为√[p(p-a)(p-b)(p-c)],其中 p =(a+b+c)/2 = (5+6+7)/2 = 9,面积为√[9 * (9-5) * (9-6) * (9-7)] = 9 平方单位这样就是一个简单的集合、几何、比例和计算题的数学试题和答案。
2014年湖北中考数学真题卷含答案解析

2014年武汉市初中毕业生学业考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共30分)一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的.1.在实数-2、0、2、3中,最小的实数是( )A.-2B.0C.2D.32.若代数式√x-3在实数范围内有意义,则x的取值范围是( )A.x≥-3B.x>3C.x≥3D.x≤33.光速约为300000千米/秒,将数字300000用科学记数法表示为( )A.3×104B.3×105C.3×106D.30×1044.在一次中学生田径运动会上,参加跳高的15名运动员的成绩如下表所示:成绩(m) 1.50 1.60 1.65 1.70 1.75 1.80人数124332那么这些运动员跳高成绩的众数是( )A.4B.1.75C.1.70D.1.655.下列代数运算正确的是( )A.(x3)2=x5B.(2x)2=2x2C.x3·x2=x5D.(x+1)2=x2+16.如图,线段AB两个端点的坐标分别为A(6,6)、B(8,2),以原点O为位似中心,在第一象限后得到线段CD,则端点C的坐标为( )内将线段AB缩小为原来的12A.(3,3)B.(4,3)C.(3,1)D.(4,1)7.下图是由4个大小相同的正方体组合而成的几何体.其俯视图是( )8.为了解某一路口某一时段的汽车流量,小明同学10天中在同一时段统计通过该路口的汽车数量(单位:辆),将统计结果绘制成如下折线统计图:由此估计一个月(30天)该时段通过该路口的汽车数量超过200辆的天数为( )A.9B.10C.12D.159.观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,…….按此规律第5个图中共有点的个数是( )A.31B.46C.51D.6610.如图,PA、PB切☉O于A、B两点,CD切☉O于点E,交PA、PB于C、D,若☉O的半径为r,△PCD 的周长等于3r,则tan∠APB的值是( )A.512√13 B.125C.35√13 D.23√13第Ⅱ卷(非选择题,共90分)二、填空题(共6小题,每小题3分,共18分)11.计算:-2+(-3)= .12.分解因式:a3-a= .13.如图,一个转盘被分成7个相同的扇形,颜色分为红、黄、绿三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形),则指针指向红色的概率为.14.一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y(米)与时间t(秒)之间的函数关系如图所示,则这次越野跑的全程为米.15.如图,若双曲线y=kx与边长为5的等边△AOB的边OA、AB分别相交于C、D两点,且OC=3BD,则实数k的值为.16.如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD的长为.三、解答题(共9小题,共72分)下列各题解答应写出文字说明、证明过程或演算步骤.17.(本小题满分6分)解方程:2x-2=3 x .18.(本小题满分6分)已知直线y=2x-b经过点(1,-1),求关于x的不等式2x-b≥0的解集.19.(本小题满分6分)如图,AC和BD相交于点O,OA=OC,OB=OD,求证:AB∥CD.20.(本小题满分7分)如图,在直角坐标系中,A(0,4),C(3,0).(1)①画出线段AC关于y轴对称的线段AB;②将线段CA绕点C顺时针旋转一个角,得到对应线段CD,使得AD∥x轴,请画出线段CD;(2)若直线y=kx平分(1)中四边形ABCD的面积,请直接写出实数k的值.21.(本小题满分7分)袋中装有大小相同的2个红球和2个绿球.(1)先从袋中摸出1个球后放回..,混合均匀后再摸出1个球.①求第一次摸到绿球,第二次摸到红球的概率;②求两次摸到的球中有1个绿球和1个红球的概率;(2)先从袋中摸出1个球后不放回...,再摸出1个球,则两次摸到的球中有1个绿球和1个红球的概率是多少?请直接写出结果.22.(本小题满分8分)⏜上两点,AB=13,AC=5.如图,AB是☉O的直径,C,P是AB⏜的中点,求PA的长;(1)如图①,若点P是AB⏜的中点,求PA的长.(2)如图②,若点P是BC图①图②23.(本小题满分10分)九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<5050≤x≤90售价(元/件)x+4090每天销量(件)200-2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大?最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.24.(本小题满分10分)如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm 的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连结PQ.(1)若△BPQ与△ABC相似,求t的值;(2)连结AQ、CP,若AQ⊥CP,求t的值;(3)试证明:PQ的中点在△ABC的一条中位线上.25.(本小题满分12分)x2交于A、B两点.如图,已知直线AB:y=kx+2k+4与抛物线y=12(1)直线AB总经过一个定点C,请直接写出点C的坐标;时,在直线AB下方的抛物线上求点P,使△ABP的面积等于5;(2)当k=-12(3)若在抛物线上存在定点D使∠ADB=90°,求点D到直线AB的最大距离.备用图答案全解全析:一、选择题1.A∵-2<0<2<3,∴最小的实数是-2,故选A.评析本题考查了实数的大小比较,属容易题.2.C要使√x-3在实数范围内有意义,则需x-3≥0,解得x≥3.故选C.评析本题考查二次根式有意义的条件,即被开方数大于等于零,属容易题.3.B300000用科学记数法可表示为3×105.故选B.评析本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n,其中1≤|a|<10,n 为整数,属容易题.4.D∵1.65出现了4次,出现的次数最多,∴这些运动员跳高成绩的众数是1.65,故选D.评析本题考查了众数的定义,众数是一组数据中出现次数最多的数,属容易题.5.C(x3)2=x6,故A选项错误;(2x)2=4x2,故B选项错误;x3·x2=x5,故C选项正确;(x+1)2=x2+2x+1,故D选项错误.故选C.6.A∵线段AB两个端点的坐标分别为A(6,6)、B(8,2),以原点O为位似中心,在第一象限后得到线段CD,∴端点C的坐标为(3,3).故选A.内将线段AB缩小为原来的12评析本题主要考查位似图形的性质,属容易题.7.C从上面看可得到一行正方形,其个数为3,故选C.评析本题考查了三视图的知识,俯视图是从物体的上面看得到的视图,属容易题.8.C由题图可知,10天中在同一时段通过该路口的汽车数量超过200辆的有4天,频率为4=0.4,所以估计一个月(30天)该时段通过该路口的汽车数量超过200辆的天数为1030×0.4=12,故选C.评析 本题考查了折线统计图及用样本估计总体的思想,属容易题.9.B 第1个图中共有1+1×3=4个点,第2个图中共有1+1×3+2×3=10个点,第3个图中共有1+1×3+2×3+3×3=19个点,…,第n 个图中有1+1×3+2×3+3×3+…+3n 个点. 所以第5个图中共有点的个数是1+1×3+2×3+3×3+4×3+5×3=46.故选B. 评析 本题是规律探索题,属容易题.10.B 连结OA 、OB 、OP,延长BO 交PA 的延长线于点F.∵PA、PB 切☉O 于A 、B 两点,CD 切☉O 于点E, ∴∠OAP=∠OBP=90°,CA=CE,DB=DE,PA=PB.∵△PCD 的周长=PC+CE+DE+PD=PC+AC+PD+DB=PA+PB=3r,∴PA=PB=32r. 在Rt △OAF 和Rt △BFP 中,{∠FAO =∠FBP,∠OFA =∠PFB,∴Rt △AFO ∽Rt △BFP. ∴AF FB =AO BP =r 32r =23,∴AF=23FB. 在Rt △FBP 中,PF 2-PB 2=FB 2, ∴(PA+AF)2-PB 2=FB 2,∴(32r +23BF)2-(32r)2=BF 2,解得BF=185r,∴tan ∠APB=BFPB =185r 32r=125,故选B.评析 本题主要考查切线的性质,相似三角形的判定及三角函数的定义,属难题.二、填空题 11.答案 -5解析 -2+(-3)=-(2+3)=-5.评析 本题考查有理数加法的运算,属容易题. 12.答案 a(a+1)(a-1)解析 a 3-a=a(a 2-1)=a(a+1)(a-1).评析 本题考查利用提公因式法和公式法分解因式,属容易题. 13.答案 37解析 ∵一个转盘被分成7个相同的扇形,红色的有3个,∴指针指向红色的概率为37. 14.答案 2 200解析 设小明的速度为a 米/秒,小刚的速度为b 米/秒,由题意,得{1 600+100a =1 400+100b,1 600+300a =1 400+200b,解得{a =2,b =4,∴这次越野跑的全程为1 600+300×2=2 200(米).评析 本题考查了行程问题的数量关系及二元一次方程组的解法,属容易题.15.答案9√34解析 过点C 作CE ⊥x 轴于点E,过点D 作DF ⊥x 轴于点F, 设BF=x,则DF=√3x,BD=2x.因为OC=3BD,所以OE=3x,CE=3√3x, 所以C(3x,3√3x),D(5-x,√3x). 因为点C 、D 都在双曲线上,所以3x ·3√3x=√3x ·(5-x), 解得x 1=12,x 2=0(舍去),所以C (32,3√32), 故k=3√32×32=9√34.评析 本题考查了反比例函数图象上点的坐标特征,解答本题的关键是利用k 的值相同建立方程,属中等偏难题. 16.答案 √41解析 作AD'⊥AD,且使AD'=AD,连结CD',DD',如图.由已知条件可得∠BAC+∠CAD=∠DAD'+∠CAD,即∠BAD=∠CAD'. 在△BAD 与△CAD'中,{BA =CA,∠BAD =∠CAD',AD =AD',∴△BAD ≌△CAD'(SAS), ∴BD=CD'.又∠DAD'=90°,由勾股定理得DD'=√AD 2+(AD')2 =√32=4√2,易知∠D'DA+∠ADC=90°,由勾股定理得CD'=√DC 2+(DD')2=√9+32=√41, ∴BD=CD'=√41.评析 本题考查了等腰直角三角形的性质、勾股定理、全等三角形的判定与性质,属难题. 三、解答题17.解析 方程两边同乘以x(x-2),得2x=3(x-2). 解得x=6.检验:当x=6时,x(x-2)≠0. ∴x=6是原分式方程的解.评析 本题考查了解分式方程,解分式方程一定要注意验根,属容易题. 18.解析 ∵直线y=2x-b 经过点(1,-1), ∴-1=2×1-b. ∴b=3.∴不等式2x-b ≥0即为2x-3≥0,解得x ≥32.19.证明 在△AOB 和△COD 中,{OA =OC,∠AOB =∠COD,OB =OD,∴△AOB ≌△COD. ∴∠A=∠C,∴AB ∥CD. 20.解析 (1)如图所示:(2)43.评析 本题考查利用旋转、轴对称变换作图,属容易题.21.解析 (1)分别用R 1,R 2表示2个红球,G 1,G 2表示2个绿球,列表如下:第二次第一次 R 1 R 2 G 1 G 2R 1 R 1R 1 R 1R 2 R 1G 1 R 1G 2 R 2 R 2R 1 R 2R 2 R 2G 1 R 2G 2 G 1 G 1R 1 G 1R 2 G 1G 1 G 1G 2 G 2 G 2R 1 G 2R 2 G 2G 1 G 2G 2由上表可知,有放回地摸2个球共有16个等可能结果. ①其中第一次摸到绿球,第二次摸到红球的结果有4个. ∴第一次摸到绿球,第二次摸到红球的概率P=416=14;②其中两次摸到的球中有1个绿球和1个红球的结果有8个. ∴两次摸到的球中有1个绿球和1个红球的概率P=816=12. 画树形图法按步骤给分(略). (2)23.22.解析 (1)如图,连结PB,BC.∵AB 是☉O 的直径,P 是AB⏜的中点, ∴PA=PB,∠APB=90°. ∵AB=13,∴PA=√22AB=13√22.(2)如图,连结PB,BC.连结OP 交BC 于D 点.∵P 是BC⏜的中点,∴OP ⊥BC 于D,BD=CD. ∵OA=OB,∴OD=12AC=52.∵OP=12AB=132,∴PD=OP -OD=132-52=4.∵AB 是☉O 的直径,∴∠ACB=90°.∵AB=13,AC=5,∴BC=12,∴BD=12BC=6.∴PB=√PD 2+BD 2=2√13.∵AB 是☉O 的直径,∴∠APB=90°,∴PA=√AB 2-PB 2=3√13.23.解析 (1)y={-2x 2+180x +2 000(1≤x <50),-120x +12 000(50≤x ≤90).(2)当1≤x<50时,y=-2x 2+180x+2 000=-2(x-45)2+6 050.∵-2<0,∴当x=45时,y 有最大值,最大值为6 050元.当50≤x ≤90时,y=-120x+12 000,∵-120<0,∴y 随x 的增大而减小.当x=50时,y 有最大值,最大值为6 000元.∴当x=45时,当天的销售利润最大,最大利润为6 050元.(3)41天.评析 本题考查利用函数的性质解决实际问题,属中等难度题.24.解析 (1)由题意知,BP=5t cm,CQ=4t cm,∴BQ=(8-4t)cm.当△PBQ ∽△ABC 时,有BP AB =BQ BC .即5t 10=8-4t 8,解得t=1. 当△QBP ∽△ABC 时,有BQ AB =BP BC .即8-4t 10=5t 8,解得t=3241.∴△PBQ 与△ABC 相似时,t=1或3241.(2)如图,过点P 作PD ⊥BC 于D.依题意,得BP=5t cm,CQ=4t cm.则PD=PB ·sin B=3t cm,∴BD=4t cm,CD=(8-4t)cm.∵AQ ⊥CP,∠ACB=90°,∴tan ∠CAQ=tan ∠DCP.∴CQ AC =PD CD .∴4t 6=3t 8-4t ,∴t=78.(3)证明:如图,过点P 作PD ⊥AC 于D,连结DQ 、BD,BD 交PQ 于M,则PD=AP ·cos ∠APD=AP ·cos ∠ABC=(10-5t)×810=(8-4t)cm.而BQ=(8-4t)cm,∴PD=BQ,又PD ∥BQ,∴四边形PDQB 是平行四边形.∴点M 是PQ 和BD 的中点. 过点M 作EF ∥AC 交BC,BA 于E,F 两点.则BE EC =BM MD =1,即E 为BC 的中点.同理,F 为BA 的中点.∴PQ 的中点M 在△ABC 的中位线EF 上.25.解析 (1)(-2,4).(2)如图,直线y=-12x+3与y 轴交于点N(0,3).在y 轴上取点Q(0,1),易得S △ABQ =5. 过点Q 作PQ ∥AB 交抛物线于点P.则PQ 的解析式为y=-12x+1,由{y =-12x +1,y =12x 2,解得{x =-2,y =2,或{x =1,y =12, ∴P 点坐标为(-2,2)或(1,12).(3)如图,设A (x 1,12x 12),B (x 2,12x 22),D (m,12m 2). 联立{y =kx +2k +4,y =12x 2,消去y 得x 2-2kx-4k-8=0. ∴x 1+x 2=2k,x 1·x 2=-4k-8.过点D 作EF ∥x 轴,过点A 作y 轴的平行线交EF 于点E,过点B 作y 轴的平行线交EF 于点F. 由△ADE ∽△DBF,得AE DF =DE BF . ∴12x 12-12m 2x 2-m =m -x 112x 22-12m 2,整理,得x 1x 2+m(x 1+x 2)+m 2=-4.∴2k(m -2)+m 2-4=0. 当m-2=0,即m=2时,点D 的坐标与k 无关,∴点D 的坐标为(2,2).又∵C(-2,4),所以CD=2√5,过点D 作DM ⊥AB,垂足为M.则DM ≤CD.当CD ⊥AB 时,点D 到直线AB 的距离最大,最大距离为2√5.评析本题考查解方程组、一元二次方程、一元二次方程根与系数的关系、勾股定理、相似三角形的判定与性质等知识,考查了通过解方程组求两函数图象交点坐标等,综合性比较强,属难题.。
2014年湖北省黄冈市中考数学试卷附详细答案(原版+解析版)

2014年湖北省黄冈市中考数学试卷一、选择题(下列个题四个选项中,有且仅有一个是正确的.每小题3分,共24分)1.(3分)(2014•黄冈)﹣8的立方根是()A.﹣2 B.±2 C.2D.﹣2.(3分)(2014•黄冈)如果α与β互为余角,则()A.α+β=180°B.α﹣β=180°C.α﹣β=90°D.α+β=90°3.(3分)(2014•黄冈)下列运算正确的是()A.x2•x3=x6B.x6÷x5=x C.(﹣x2)4=x6D.x2+x3=x5 4.(3分)(2014•黄冈)如图所示的几何体的主视图是()A.B.C.D.5.(3分)(2014•黄冈)函数y=中,自变量x的取值范围是()A.x≠0 B.x≥2 C.x>2且x≠0 D.x≥2且x≠0 6.(3分)(2014•黄冈)若α、β是一元二次方程x2+2x﹣6=0的两根,则α2+β2=()A.﹣8 B.32 C.16 D.407.(3分)(2014•黄冈)如图,圆锥体的高h=2cm,底面半径r=2cm,则圆锥体的全面积为()cm2.A.4πB.8πC.12πD.(4+4)π8.(3分)(2014•黄冈)已知:在△ABC中,BC=10,BC边上的高h=5,点E在边AB上,过点E作EF∥BC,交AC边于点F.点D为BC上一点,连接DE、DF.设点E到BC的距离为x,则△DEF的面积S关于x的函数图象大致为()A.B.C.D.二、填空题(共7小题,每小题3分,共21分)9.(3分)(2014•黄冈)计算:|﹣|=.10.(3分)(2014•黄冈)分解因式:(2a+1)2﹣a2=.11.(3分)(2014•黄冈)计算:﹣=.12.(3分)(2014•黄冈)如图,若AD∥BE,且∠ACB=90°,∠CBE=30°,则∠CAD=度.13.(3分)(2014•黄冈)当x=﹣1时,代数式÷+x的值是.14.(3分)(2014•黄冈)如图,在⊙O中,弦CD垂直于直径AB于点E,若∠BAD=30°,且BE=2,则CD=.15.(3分)(2014•黄冈)如图,在一张长为8cm,宽为6cm的矩形纸片上,现要剪下一个腰长为5cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上).则剪下的等腰三角形的面积为cm2.三、解答题(本大题共10小题,满分共75分)16.(5分)(2014•黄冈)解不等式组:,并在数轴上表示出不等式组的解集.17.(6分)(2014•黄冈)浠州县为了改善全县中、小学办学条件,计划集中采购一批电子白板和投影机.已知购买2块电子白板比购买3台投影机多4000元,购买4块电子白板和3台投影机共需44000元.问购买一块电子白板和一台投影机各需要多少元?18.(6分)(2014•黄冈)已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.19.(6分)(2014•黄冈)红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.20.(7分)(2014•黄冈)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB 边交于点D,过点D的切线,交BC于点E.(1)求证:EB=EC;(2)若以点O、D、E、C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.21.(7分)(2014•黄冈)某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶提供学生饮用.浠马中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:(1)本次被调查的学生有名;(2)补全上面的条形统计图1,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数;(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?22.(9分)(2014•黄冈)如图,已知双曲线y=﹣与两直线y=﹣x,y=﹣kx(k>0,且k≠)分别相交于A、B、C、D四点.(1)当点C的坐标为(﹣1,1)时,A、B、D三点坐标分别是A(,),B (,),D(,).(2)证明:以点A、D、B、C为顶点的四边形是平行四边形.(3)当k为何值时,▱ADBC是矩形.23.(7分)(2014•黄冈)如图,在南北方向的海岸线MN上,有A、B两艘巡逻船,现均收到故障船C的求救信号.已知A、B两船相距100(+1)海里,船C在船A的北偏东60°方向上,船C在船B的东南方向上,MN上有一观测点D,测得船C正好在观测点D的南偏东75°方向上.(1)分别求出A与C,A与D之间的距离AC和AD(如果运算结果有根号,请保留根号).(2)已知距观测点D处100海里范围内有暗礁.若巡逻船A沿直线AC去营救船C,在去营救的途中有无触暗礁危险?(参考数据:≈1.41,≈1.73)24.(9分)(2014•黄冈)某地实行医疗保险(以下简称“医保”)制度.医保机构规定:一:每位居民年初缴纳医保基金70元;二:居民每个人当年治病所花的医疗费(以定点医院的治疗发票为准),年底按下列方式(见表一)报销所治病的医疗费用:居民个人当年治病所花费的医疗费医疗费的报销方法不超过n元的部分全部由医保基金承担(即全部报销)超过n元但不超过6000元的部分个人承担k%,其余部分由医保基金承担超过6000元的部分个人承担20%,其余部分由医保基金承担如果设一位居民当年治病花费的医疗费为x元,他个人实际承担的医疗费用(包括医疗费中个人承担部分和年初缴纳的医保基金)记为y元.(1)当0≤x≤n时,y=70;当n<x≤6000时,y=(用含n、k、x的式子表示).(2)表二是该地A、B、C三位居民2013年治病所花费的医疗费和个人实际承担的医疗费用,根据表中的数据,求出n、k的值.表二:居民 A B C某次治病所花费的治疗费用x(元)400 800 1500个人实际承担的医疗费用y(元)70 190 470(3)该地居民周大爷2013年治病所花费的医疗费共32000元,那么这一年他个人实际承担的医疗费用是多少元?25.(13分)(2014•黄冈)已知:如图,在四边形OABC中,AB∥OC,BC⊥x轴于点C,A(1,﹣1),B(3,﹣1),动点P从点O出发,沿着x轴正方向以每秒2个单位长度的速度移动.过点P作PQ垂直于直线OA,垂足为点Q,设点P移动的时间t秒(0<t<2),△OPQ与四边形OABC重叠部分的面积为S.(1)求经过O、A、B三点的抛物线的解析式,并确定顶点M的坐标;(2)用含t的代数式表示点P、点Q的坐标;(3)如果将△OPQ绕着点P按逆时针方向旋转90°,是否存在t,使得△OPQ的顶点O或顶点Q在抛物线上?若存在,请求出t的值;若不存在,请说明理由;(4)求出S与t的函数关系式.2014年湖北省黄冈市中考数学试卷参考答案与试题解析一、选择题(下列个题四个选项中,有且仅有一个是正确的.每小题3分,共24分)1.(3分)(2014•黄冈)﹣8的立方根是()A.﹣2 B.±2 C.2D.﹣考点:立方根.分析:如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.解答:解:∵﹣2的立方等于﹣8,∴﹣8的立方根等于﹣2.故选A.点评:此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.2.(3分)(2014•黄冈)如果α与β互为余角,则()A.α+β=180°B.α﹣β=180°C.α﹣β=90°D.α+β=90°考点:余角和补角.分析:根据互为余角的定义,可以得到答案.解答:解:如果α与β互为余角,则α+β=900.故选:D.点评:此题主要考查了互为余角的性质,正确记忆互为余角的定义是解决问题的关键.3.(3分)(2014•黄冈)下列运算正确的是()A.x2•x3=x6B.x6÷x5=x C.(﹣x2)4=x6D.x2+x3=x5考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的乘法和除法法则可以解答本题.解答:解:A.x2•x3=x5,答案错误;B.x6÷x5=x,答案正确;C.(﹣x2)4=x8,答案错误;D.x2+x3不能合并,答案错误.故选:B.点评:主要考查同底数幂相除底数不变指数相减,同底数幂相乘底数不变指数相加,熟记定义是解题的关键.4.(3分)(2014•黄冈)如图所示的几何体的主视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据从正面看得到的图形是主视图,可得答案.解答:解:从正面看,象一个大梯形减去一个小梯形,故选:D.点评:本题考查了简单组合体的三视图,从正面看得到的图形是主视图.5.(3分)(2014•黄冈)函数y=中,自变量x的取值范围是()A.x≠0 B.x≥2 C.x>2且x≠0 D.x≥2且x≠0考点:函数自变量的取值范围.分析:根据被开方数大于等于0,分母不等于0列式计算即可得解.解答:解:由题意得,x﹣2≥0且x≠0,∴x≥2.故选B.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.6.(3分)(2014•黄冈)若α、β是一元二次方程x2+2x﹣6=0的两根,则α2+β2=()A.﹣8 B.32 C.16 D.40考点:根与系数的关系.专题:计算题.分析:根据根与系数的关系得到α+β=﹣2,αβ=﹣6,再利用完全平方公式得到α2+β2=(α+β)2﹣2αβ,然后利用整体代入的方法计算.解答:解:根据题意得α+β=﹣2,αβ=﹣6,所以α2+β2=(α+β)2﹣2αβ=(﹣2)2﹣2×(﹣6)=16.故选C.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=﹣,x1•x2=.7.(3分)(2014•黄冈)如图,圆锥体的高h=2cm,底面半径r=2cm,则圆锥体的全面积为()cm2.A . 4πB . 8πC . 12πD . (4+4)π考点: 圆锥的计算.分析: 表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.解答: 解:底面圆的半径为2,则底面周长=4π,∵底面半径为2cm 、高为2m,∴圆锥的母线长为4cm ,∴侧面面积=×4π×4=8π; 底面积为=4π,全面积为:8π+4π=12πcm 2.故选C .点评: 本题利用了圆的周长公式和扇形面积公式求解,牢记公式是解答本题的关键.8.(3分)(2014•黄冈)已知:在△ABC 中,BC=10,BC 边上的高h=5,点E 在边AB 上,过点E 作EF ∥BC ,交AC 边于点F .点D 为BC 上一点,连接DE 、DF .设点E 到BC 的距离为x ,则△DEF 的面积S 关于x 的函数图象大致为( )A .B .C .D .考点: 动点问题的函数图象.分析: 判断出△AEF 和△ABC 相似,根据相似三角形对应边成比例列式求出EF ,再根据三角形的面积列式表示出S 与x 的关系式,然后得到大致图象选择即可.解答: 解:∵EF ∥BC ,∴△AEF ∽△ABC ,∴=,∴EF=•10=10﹣2x ,∴S=(10﹣2x )•x=﹣x 2+5x=﹣(x ﹣)2+, ∴S 与x 的关系式为S=﹣(x ﹣)2+(0<x <10),纵观各选项,只有D 选项图象符合.故选D .点评:本题考查了动点问题函数图象,主要利用了相似三角形的性质,求出S与x的函数关系式是解题的关键,也是本题的难点.二、填空题(共7小题,每小题3分,共21分)9.(3分)(2014•黄冈)计算:|﹣|=.考点:绝对值.分析:根据负数的绝对值等于它的相反数,可得答案案.解答:解:|﹣|=,故答案为:.点评:本题考查了绝对值,负数的绝对值是它的相反数.10.(3分)(2014•黄冈)分解因式:(2a+1)2﹣a2=(3a+1)(a+1).考点:因式分解-运用公式法.分析:直接利用平方差公式进行分解即可.解答:解:原式=(2a+1+a)(2a+1﹣a)=(3a+1)(a+1),故答案为:(3a+1)(a+1).点评:此题主要考查了公式法分解因式,关键是掌握平方差公式:a2﹣b2=(a+b)(a﹣b).11.(3分)(2014•黄冈)计算:﹣=.考点:二次根式的加减法.分析:先进行二次根式的化简,然后合并同类二次根式求解.解答:解:原式=2﹣=.故答案为:.点评:本题考查了二次根式的加减法,关键是掌握二次根式的化简以及同类二次根式的合并.12.(3分)(2014•黄冈)如图,若AD∥BE,且∠ACB=90°,∠CBE=30°,则∠CAD=60度.考点:平行线的性质.分析:延长AC交BE于F,根据直角三角形两锐角互余求出∠1,再根据两直线平行,内错角相等可得∠CAD=∠1.解答:解:如图,延长AC交BE于F,∵∠ACB=90°,∠CBE=30°,∴∠1=90°﹣30°=60°,∵AD∥BE,∴∠CAD=∠1=60°.故答案为:60.点评:本题考查了平行线的性质,直角三角形两锐角互余的性质,熟记性质是解题的关键.13.(3分)(2014•黄冈)当x=﹣1时,代数式÷+x的值是3﹣2.考点:分式的化简求值.分析:将除法转化为乘法,因式分解后约分,然后通分相加即可.解答:解:原式=•+x=x(x﹣1)+x=x2﹣x+x=x2,当x=﹣1时,原式=(﹣1)2=2+1﹣2=3﹣2.故答案为3﹣2.点评:本题考查了分式的化简求值,熟悉除法法则和因式分解是解题的关键.14.(3分)(2014•黄冈)如图,在⊙O中,弦CD垂直于直径AB于点E,若∠BAD=30°,且BE=2,则CD=4.考点:垂径定理;解直角三角形.专题:计算题.分析:连结OD,设⊙O的半径为R,先根据圆周角定理得到∠BOD=2∠BAD=60°,再根据垂径定理由CD⊥AB得到DE=CE,在Rt△ODE中,OE=OB﹣BE=R﹣2,利用余弦的定义得cos∠EOD=cos60°=,即=,解得R=4,则OE=2,DE=OE=2,所以CD=2DE=4.解答:解:连结OD,如图,设⊙O的半径为R,∵∠BAD=30°,∴∠BOD=2∠BAD=60°,∵CD⊥AB,∴DE=CE,在Rt△ODE中,OE=OB﹣BE=R﹣2,OD=R,∵cos∠EOD=cos60°=,∴=,解得R=4,∴OE=4﹣2=2,∴DE=OE=2,∴CD=2DE=4.故答案为4.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理和解直角三角形.15.(3分)(2014•黄冈)如图,在一张长为8cm,宽为6cm的矩形纸片上,现要剪下一个腰长为5cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上).则剪下的等腰三角形的面积为,5,10cm2.考点:作图—应用与设计作图.分析:因为等腰三角形腰的位置不明确,所以分(1)腰长在矩形相邻的两边上,(2)一腰在矩形的宽上,(3)一腰在矩形的长上,三种情况讨论.(1)△AEF为等腰直角三角形,直接利用面积公式求解即可;(2)先利用勾股定理求出AE边上的高BF,再代入面积公式求解;(3)先求出AE边上的高DF,再代入面积公式求解.解答:解:分三种情况计算:(1)当AE=AF=5厘米时,∴S△AEF AE•AF=×5×5=厘米2,(2)当AE=EF=5厘米时,如图BF===2厘米,∴S△AEF=•AE•BF=×5×2=5厘米2,(3)当AE=EF=5厘米时,如图DF===4厘米,∴S△AEF=AE•DF=×5×4=10厘米2.故答案为:,5,10.点评:本题主要考查矩形的角是直角的性质和勾股定理的运用,要根据三角形的腰长的不确定分情况讨论.三、解答题(本大题共10小题,满分共75分)16.(5分)(2014•黄冈)解不等式组:,并在数轴上表示出不等式组的解集.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.解答:解:解①得:x>3,解②得:x≥1.,则不等式组的解集是:x>3.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.17.(6分)(2014•黄冈)浠州县为了改善全县中、小学办学条件,计划集中采购一批电子白板和投影机.已知购买2块电子白板比购买3台投影机多4000元,购买4块电子白板和3台投影机共需44000元.问购买一块电子白板和一台投影机各需要多少元?考点:二元一次方程组的应用.分析:设购买1块电子白板需要x元,一台投影机需要y元,根据①买2块电子白板的钱﹣买3台投影机的钱=4000元,②购买4块电子白板的费用+3台投影机的费用=44000元,列出方程组,求解即可.解答:解:设购买1块电子白板需要x元,一台投影机需要y元,由题意得:,解得:.答:购买一块电子白板需要8000元,一台投影机需要4000元.点评:此题主要考查了二元一次方程组的应用,解题关键是弄清题意,找出合适的等量关系,列出方程组.18.(6分)(2014•黄冈)已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.考点:全等三角形的判定与性质;角平分线的性质.专题:证明题.分析:连接AD,利用SSS得到三角形ABD与三角形ACD全等,利用全等三角形对应角相等得到∠EAD=∠FAD,即AD为角平分线,再由DE⊥AB,DF⊥AC,利用角平分线定理即可得证.解答:证明:连接AD,在△ACD和△ABD中,,∴△ACD≌△ABD(SSS),∴∠EAD=∠FAD,即AD平分∠EAF,∵DE⊥AE,DF⊥AF,∴DE=DF.点评:此题考查了全等三角形的判定与性质,以及角平分线定理,熟练掌握全等三角形的判定与性质是解本题的关键.19.(6分)(2014•黄冈)红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.考点:列表法与树状图法.分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得恰好选派一男一女两位同学参赛的有8种情况,然后利用概率公式求解即可求得答案.解答:解:(1)画树状图得:则共有12种等可能的结果;(2)∵恰好选派一男一女两位同学参赛的有8种情况,∴恰好选派一男一女两位同学参赛的概率为:=.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.(7分)(2014•黄冈)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D的切线,交BC于点E.(1)求证:EB=EC;(2)若以点O、D、E、C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.考点:切线的性质;正方形的性质.分析:(1)连接BD,根据直径所对的圆周角是直角,得到直角三角形ABD和BCD,根据切线的判定定理知BC是圆的切线,结合切线长定理得到BE=DE,再根据等边对等角以及等角的余角相等证明DE=CE;(2)当以点O、D、E、C为顶点的四边形是正方形时,则△DEB是等腰直角三角形,据此即可判断.解答:(1)证明:连接CD,∵AC是直径,∠ACD=90°,∴BC是⊙O的切线,∠BDA=90°.∵DE是⊙O的切线,∴DE=BE(切线长定理).∴∠EBD=∠EDB.又∵∠DCE+∠EBD=∠CDE+∠EDB=90°,∴∠DCE=∠CDE,∴DE=CE,又∵DE=BE,∴DE=BE.(2)解:当以点O、D、E、C为顶点的四边形是正方形时,则∠DEB=90°,又∵DE=BE,∴△DEB是等腰直角三角形,则∠B=45°,∴△ABC是等腰直角三角形.点评:本题考查了切线的性质以及切线长定理、圆周角定理,解题的关键是连接CD构造直角三角形.21.(7分)(2014•黄冈)某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶提供学生饮用.浠马中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:(1)本次被调查的学生有200名;(2)补全上面的条形统计图1,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数;(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?考点:条形统计图;扇形统计图.分析:(1)喜好“核桃味”牛奶的学生人数除以它所占的百分比即可得本次被调查的学生人数;(2)用本次被调查的学生的总人数减去喜好原味、草莓味、菠萝味、核桃味的人数得出喜好香橙味的人数,补全条形统计图即可,用喜好“菠萝味”牛奶的学生人数除以总人数再乘以360°,即可得喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数;(3)用喜好草莓味的人数占的百分比减去喜好原味的人数占的百分比,再乘以该校的总人数即可.解答:解:(1)10÷5%=200(名)答:本次被调查的学生有200名,故答案为:200;(2)200﹣38﹣62﹣50﹣10=40(名),条形统计图如下:=90°,答:喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数为90°;(3)1200×()=144(盒),答:草莓味要比原味多送144盒.点评:本题考查的是条形统计图和扇形统计图的综合运用;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(9分)(2014•黄冈)如图,已知双曲线y=﹣与两直线y=﹣x,y=﹣kx(k>0,且k≠)分别相交于A、B、C、D四点.(1)当点C的坐标为(﹣1,1)时,A、B、D三点坐标分别是A(﹣2,),B(2,﹣),D(1,﹣1).(2)证明:以点A、D、B、C为顶点的四边形是平行四边形.(3)当k为何值时,▱ADBC是矩形.考点:反比例函数综合题.专题:综合题.分析:(1)由C坐标,利用反比例函数的中心对称性确定出D坐标,联立双曲线y=﹣与直线y=﹣x,求出A与B坐标即可;(2)由反比例函数为中心对称图形,利用中心对称性质得到OA=OB,OC=OD,利用对角线互相平分的四边形为平行四边形即可得证;(3)由A与B坐标,利用两点间的距离公式求出AB的长,联立双曲线y=﹣与直线y=﹣kx,表示出CD的长,根据对角线相等的平行四边形为矩形,得到AB=CD,即可求出此时k 的值.解答:解:(1)∵C(﹣1,1),C,D为双曲线y=﹣与直线y=﹣kx的两个交点,且双曲线y=﹣为中心对称图形,∴D(1,﹣1),联立得:,消去y得:﹣x=﹣,即x2=4,解得:x=2或x=﹣2,当x=2时,y=﹣;当x=﹣2时,y=,∴A(﹣2,),B(2,﹣);故答案为:﹣2,,2,﹣,1,﹣1;(2)∵双曲线y=﹣为中心对称图形,且双曲线y=﹣与两直线y=﹣x,y=﹣kx(k>0,且k≠)分别相交于A、B、C、D四点,∴OA=OB,OC=OD,则以点A、D、B、C为顶点的四边形是平行四边形;(3)若▱ADBC是矩形,可得AB=CD,联立得:,消去y得:﹣=﹣kx,即x2=,解得:x=或x=﹣,当x=时,y=﹣;当x=﹣时,y=,∴C(﹣,),D(,﹣),∴CD==AB==,整理得:(4k﹣1)(k﹣4)=0,解得:k=(不合题意,舍去)或k=4,则当k=4时,▱ADBC是矩形.点评:此题属于反比例函数综合题,涉及的知识有:坐标与图形性质,一次函数与反比例函数的交点,平行四边形,矩形的判定,两点间的距离公式,以及中心图形性质,熟练掌握性质是解本题的关键.23.(7分)(2014•黄冈)如图,在南北方向的海岸线MN上,有A、B两艘巡逻船,现均收到故障船C的求救信号.已知A、B两船相距100(+1)海里,船C在船A的北偏东60°方向上,船C在船B的东南方向上,MN上有一观测点D,测得船C正好在观测点D的南偏东75°方向上.(1)分别求出A与C,A与D之间的距离AC和AD(如果运算结果有根号,请保留根号).(2)已知距观测点D处100海里范围内有暗礁.若巡逻船A沿直线AC去营救船C,在去营救的途中有无触暗礁危险?(参考数据:≈1.41,≈1.73)考点:解直角三角形的应用-方向角问题.分析:(1)作CE⊥AB,设AE=x海里,则BE=CE=x海里.根据AB=AE+BE=x+x=100(+1),求得x的值后即可求得AC的长;过点D作DF⊥AC于点F,同理求出AD的长;(2)作DF⊥AC于点F,根据AD的长和∠DAF的度数求线段DF的长后与100比较即可得到答案.解答:解:(1)如图,作CE⊥AB,由题意得:∠ABC=45°,∠BAC=60°,设AE=x海里,在Rt△AEC中,CE=AE•tan60°=x;在Rt△BCE中,BE=CE=x.∴AE+BE=x+x=100(+1),解得:x=100.AC=2x=200.在△ACD中,∠DAC=60°,∠ADC=75°,则∠ACD=45°.过点D作DF⊥AC于点F,设AF=y,则DF=CF=y,∴AC=y+y=200,解得:y=100(﹣1),∴AD=2y=200(﹣1).答:A与C之间的距离AC为200海里,A与D之间的距离AD为200(﹣1)海里.(2)由(1)可知,DF=AF=×100(﹣1)≈127∵127>100,所以巡逻船A沿直线AC航线,在去营救的途中没有触暗礁危险.点评:本题考查了解直角三角形的应用,解题的关键是从实际问题中整理出直角三角形并选择合适的边角关系解答.24.(9分)(2014•黄冈)某地实行医疗保险(以下简称“医保”)制度.医保机构规定:一:每位居民年初缴纳医保基金70元;二:居民每个人当年治病所花的医疗费(以定点医院的治疗发票为准),年底按下列方式(见表一)报销所治病的医疗费用:居民个人当年治病所花费的医疗费医疗费的报销方法不超过n元的部分全部由医保基金承担(即全部报销)超过n元但不超过6000元的部分个人承担k%,其余部分由医保基金承担超过6000元的部分个人承担20%,其余部分由医保基金承担如果设一位居民当年治病花费的医疗费为x元,他个人实际承担的医疗费用(包括医疗费中个人承担部分和年初缴纳的医保基金)记为y元.(1)当0≤x≤n时,y=70;当n<x≤6000时,y=(用含n、k、x的式子表示).(2)表二是该地A、B、C三位居民2013年治病所花费的医疗费和个人实际承担的医疗费用,根据表中的数据,求出n、k的值.表二:居民 A B C某次治病所花费的治疗费用x(元)400 800 1500个人实际承担的医疗费用y(元)70 190 470(3)该地居民周大爷2013年治病所花费的医疗费共32000元,那么这一年他个人实际承担的医疗费用是多少元?考点:一次函数的应用;列代数式;二元一次方程组的应用.分析:(1)根据医疗报销的比例,可得答案;(2)根据医疗费用的报销费用,可得方程组,再解方程组,可得答案;(3)根据个人承担部分的费用,可得代数式,可得答案.解答:解:(1)由题意得y=;(2)由A、B、C三人的花销得,解得;(3)由题意得70+(6000﹣500)×40%+(32000﹣6000)×20%=70+2200+5200=7470(元).答:这一年他个人实际承担的医疗费用是7470元.点评:本题考查了一次函数的应用,根据题意列函数解析式是解题关键.25.(13分)(2014•黄冈)已知:如图,在四边形OABC中,AB∥OC,BC⊥x轴于点C,A(1,﹣1),B(3,﹣1),动点P从点O出发,沿着x轴正方向以每秒2个单位长度的速度移动.过点P作PQ垂直于直线OA,垂足为点Q,设点P移动的时间t秒(0<t<2),△OPQ与四边形OABC重叠部分的面积为S.(1)求经过O、A、B三点的抛物线的解析式,并确定顶点M的坐标;(2)用含t的代数式表示点P、点Q的坐标;(3)如果将△OPQ绕着点P按逆时针方向旋转90°,是否存在t,使得△OPQ的顶点O或顶点Q在抛物线上?若存在,请求出t的值;若不存在,请说明理由;(4)求出S与t的函数关系式.考点:二次函数综合题.专题:压轴题.分析:(1)设抛物线解析式为y=ax2+bx(a≠0),然后把点A、B的坐标代入求出a、b的值,即可得解,再把函数解析式整理成顶点式形式,然后写出顶点M的坐标;(2)根据点P的速度求出OP,即可得到点P的坐标,再根据点A的坐标求出∠AOC=45°,然后判断出△POQ是等腰直角三角形,根据等腰直角三角形的性质求出点Q的坐标即可;(3)根据旋转的性质求出点O、Q的坐标,然后分别代入抛物线解析式,求解即可;(4)求出点Q与点A重合时的t=1,点P与点C重合时的t=1.5,t=2时PQ经过点B,然后分①0<t≤1时,重叠部分的面积等于△POQ的面积,②1<t≤1.5时,重叠部分的面积等于两个等腰直角三角形的面积的差,③1.5<t<2时,重叠部分的面积等于梯形的面积减去一个等腰直角三角形的面积分别列式整理即可得解.解答:解:(1)设抛物线解析式为y=ax2+bx(a≠0),把点A(1,﹣1),B(3,﹣1)代入得,,解得,∴抛物线解析式为y=x2﹣x,∵y=x2﹣x=(x﹣2)2﹣,∴顶点M的坐标为(2,﹣);(2)∵点P从点O出发速度是每秒2个单位长度,∴OP=2t,∴点P的坐标为(2t,0),∵A(1,﹣1),∴∠AOC=45°,∴点Q到x轴、y轴的距离都是OP=×2t=t,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年湖北省黄冈市中考数学试卷及答案一、选择题(下列个题四个选项中,有且仅有一个就是正确的.每小题3分,共24分)1.(3分)﹣8的立方根就是()A.﹣2B.±2C.2D.﹣2.(3分)如果α与β互为余角,则()A.α+β=180°B.α﹣β=180°C.α﹣β=90°D.α+β=90°3.(3分)下列运算正确的就是()A.x2•x3=x6B.x6÷x5=xC.(﹣x2)4=x6D.x2+x3=x54.(3分)如图所示的几何体的主视图就是()A. B. C. D.5.(3分)函数y=中,自变量x的取值范围就是()A.x≠0B.x≥2C.x>2且x≠0D.x≥2且x≠06.(3分)若α、β就是一元二次方程x2+2x﹣6=0的两根,则α2+β2=()A.﹣8B.32C.16D.407.(3分)如图,圆锥体的高h=2cm,底面半径r=2cm,则圆锥体的全面积为()cm2.A.4πB.8πC.12πD.(4+4)π8.(3分)已知:在△ABC中,BC=10,BC边上的高h=5,点E在边AB上,过点E作EF∥BC,交AC边于点F.点D为BC上一点,连接DE、DF.设点E到BC的距离为x,则△DEF的面积S关于x的函数图象大致为()A. B. C. D.二、填空题(共7小题,每小题3分,共21分)9.(3分)计算:|﹣|=.10.(3分)分解因式:(2a+1)2﹣a2=.11.(3分)计算:﹣=.12.(3分)如图,若AD∥BE,且∠ACB=90°,∠CBE=30°,则∠CAD=度.13.(3分)当x=﹣1时,代数式÷+x的值就是.14.(3分)如图,在⊙O中,弦CD垂直于直径AB于点E,若∠BAD=30°,且BE=2,则CD=.15.(3分)如图,在一张长为8cm,宽为6cm的矩形纸片上,现要剪下一个腰长为5cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上).则剪下的等腰三角形的面积为cm2.三、解答题(本大题共10小题,满分共75分)16.(5分)解不等式组:,并在数轴上表示出不等式组的解集.17.(6分)浠州县为了改善全县中、小学办学条件,计划集中采购一批电子白板与投影机.已知购买2块电子白板比购买3台投影机多4000元,购买4块电子白板与3台投影机共需44000元.问购买一块电子白板与一台投影机各需要多少元?18.(6分)已知,如图所示,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.19.(6分)红花中学现要从甲、乙两位男生与丙、丁两位女生中,选派两位同学分别作为①号选手与②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.20.(7分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E.(1)求证:EB=EC;(2)若以点O、D、E、C为顶点的四边形就是正方形,试判断△ABC的形状,并说明理由.21.(7分)某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶提供学生饮用.浠马中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:(1)本次被调查的学生有名;(2)补全上面的条形统计图1,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图中所占圆心角的度数;(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?22.(9分)如图,已知双曲线y=﹣与两直线y=﹣x,y=﹣kx(k>0,且k≠)分别相交于A、B、C、D四点.(1)当点C的坐标为(﹣1,1)时,A、B、D三点坐标分别就是A(,),B(,),D(,).(2)证明:以点A、D、B、C为顶点的四边形就是平行四边形.(3)当k为何值时,▱ADBC就是矩形.23.(7分)如图,在南北方向的海岸线MN上,有A、B两艘巡逻船,现均收到故障船C的求救信号.已知A、B 两船相距100(+1)海里,船C在船A的北偏东60°方向上,船C在船B的东南方向上,MN上有一观测点D,测得船C正好在观测点D的南偏东75°方向上.(1)分别求出A与C,A与D之间的距离AC与AD(如果运算结果有根号,请保留根号).(2)已知距观测点D处100海里范围内有暗礁.若巡逻船A沿直线AC去营救船C,在去营救的途中有无触暗礁危险?(参考数据:≈1、41,≈1、73)24.(9分)某地实行医疗保险(以下简称“医保”)制度.医保机构规定:一:每位居民年初缴纳医保基金70元;二:居民每个人当年治病所花的医疗费(以定点医院的治疗发票为准),年底按下列方式(见表一)报销所治病的医疗费用:医疗费的报销方法居民个人当年治病所花费的医疗费不超过n元的部分全部由医保基金承担(即全部报销)超过n元但不超过6000元的部分个人承担k%,其余部分由医保基金承担超过6000元的部分个人承担20%,其余部分由医保基金承担如果设一位居民当年治病花费的医疗费为x元,她个人实际承担的医疗费用(包括医疗费中个人承担部分与年初缴纳的医保基金)记为y元.(1)当0≤x≤n时,y=70;当n<x≤6000时,y=(用含n、k、x的式子表示).(2)表二就是该地A、B、C三位居民2013年治病所花费的医疗费与个人实际承担的医疗费用,根据表中的数据,求出n、k的值.表二:居民A B C某次治病所花费的治疗费用x(元)4008001500个人实际承担的医疗费用y(元)70190470(3)该地居民周大爷2013年治病所花费的医疗费共32000元,那么这一年她个人实际承担的医疗费用就是多少元?25.(13分)已知:如图,在四边形OABC中,AB∥OC,BC⊥x轴于点C,A(1,﹣1),B(3,﹣1),动点P从点O出发,沿着x轴正方向以每秒2个单位长度的速度移动.过点P作PQ垂直于直线OA,垂足为点Q,设点P移动的时间t 秒(0<t<2),△OPQ与四边形OABC重叠部分的面积为S.(1)求经过O、A、B三点的抛物线的解析式,并确定顶点M的坐标;(2)用含t的代数式表示点P、点Q的坐标;(3)如果将△OPQ绕着点P按逆时针方向旋转90°,就是否存在t,使得△OPQ的顶点O或顶点Q在抛物线上?若存在,请求出t的值;若不存在,请说明理由;(4)求出S与t的函数关系式.2014年湖北省黄冈市中考数学试卷参考答案与试题解析一、选择题(下列个题四个选项中,有且仅有一个就是正确的.每小题3分,共24分)1.(3分)(2014•黄冈)﹣8的立方根就是()A.﹣2B.±2C.2D.﹣【分析】如果一个数x的立方等于a,那么x就是a的立方根,根据此定义求解即可.【解答】解:∵﹣2的立方等于﹣8,∴﹣8的立方根等于﹣2.故选:A.【点评】此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数就是哪一个数的立方.由开立方与立方就是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.2.(3分)(2014•黄冈)如果α与β互为余角,则()A.α+β=180°B.α﹣β=180°C.α﹣β=90°D.α+β=90°【分析】根据互为余角的定义,可以得到答案.【解答】解:如果α与β互为余角,则α+β=900.故选:D.【点评】此题主要考查了互为余角的性质,正确记忆互为余角的定义就是解决问题的关键.3.(3分)(2014•黄冈)下列运算正确的就是()A.x2•x3=x6B.x6÷x5=xC.(﹣x2)4=x6D.x2+x3=x5【分析】根据同底数幂的乘法与除法法则可以解答本题.【解答】解:A.x2•x3=x5,故A错误;B.x6÷x5=x,故B正确;C.(﹣x2)4=x8,故C错误;D.x2+x3不能合并,故D错误.故选:B.【点评】主要考查同底数幂相除底数不变指数相减,同底数幂相乘底数不变指数相加,熟记定义就是解题的关键.4.(3分)(2014•黄冈)如图所示的几何体的主视图就是()A. B. C. D.【分析】根据从正面瞧得到的图形就是主视图,可得答案.【解答】解:从正面瞧,象一个大梯形减去一个小梯形,故选:D.【点评】本题考查了简单组合体的三视图,从正面瞧得到的图形就是主视图.5.(3分)(2014•黄冈)函数y=中,自变量x的取值范围就是()A.x≠0B.x≥2C.x>2且x≠0D.x≥2且x≠0【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣2≥0且x≠0,∴x≥2.故选:B.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式就是整式时,自变量可取全体实数;(2)当函数表达式就是分式时,考虑分式的分母不能为0;(3)当函数表达式就是二次根式时,被开方数非负.6.(3分)(2014•黄冈)若α、β就是一元二次方程x2+2x﹣6=0的两根,则α2+β2=()A.﹣8B.32C.16D.40【分析】根据根与系数的关系得到α+β=﹣2,αβ=﹣6,再利用完全平方公式得到α2+β2=(α+β)2﹣2αβ,然后利用整体代入的方法计算.【解答】解:根据题意得α+β=﹣2,αβ=﹣6,所以α2+β2=(α+β)2﹣2αβ=(﹣2)2﹣2×(﹣6)=16.故选:C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=﹣,x1•x2=.7.(3分)(2014•黄冈)如图,圆锥体的高h=2cm,底面半径r=2cm,则圆锥体的全面积为()cm2.A.4πB.8πC.12πD.(4+4)π【分析】表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.【解答】解:底面圆的半径为2,则底面周长=4π,∵底面半径为2cm、高为2cm,∴圆锥的母线长为4cm,∴侧面面积=×4π×4=8π;底面积为=4π,全面积为:8π+4π=12πcm2.故选:C.【点评】本题利用了圆的周长公式与扇形面积公式求解,牢记公式就是解答本题的关键.8.(3分)(2014•黄冈)已知:在△ABC中,BC=10,BC边上的高h=5,点E在边AB上,过点E作EF∥BC,交AC边于点F.点D为BC上一点,连接DE、DF.设点E到BC的距离为x,则△DEF的面积S关于x的函数图象大致为()A. B. C. D.【分析】判断出△AEF与△ABC相似,根据相似三角形对应边成比例列式求出EF,再根据三角形的面积列式表示出S与x的关系式,然后得到大致图象选择即可.【解答】解:∵EF∥BC,∴△AEF∽△ABC,∴=,∴EF=•10=10﹣2x,∴S=(10﹣2x)•x=﹣x2+5x=﹣(x﹣)2+,∴S与x的关系式为S=﹣(x﹣)2+(0<x<5),纵观各选项,只有D选项图象符合.故选:D.【点评】本题考查了动点问题函数图象,主要利用了相似三角形的性质,求出S与x的函数关系式就是解题的关键,也就是本题的难点.二、填空题(共7小题,每小题3分,共21分)9.(3分)(2014•黄冈)计算:|﹣|=.【分析】根据负数的绝对值等于它的相反数,可得答案案.【解答】解:|﹣|=,故答案为:.【点评】本题考查了绝对值,负数的绝对值就是它的相反数.10.(3分)(2014•黄冈)分解因式:(2a+1)2﹣a2=(3a+1)(a+1).【分析】直接利用平方差公式进行分解即可.【解答】解:原式=(2a+1+a)(2a+1﹣a)=(3a+1)(a+1),故答案为:(3a+1)(a+1).【点评】此题主要考查了公式法分解因式,关键就是掌握平方差公式:a2﹣b2=(a+b)(a﹣b).11.(3分)(2014•黄冈)计算:﹣=.【分析】先进行二次根式的化简,然后合并同类二次根式求解.【解答】解:原式=2﹣=.故答案为:.【点评】本题考查了二次根式的加减法,关键就是掌握二次根式的化简以及同类二次根式的合并.12.(3分)(2014•黄冈)如图,若AD∥BE,且∠ACB=90°,∠CBE=30°,则∠CAD=60度.【分析】延长AC交BE于F,根据直角三角形两锐角互余求出∠1,再根据两直线平行,内错角相等可得∠CAD=∠1.【解答】解:如图,延长AC交BE于F,∵∠ACB=90°,∠CBE=30°,∴∠1=90°﹣30°=60°,∵AD∥BE,∴∠CAD=∠1=60°.故答案为:60.【点评】本题考查了平行线的性质,直角三角形两锐角互余的性质,熟记性质就是解题的关键.13.(3分)(2014•黄冈)当x=﹣1时,代数式÷+x的值就是3﹣2.【分析】将除法转化为乘法,因式分解后约分,然后通分相加即可.【解答】解:原式=•+x=x(x﹣1)+x=x2﹣x+x=x2,当x=﹣1时,原式=(﹣1)2=2+1﹣2=3﹣2.故答案为:3﹣2.【点评】本题考查了分式的化简求值,熟悉除法法则与因式分解就是解题的关键.14.(3分)(2014•黄冈)如图,在⊙O中,弦CD垂直于直径AB于点E,若∠BAD=30°,且BE=2,则CD=4.【分析】连结OD,设⊙O的半径为R,先根据圆周角定理得到∠BOD=2∠BAD=60°,再根据垂径定理由CD⊥AB得到DE=CE,在Rt△ODE中,OE=OB﹣BE=R﹣2,利用余弦的定义得cos∠EOD=cos60°=,即=,解得R=4,则OE=2,DE=OE=2,所以CD=2DE=4.【解答】解:连结OD,如图,设⊙O的半径为R,∵∠BAD=30°,∴∠BOD=2∠BAD=60°,∵CD⊥AB,∴DE=CE,在Rt△ODE中,OE=OB﹣BE=R﹣2,OD=R,∵cos∠EOD=cos60°=,∴=,解得R=4,∴OE=4﹣2=2,∴DE=OE=2,∴CD=2DE=4故答案为:4.【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理与解直角三角形.15.(3分)(2014•黄冈)如图,在一张长为8cm,宽为6cm的矩形纸片上,现要剪下一个腰长为5cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上).则剪下的等腰三角形的面积为或5或10cm2.【分析】因为等腰三角形腰的位置不明确,所以分(1)腰长在矩形相邻的两边上,(2)一腰在矩形的宽上,(3)一腰在矩形的长上,三种情况讨论.(1)△AEF为等腰直角三角形,直接利用面积公式求解即可;(2)先利用勾股定理求出AE边上的高BF,再代入面积公式求解;(3)先求出AE边上的高DF,再代入面积公式求解.【解答】解:分三种情况计算:(1)当AE=AF=5厘米时,=AE•AF=×5×5=厘米2,∴S△AEF(2)当AE=EF=5厘米时,如图BF===2厘米,=•AE•BF=×5×2=5厘米2,∴S△AEF(3)当AE=EF=5厘米时,如图DF===4厘米,=AE•DF=×5×4=10厘米2.∴S△AEF故答案为:,5,10.【点评】本题主要考查矩形的角就是直角的性质与勾股定理的运用,要根据三角形的腰长的不确定分情况讨论.三、解答题(本大题共10小题,满分共75分)16.(5分)(2014•黄冈)解不等式组:,并在数轴上表示出不等式组的解集.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.【解答】解:解①得:x>3,解②得:x≥1.,则不等式组的解集就是:x>3.【点评】本题考查的就是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.17.(6分)(2014•黄冈)浠州县为了改善全县中、小学办学条件,计划集中采购一批电子白板与投影机.已知购买2块电子白板比购买3台投影机多4000元,购买4块电子白板与3台投影机共需44000元.问购买一块电子白板与一台投影机各需要多少元?【分析】设购买1块电子白板需要x元,一台投影机需要y元,根据①买2块电子白板的钱﹣买3台投影机的钱=4000元,②购买4块电子白板的费用+3台投影机的费用=44000元,列出方程组,求解即可.【解答】解:设购买1块电子白板需要x元,一台投影机需要y元,由题意得:,解得:.答:购买一块电子白板需要8000元,一台投影机需要4000元.【点评】此题主要考查了二元一次方程组的应用,解题关键就是弄清题意,找出合适的等量关系,列出方程组.18.(6分)(2014•黄冈)已知,如图所示,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.【分析】连接AD,利用SSS得到三角形ABD与三角形ACD全等,利用全等三角形对应角相等得到∠EAD=∠FAD,即AD为角平分线,再由DE⊥AB,DF⊥AC,利用角平分线定理即可得证.【解答】证明:连接AD,在△ACD与△ABD中,,∴△ACD≌△ABD(SSS),∴∠EAD=∠FAD,即AD平分∠EAF,∵DE⊥AE,DF⊥AF,∴DE=DF.【点评】此题考查了全等三角形的判定与性质,以及角平分线定理,熟练掌握全等三角形的判定与性质就是解本题的关键.19.(6分)(2014•黄冈)红花中学现要从甲、乙两位男生与丙、丁两位女生中,选派两位同学分别作为①号选手与②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得恰好选派一男一女两位同学参赛的有8种情况,然后利用概率公式求解即可求得答案.【解答】解:(1)画树状图得:则共有12种等可能的结果;(2)∵恰好选派一男一女两位同学参赛的有8种情况,∴恰好选派一男一女两位同学参赛的概率为:=.【点评】本题考查的就是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.(7分)(2014•黄冈)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E.(1)求证:EB=EC;(2)若以点O、D、E、C为顶点的四边形就是正方形,试判断△ABC的形状,并说明理由.【分析】(1)连接OD,由BC就是⊙O的切线得出∠BCA=90°,由DE就是⊙O的切线,得出ED=EC,∠ODE=90°,故可得出∠EDB=∠EBD,由此可得出结论.(2)当以点O、D、E、C为顶点的四边形就是正方形时,则△DEB就是等腰直角三角形,据此即可判断.【解答】(1)证明:连接OD,∵AC就是直径,∠ACB=90°,∴BC就是⊙O的切线,∠BCA=90°.又∵DE就是⊙O的切线,∴ED=EC,∠ODE=90°,∴∠ODA+∠EDB=90°,∵OA=OD,∴∠OAD=∠ODA,又∵∠OAD+∠DBE=90°,∴∠EDB=∠EBD,∴ED=EB,∴EB=EC.(2)解:当以点O、D、E、C为顶点的四边形就是正方形时,则∠DEB=90°,又∵ED=EB,∴△DEB就是等腰直角三角形,则∠B=45°,∴△ABC就是等腰直角三角形.【点评】本题考查了切线的性质以及切线长定理、圆周角定理,解题的关键就是连接OD得垂直,构造出等腰三角形,利用“等角的余角相等解答.21.(7分)(2014•黄冈)某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶提供学生饮用.浠马中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:(1)本次被调查的学生有200名;(2)补全上面的条形统计图1,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图中所占圆心角的度数;(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?【分析】(1)喜好“核桃味”牛奶的学生人数除以它所占的百分比即可得本次被调查的学生人数;(2)用本次被调查的学生的总人数减去喜好原味、草莓味、菠萝味、核桃味的人数得出喜好香橙味的人数,补全条形统计图即可,用喜好“菠萝味”牛奶的学生人数除以总人数再乘以360°,即可得喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数;(3)用喜好草莓味的人数占的百分比减去喜好原味的人数占的百分比,再乘以该校的总人数即可.【解答】解:(1)10÷5%=200(名)答:本次被调查的学生有200名,故答案为:200;(2)200﹣38﹣62﹣50﹣10=40(名),条形统计图如下:=90°,答:喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数为90°;(3)1200×()=144(盒),答:草莓味要比原味多送144盒.【点评】本题考查的就是条形统计图与扇形统计图的综合运用;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断与解决问题.22.(9分)(2014•黄冈)如图,已知双曲线y=﹣与两直线y=﹣x,y=﹣kx(k>0,且k≠)分别相交于A、B、C、D四点.(1)当点C的坐标为(﹣1,1)时,A、B、D三点坐标分别就是A(﹣2,),B(2,﹣),D(1,﹣1).(2)证明:以点A、D、B、C为顶点的四边形就是平行四边形.(3)当k为何值时,▱ADBC就是矩形.【分析】(1)由C坐标,利用反比例函数的中心对称性确定出D坐标,联立双曲线y=﹣与直线y=﹣x,求出A与B坐标即可;(2)由反比例函数为中心对称图形,利用中心对称性质得到OA=OB,OC=OD,利用对角线互相平分的四边形为平行四边形即可得证;(3)由A与B坐标,利用两点间的距离公式求出AB的长,联立双曲线y=﹣与直线y=﹣kx,表示出CD的长,根据对角线相等的平行四边形为矩形,得到AB=CD,即可求出此时k的值.【解答】解:(1)∵C(﹣1,1),C,D为双曲线y=﹣与直线y=﹣kx的两个交点,且双曲线y=﹣为中心对称图形,∴D(1,﹣1),联立得:,消去y得:﹣x=﹣,即x2=4,解得:x=2或x=﹣2,当x=2时,y=﹣;当x=﹣2时,y=,∴A(﹣2,),B(2,﹣);故答案为:﹣2,,2,﹣,1,﹣1;(2)∵双曲线y=﹣为中心对称图形,且双曲线y=﹣与两直线y=﹣x,y=﹣kx(k>0,且k≠)分别相交于A、B、C、D四点,∴OA=OB,OC=OD,则以点A、D、B、C为顶点的四边形就是平行四边形;(3)若▱ADBC就是矩形,可得AB=CD,联立得:,消去y得:﹣=﹣kx,即x2=,解得:x=或x=﹣,当x=时,y=﹣;当x=﹣时,y=,∴C(﹣,),D(,﹣),∴CD==AB==,整理得:(4k﹣1)(k﹣4)=0,k1=,k2=4,又∵k≠,∴k=4,则当k=4时,▱ADBC就是矩形.【点评】此题属于反比例函数综合题,涉及的知识有:坐标与图形性质,一次函数与反比例函数的交点,平行四边形,矩形的判定,两点间的距离公式,以及中心图形性质,熟练掌握性质就是解本题的关键.23.(7分)(2014•黄冈)如图,在南北方向的海岸线MN上,有A、B两艘巡逻船,现均收到故障船C的求救信号.已知A、B两船相距100(+1)海里,船C在船A的北偏东60°方向上,船C在船B的东南方向上,MN上有一观测点D,测得船C正好在观测点D的南偏东75°方向上.(1)分别求出A与C,A与D之间的距离AC与AD(如果运算结果有根号,请保留根号).(2)已知距观测点D处100海里范围内有暗礁.若巡逻船A沿直线AC去营救船C,在去营救的途中有无触暗礁危险?(参考数据:≈1、41,≈1、73)【分析】(1)作CE⊥AB,设AE=x海里,则BE=CE=x海里.根据AB=AE+BE=x+x=100(+1),求得x的值后即可求得AC的长;过点D作DF⊥AC于点F,同理求出AD的长;(2)作DF⊥AC于点F,根据AD的长与∠DAF的度数求线段DF的长后与100比较即可得到答案.【解答】解:(1)如图,作CE⊥AB,由题意得:∠ABC=45°,∠BAC=60°,设AE=x海里,在Rt△AEC中,CE=AE•tan60°=x;在Rt△BCE中,BE=CE=x.∴AE+BE=x+x=100(+1),解得:x=100.AC=2x=200.在△ACD中,∠DAC=60°,∠ADC=75°,则∠ACD=45°.过点D作DF⊥AC于点F,设AF=y,则DF=CF=y,∴AC=y+y=200,解得:y=100(﹣1),∴AD=2y=200(﹣1).答:A与C之间的距离AC为200海里,A与D之间的距离AD为200(﹣1)海里.(2)由(1)可知,DF=AF=×100(﹣1)≈126、3海里,∵126、3>100,所以巡逻船A沿直线AC航线,在去营救的途中没有触暗礁危险.【点评】本题考查了解直角三角形的应用,解题的关键就是从实际问题中整理出直角三角形并选择合适的边角关系解答.24.(9分)(2014•黄冈)某地实行医疗保险(以下简称“医保”)制度.医保机构规定:一:每位居民年初缴纳医保基金70元;二:居民每个人当年治病所花的医疗费(以定点医院的治疗发票为准),年底按下列方式(见表一)报销所治病的医疗费用:医疗费的报销方法居民个人当年治病所花费的医疗费不超过n元的部分全部由医保基金承担(即全部报销)超过n元但不超过6000元的部分个人承担k%,其余部分由医保基金承担超过6000元的部分个人承担20%,其余部分由医保基金承担如果设一位居民当年治病花费的医疗费为x元,她个人实际承担的医疗费用(包括医疗费中个人承担部分与年初缴纳的医保基金)记为y元.(1)当0≤x≤n时,y=70;当n<x≤6000时,y=0、01k(x﹣n)+70(n<x≤6000)(用含n、k、x的式子表示).(2)表二就是该地A、B、C三位居民2013年治病所花费的医疗费与个人实际承担的医疗费用,根据表中的数据,求出n、k的值.表二:居民A B C某次治病所花费的治疗费用x(元)4008001500个人实际承担的医疗费用y(元)70190470(3)该地居民周大爷2013年治病所花费的医疗费共32000元,那么这一年她个人实际承担的医疗费用就是多少元?【分析】(1)根据医疗报销的比例,可得答案;(2)根据医疗费用的报销费用,可得方程组,再解方程组,可得答案;(3)根据个人承担部分的费用,可得代数式,可得答案.【解答】解:(1)由题意得当0≤x≤n时,y=70;当n<x≤6000时,y=0、01k(x﹣n)+70(n<x≤6000);(2)由A、B、C三人的花销得,解得;(3)由题意得70+(6000﹣500)×40%+(32000﹣6000)×20%=70+2200+5200=7470(元).答:这一年她个人实际承担的医疗费用就是7470元.【点评】本题考查了一次函数的应用,根据题意列函数解析式就是解题关键.25.(13分)(2014•黄冈)已知:如图,在四边形OABC中,AB∥OC,BC⊥x轴于点C,A(1,﹣1),B(3,﹣1),动点P从点O 出发,沿着x轴正方向以每秒2个单位长度的速度移动.过点P作PQ垂直于直线OA,垂足为点Q,设点P移动的时间t秒(0<t<2),△OPQ与四边形OABC重叠部分的面积为S.(1)求经过O、A、B三点的抛物线的解析式,并确定顶点M的坐标;(2)用含t的代数式表示点P、点Q的坐标;(3)如果将△OPQ绕着点P按逆时针方向旋转90°,就是否存在t,使得△OPQ的顶点O或顶点Q在抛物线上?若存在,请求出t的值;若不存在,请说明理由;(4)求出S与t的函数关系式.【分析】(1)设抛物线解析式为y=ax2+bx(a≠0),然后把点A、B的坐标代入求出a、b的值,即可得解,再把函数解析式整理成顶点式形式,然后写出顶点M的坐标;(2)根据点P的速度求出OP,即可得到点P的坐标,再根据点A的坐标求出∠AOC=45°,然后判断出△POQ就是等腰直角三角形,根据等腰直角三角形的性质求出点Q的坐标即可;(3)根据旋转的性质求出点O、Q的坐标,然后分别代入抛物线解析式,求解即可;(4)求出点Q与点A重合时的t=1,点P与点C重合时的t=1、5,t=2时PQ经过点B,然后分①0<t≤1时,重叠部分的面积等于△POQ的面积,②1<t≤1、5时,重叠部分的面积等于两个等腰直角三角形的面积的差,③1、5<t<2时,重叠部分的面积等于梯形的面积减去一个等腰直角三角形的面积分别列式整理即可得解.【解答】解:(1)设抛物线解析式为y=ax2+bx(a≠0),把点A(1,﹣1),B(3,﹣1)代入得,,解得,∴抛物线解析式为y=x2﹣x,∵y=x2﹣x=(x﹣2)2﹣,∴顶点M的坐标为(2,﹣);(2)∵点P从点O出发速度就是每秒2个单位长度,∴OP=2t,∴点P的坐标为(2t,0),∵A(1,﹣1),∴∠AOC=45°,∴点Q到x轴、y轴的距离都就是OP=×2t=t,∴点Q的坐标为(t,﹣t);(3)∵△OPQ绕着点P按逆时针方向旋转90°,∴旋转后点O、Q的对应点的坐标分别为(2t,﹣2t),(3t,﹣t),若顶点O在抛物线上,则×(2t)2﹣×(2t)=﹣2t,解得t=(t=0舍去),∴t=时,点O(1,﹣1)在抛物线y=x2﹣x上,若顶点Q在抛物线上,则×(3t)2﹣×(3t)=﹣t,解得t=1(t=0舍去),∴t=1时,点Q(3,﹣1)在抛物线y=x2﹣x上.(4)点Q与点A重合时,OP=1×2=2,t=2÷2=1,点P与点C重合时,OP=3,t=3÷2=1、5,t=2时,OP=2×2=4,PC=4﹣3=1,此时PQ经过点B,所以,分三种情况讨论:①0<t≤1时,S=S△OPQ=×(2t)×=t2,②1<t≤1、5时,S=S△OP′Q′﹣S△AEQ′=×(2t)×﹣×(t﹣)2=2t﹣1;③1、5<t<2时,S=S梯形OABC ﹣S△BGF=×(2+3)×1﹣×[1﹣(2t﹣3)]2=﹣2(t﹣2)2+=﹣2t2+8t﹣;所以,S与t的关系式为S=.。