高三数学三角函数解三角形 专题训练
《三角函数与解三角形》专题训练

一、单选题1.在△ABC中,B=π4,sin A=,AC=4,则BC=().A.5B.6C.7D.82.在△ABC中,角A,B,C的对边分别为a,b,c.若△ABC为锐角三角形,且满足sin B(1+2cos C)=2sin A⋅cos C+cos A sin C,则下列等式成立的是().A.a=2bB.b=2aC.A=2BD.B=2A3.如果把锐三角形的三边都增加同样的长度,则得到的这个新三角形的形状为().A.钝角三角形B.直角三角形C.锐角三角形D.由增加的长度决定4.在ΔABC中,a2+b2+c2=23ab sin C,则ΔABC 的形状是().A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形5.泉城广场上矗立着的“泉标”,成为泉城济南的标志和象征.为了测量“泉标”高度,某同学在“泉标”的正西方向的点A处测得“泉标”顶端的仰角为45°,沿点A向北偏东30°前进100m到达点B,在点B处测得“泉标”顶端的仰角为30°,则“泉标”的高度为().A.50mB.100mC.120mD.150m6.在ΔABC中,“z=12x-y”是“ΔABC为钝角三角形”的().A.充分非必要条件B.必要非充分条件C.充要条件D.既不充分也不必要条件7.已知锐角A是ΔABC的一个内角,a,b,c是三角形中各角的对应边,若sin2A-cos2A=12,则下列各式正确的是().A.b+c=2aB.b+c<2aC.b+c≤2aD.b+c≥2a8.1471年米勒向诺德尔教授提出的有趣问题:在地球表面的什么部位,一根垂直的悬杆看上去最长(即可见角最大).后人将其称为“米勒问题”,是载入数学史上的第一个极值问题.我们把地球表面抽象为平面α,悬杆抽象为线段AB(或直线l上两点A,B),则上述问题可以转化为如下的数学模型:如图1,一条直线l垂直于一个平面α,直线l有两点A,B位于平面α的同侧,求平面上一点C,使得∠ACB最大.建立如图2所示的平面直角坐标系.设A,B两点的坐标分别为()0,a,()0,b()0<b<a.设点C的坐标为()c,0,当∠ACB最大时,c=().图1图2A.2abB.abC.2abD.ab二、多选题9.在△ABC中,根据下列条件解三角形,其中有两解的是().A.b=10,A=45°,C=70°B.b=45,c=48,B=60°C.a=14,b=16,A=45°D.a=7,b=5,A=80°10.在△ABC中,角A,B,C所对的边分别为a,b,c,下列结论正确的是().A.a2=b2+c2-2bc cos AB.a sin B=b sin AC.a=b cos C+c cos BD.a cos B+b cos A=sin C11.下列命题中,正确的是().A.在△ABC中,若A>B,则sin A>sin BB.在锐角△ABC中,不等式sin A>sin B恒成立C.在△ABC中,若a cos A=b cos B,则△ABC必是等腰直角三角形D.在△ABC中,若B=60°,b2=ac,则△ABC必是等边三角形12.在△ABC中,内角A,B,C所对的边分别为a,59b,c,若1tan A,1tan B,1tan C依次成等差数列,则下列结论中不一定成立的是().A.a,b,c依次成等差数列B.a,b,c依次成等差数列C.a2,b2,c2依次成等差数列D.a3,b3,c3依次成等差数列三、填空题13.如图3,某人在垂直于水平地面ABC的墙面前的点A处进行射击训练.已知点A到墙面的距离为AB,某目标点P沿墙面的射击线CM移动,此人为了准确瞄准目标点P,需计算由点A观察点P的仰角θ的大小.若AB=15m,AC=25m,∠BCM=30°,则tanθ的最大值.图314.在ΔABC中,若C=π4,且1sin2A=1+tan A tan B,则BCAC的值为______.15.如图4,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD=m.图416.已知ΔABC满足A=π3,( AB+ AC)∙ BC=0,点M在ΔABC外,且|MB|=2|MC|=2,则MA的取值范围是________.四、解答题17.已知在ΔABC中,角A,B,C所对的边长分别为a,b,c且满足b=a cos C+c sin A.(1)求A的大小;(2)若cos B=25,BC=5, BD=17 BA,求CD的长.18.在①cos A=35,cos C=,②c sin C=sin A+b sin B,B=60°,③c=2,cos A=18三个条件中任选一个补充在下面问题中,并加以解答.已知△ABC的内角A,B,C的对边分别为a,b,c,若a=3,______,求△ABC的面积S.19.在△ABC中,角A,B,C所对的边分别是a,b,c,已知b sin A=a cosæèöøB-π6.(1)求角B的大小;(2)若a=2,c=3,求cos()A-B的值.20.在ΔABC中,若||||||AC→=23,且 AB∙cos C+ BC∙cos A= AC∙sin B.(1)求角B的大小;(2)求ΔABC的面积S.21.在ΔABC中,a,b,c分别是角A,B,C的对边,且满足2a-b c=cos B cos C.(1)求角C的大小;(2)设函数f(x)=2sin x cos x cos C+2sin2x sin C求函数f(x)在区间[0,π2]上的值域.22.如图5,A,B,C,D为平面四边形ABCD的四个内角.(1)证明:tan A2=1-cos Asin A;(2)若A+C=180∘,AB=6,BC=3,CD=4,AD=5,求tan A2+tan B2+tan C2+tan D2的值.A B图560参考答案与解析一、单选题1-8AACDA DCD 二、多选题9.BC ;10.ABC ;11.ABD ;12.ABD.三、填空题13.;14.;15.1006;16.[1,3].四、解答题17.【解析】(1)在三角形ABC 中,由正弦定理得sin B =sin A cos C +sin C sin A ,因为sin B =sin []π-()A +C =sin ()A +C ,所以sin ()A +C =sin A cos C +sin C sin A ,即sin A cos C +sin C cos A =sin A cos C +sin C sin A ,整理得sin C cos A =sin C sin A ,由sin C ≠0,可得cos A =sinA ,所以A =π4.(2)在三角形ABC 中,sin B =1-cos 2B =45,(3)由AC sin B=BCsin A 可得AC 45=,解得AC =42,又因为cos C =-cos(A +B)=-cos A cos B +sin A sin B =,所以AB 2=AC 2+BC 2-2AC ∙BC ∙=32+25-2×42×5×=49,所以AB =7,由BD =17BA 可得BD =1,于是CD 2=BD 2+BC 2-2BD ∙cos B=1+25-2×1×520,所以CD =25.18.【解析】若选①.∵cos A =35,cos C,∴sin A=45,sin C,∴sin B =sin A +C =sin A cos C +cos A sin C ,=4535×,由正弦定理得b =a sinB sin A=3×2545=,∴S =12ab sin C =12×3×=9940.若选②.∵c sin C =sin A +b sin B ,∴由正弦定理得c 2=a +b 2.∵a =3,∴b 2=c 2-3.又∵B =60∘,∴b 2=c 2+9-2×3×c ×12=c 2-3,∴c =4,∴S =12ac sin B =33.若选③.∵c =2,cos A =18,由余弦定理得18=b 2+22-322b ×2,即b 2-b 2-5=0,解得b =52或b =-2(舍去).∴sin A =1-cos 2A =,∴△ABC 的面积S =12bc sin A =12×52×2×=.19.【解析】(1)因为b sin A =a cos æèöøB -π6,根据正弦定理a sin A =bsin B,得sin B sin A =sin A cos æèöøB -π6,因为A ∈()0,π,所以sin A >0,所以sin B =cos æèöøB -π6,即sin B =cos B cosπ6+sin B sin π6,整理得sin B =3cos B ,所以tan B =3,又B ∈()0,π,故B =π3.(2)在△ABC 中,a =2,c =3,B =π3,61由余弦定理得b2=a2+c2-2ac∙cos B,得b2=22+32-2×3×2×cosπ3,故b=7.由正弦定理asin A=b sin B得2sin A=sinπ3,解得sin A=.因为a<b,故A<B,A∈æèöø0,π3,所以cos A=1-sin2A=.所以()A-B B×cosπ3sinπ3.20.【解析】(1)由题意可知:在ΔABC中,|| AC=23,AB∙cos C+BC∙cos A=AC∙sin B,因为AC=AB+BC,所以AB∙cos C+BC∙cos A=( AB+ BC)∙sin B,即(cos C-sin B)AB+(cos A-sin B)BC=0 ,而向量AB,BC是两个不共线向量,所以{cos C=sin B,cos A=sin B,所以cos C=cos A,因为A,C∈(0,π),所以A=C,在等腰ΔABC中,A+B+C=π,所以2A+B=π,A=π2-B2;所以cos A=cos(π2-B2)=sin B2=sin B,所以sinB2=2sin B2cos B2,所以cos B2=12,结合0<B2<π2可得B2=π3,B=2π3.(2)由(1)知A=C=π6,由正弦定理得:|| ACsin2π3=|| BCsinπ6,所以|| BC=2,SΔABC=12|| AC| BC sinπ6=12×23×2×12=3.21.【解析】(1)在ΔABC中,∵2a-b c=cos B cos C,∴(2a-b)cos C=c cos B,∴2sin A cos C=sin B cos C+cos B sin C,∴2sin A cos C=sin(B+C)=sin A.∵∠A是ΔABC的内角,∴sin A≠0,∴2cos C=1,∴∠C=π3.(2)由(1)可知∠C=π3,∴f(x)=12sin2x-2sin2x)=12sin2x2x=sin(2x-π3).22.【解析】(1)tan A2=sin A2cos A2=2sin2A22sin A2cos A2=1-cos Asin A.(2)由A+C=180°,得C=180°-A,D=180°-B.由(1),有tanA2+tan B2+tan C2+tan D2=1-cos Asin A+1-cos Bsin B+1-cos(180°-A)sin(180°-A)+1-cos(180°-B)sin(180°-B)=2sin A+2sin B连接BD,在ΔABD中,有BD2=AB2+AD2-2AB∙AD cos A,在ΔBCD中,有BD2=BC2+CD2-2BC∙CD cos C,所以AB2+AD2-2AB∙AD cos A=BC2+CD2+2BC∙CD cos A,则cos A=AB2+AD2-BC2-CD22(AB∙AD+BC∙CD)=62+52-32-422(6×5+3×4)=37,于是sin A=1-cos2A=连接AC,同理可得cos B=AB2+BC2-AD2-CD22(AB∙BC+AD∙CD)=62+32-52-422(6×3+5×4)=119,于是sin B=1-cos2B==所以tanA2+tan B2+tan C2+tan D2=2sin A+2sin B=14210+2×19210=.62。
2023届高考数学大题专项(三角函数与解三角形)练习(附答案)

(1)若 D 为 BC 的中点,且△CDF 的面积等于△ABC 的面积,求∠ABC;
(2)若∠ABC=45°,且 BD=3CD,求 cos∠CFB.
参考答案
1.解 (1)f(0)=2cos20+sin 0=2.
(2)方案一:选条件①.f(x)的一个周期为 π.
f(x)=2cos2x+sin 2x=(cos 2x+1)+sin 2x=√2
6.(山东潍坊一模,17)△ABC 的内角 A,B,C 的对边分别为 a,b,c,已知向量 m=(c-a,sin B),n=(b-a,sin
A+sin C),且 m∥n.
(1)求 C;
(2)若√6c+3b=3a,求 sin A.
7.(山东模考卷,18)在△ABC 中,∠A=90°,点 D 在 BC 边上.在平面 ABC 内,过点 D 作 DF⊥BC,且
-B =4√3sin B
cos
2
sin
2
3
B+ sin B =6sin Bcos B+2√3sin2B=2√3sin 2B当 2B-
π
6
π
2π
π
π
+√3.因为 0<B< ,所以- <2B6
3
6
6
7π
.
6
π
π
,即 B= 时,△ABC 面积取得最大值 3√3.
2
3
4.解 (1)在△ABC 中,因为 a=3,c=√2,B=45°,由余弦定理 b2=a2+c2-2accos B,得 b2=9+2
由正弦定理得,c2=a+b2.
因为 a=4,所以 b2=c2-4.
高中数学三角函数与解三角形多选题专题复习附答案

高中数学三角函数与解三角形多选题专题复习附答案一、三角函数与解三角形多选题1.在ABC 中,角,,A B C 所对的边分别为,,a b c ,下列命题正确的是( )A .若::4:5:6a b c =,ABC 的最大内角是最小内角的2倍B .若cos cos a B b A c -=,则ABC 一定为直角三角形 C .若4,5,6a b c ===,则ABCD .若()()()cos cos cos 1A B B C C A ---=,则ABC 一定是等边三角形 【答案】ABD 【分析】对于A 选项,求得2A C =,由此确定选项正确.对于B 选项,求得2A π=,由此确定选项正确.对于C 选项,利用正弦定理求得ABC 外接圆半径,由此确定选项错误.对于D 选项,证得()()()cos cos cos 1A B B C C A -=-=-=,得到A B C ==,确定选项正确. 【详解】对于A 选项,A 角最小,C 角最大.由余弦定理得253616453cos 0256604A +-===>⨯⨯,16253651cos 0245408C +-===>⨯⨯,2231cos 22cos 12148A A ⎛⎫=-=⨯-= ⎪⎝⎭,cos2cos A C =.0,022A C ππ<<<<,则02A π<<,所以2A C =,所以A 选项正确.对于B 选项,cos cos a B b A c -=,由正弦定理得sin cos sin cos sin A B B A C -=,()sin cos cos sin sin sin cos cos sin A B A B A B A B A B -=+=+,cos sin 0=A B ,由于0,0A B ππ<<<<,所以2A π=,故B 选项正确.对于C 选项,16253651cos 245408C +-===⨯⨯,0C π<<,sin C ==, 设三角形ABC 外接圆半径为R,则2sin 2sin c cR R C C=⇒===,故C 选项错误.对于D 选项,0,0,A B A B ππππ<<-<-<-<-<,故()1cos 1A B -<-≤,同理可得()()1cos 1,1cos 1B C C A -<-≤-<-≤, 要使()()()cos cos cos 1A B B C C A ---=, 则需()()()cos cos cos 1A B B C C A -=-=-=,所以0,0,0A B B C C A -=-=-=,所以A B C ==,所以D 选项正确. 故选:ABD 【点睛】利用正弦定理可求得三角形外接圆的半径R ,要注意公式是2sin aR A=,而不是sin aR A =.2.ABC 中,2BC =,BC 边上的中线2AD =,则下列说法正确的有( ) A .AB AC →→⋅为定值B .2210AC AB += C .co 415s A << D .BAD ∠的最大值为30【答案】ABD 【分析】A 利用向量的加减法及向量的数量积公式运算即可,B 根据余弦定理及角的互补运算即可求值,C 利用余弦定理及基本不等式求出cos A 范围即可,D 根据余弦定理及基本不等式求出cos BAD ∠的最小值即可. 【详解】 对于A ,22413AB AC AD DB AD DB AD DB →→→→→→→→⎛⎫⎛⎫⋅=+-=-=-= ⎪⎪⎝⎭⎝⎭,AB AC →→∴⋅为定值,A 正确; 对于B ,cos cos ADC ADB∠=-∠2222222cos 2cos AC AB AD DC AD DC ADC AD DB AD DB ADB ∴+=+-⋅⋅∠++-⋅⋅∠2222AD DB DC =++ 2221110=⨯++=,故B 正确;对于C ,由余弦定理及基本不等式得224242122b c bc cosA bc bc bc+--=≥=-(当且仅当b c =时,等号成立),由A 选项知cos 3bc A =,22cos cos 1133cos AA A∴≥-=-, 解得3cos 5A ≥,故C 错误; 对于D,2222213cos 4442c c BAD c c c +-+∠==≥=(当且仅当c =立),因为BAD ABD ∠<∠,所以(0,)2BAD π∠∈,又cos 2BAD ∠≥,所以BAD ∠的最大值30,D 选项正确. 故选:ABD 【点睛】本题主要考查了向量的数量积运算,余弦定理,基本不等式,考查了推理能力,属于难题.3.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且::4:5:6a b c =,则下列结论正确的是( )A .sin :sin :sin 4:5:6ABC = B .ABC 是钝角三角形C .ABC 的最大内角是最小内角的2倍D .若6c =,则ABC外接圆半径为7【答案】ACD 【分析】由正弦定理可判断A ;由余弦定理可判断B ;由余弦定理和二倍角公式可判断C ;由正弦定理可判断D. 【详解】解:由::4:5:6a b c =,可设4a x =,5b x =,6c x =,()0x >, 根据正弦定理可知sin :sin :sin 4:5:6A B C =,选项A 描述准确;由c 为最大边,可得2222221625361cos 022458a b c x x x C ab x x +-+-===>⋅⋅,即C 为锐角,选项B 描述不准确;2222222536163cos 22564b c a x x x A bc x x +-+-===⋅⋅,291cos 22cos 121cos 168A A C =-=⨯-==, 由2A ,C ()0,π∈,可得2A C =,选项C 描述准确;若6c =,可得2sin 7c R C===,ABC外接圆半径为7,选项D 描述准确. 故选:ACD. 【点睛】本题考查三角形的正弦定理和余弦定理,二倍角公式,考查化简运算能力,属于中档题.4.(多选题)已知22tan 2tan 10x y --=,则下列式子成立的是( ) A .22sin 2sin 1y x =+B .22sin 2sin 1y x =--C .22sin 2sin 1y x =-D .22sin 12cos y x =-【答案】CD 【分析】对原式进行切化弦,整理可得:222222sin cos 2sin cos cos cos x y y x y x ⋅-⋅=⋅,结合因式分解代数式变形可得选项. 【详解】∵22tan 2tan 10x y --=,2222sin sin 210cos cos x yx y-⋅-=, 整理得222222sin cos 2sin cos cos cos x y y x y x ⋅-⋅=⋅,∴()()()22222221cos 1sin sin cos cos sin cos x x y x y y x ---⋅=+, 即22222221cos sin sin cos sin cos cos x y y x y x x --+⋅-⋅=, 即222sin 12cos 2sin 1y x x =-=-,∴C 、D 正确. 故选:CD 【点睛】此题考查三角函数的化简变形,根据弦切关系因式分解,结合平方关系变形.5.已知2π-<θ2π<,且sin θ+cos θ=a ,其中a ∈(0,1),则关于tan θ的值,在以下四个答案中,可能正确的是( ) A .﹣3 B .13C .13-D .12-【答案】CD 【分析】先由已知条件判断cos 0θ>,sin 0θ<,得到sin 1tan 0cos θθθ-<=<,对照四个选项得到正确答案. 【详解】∵sin θ+cos θ=a ,其中a ∈(0,1),∴两边平方得:1+22sin cos =a θθ,∴21sin cos =02a θθ-<,∵22ππθ-<<,∴可得cos 0θ>,sin 0θ<,∴sin tan 0cos θθθ=<, 又sin θ+cos θ=a 0>,所以cos θ>﹣sin θ,所以sin tan 1cos θθθ=>-所以sin 1tan 0cos θθθ-<=<, 所以tan θ的值可能是13-,12-.故选:CD 【点睛】关键点点睛:求出tan θ的取值范围是本题解题关键.6.已知函数()()()sin 0,0,0πf x A x B A ωϕωϕ=++>><<的部分自变量、函数值如下表所示,下列结论正确的是( ).A .函数解析式为()5π3sin 226f x x ⎛⎫ ⎝=⎪⎭++ B .函数()f x 图象的一条对称轴为2π3x =- C .5π,012⎛⎫-⎪⎝⎭是函数()f x 图象的一个对称中心 D .函数()f x 的图象左平移π12个单位,再向下移2个单位所得的函数为奇函数 【答案】ABD 【分析】首先根据表格,利用最值求A 和B ,再根据周期求ω,以及根据最小值点求ϕ,求得函数的解析式,再分别代入23x π=-和512x π=-,判断BC 选项,最后根据平移规律求平移后的解析式. 【详解】由表格可知,2B =, 函数的最大值是5,所以25A B A +=+=,即3A =, 当3x π=时,函数取得最小值,最小值点和相邻的零点间的距离是71234πππ-=,所以12244ππωω⨯=⇒=,当3x π=时,322,32k k Z ππϕπ⨯+=+∈,解得:526k πϕπ=+,0ϕπ<<, 56πϕ∴=,所以函数()53sin 226f x x π⎛⎫=++ ⎪⎝⎭,故A 正确; B.当23x π=-时,252362πππ⎛⎫⨯-+=- ⎪⎝⎭,能使函数取得最小值,所以23x π=-是函数的一条对称轴,故B 正确; C.当512x π=-时,5520126ππ⎛⎫⨯-+= ⎪⎝⎭,此时2y =,所以5,212π⎛⎫- ⎪⎝⎭是函数的一个对称中心,故C 不正确; D.函数向左平移12π个单位后,再向下平移2个单位后,得()53sin 2223sin 23sin 2126y x x x πππ⎡⎤⎛⎫=+++-=+=- ⎪⎢⎥⎝⎭⎣⎦,函数是奇函数,故D 正确.故选:ABD 【点睛】思路点睛:本题考查()sin y A ωx φ=+的解析式和性质的判断,可以整体代入验证的方法判断函数性质:(1)对于函数()sin y A ωx φ=+,其对称轴一定经过图象的最高点或最低点,对称中心的横坐标一定是函数的零点,因此判断直线0x x =或点()0,0x 是否是函数的对称轴和对称中心时,可通过验证()0f x 的值进行判断;(2)判断某区间是否是函数的单调区间时,也可以求x ωϕ+的范围,验证次区间是否是函数sin y x =的增或减区间.7.函数()()()2sin 0,f x x ωϕωϕπ=+><的部分图象如图所示,则下列结论正确的是( )A .1()2sin 36f x x π⎛⎫=-⎪⎝⎭B .若把()f x 的横坐标缩短为原来的23倍,纵坐标不变,得到的函数在[],ππ-上是增函数C .若把函数()f x 的图像向左平移2π个单位,则所得函数是奇函数 D .函数()y f x =的图象关于直线4x π=-对称【答案】ACD 【分析】根据函数的图象求出函数的解析式,得选项A 正确; 求出213263x πππ--得到函数在[],ππ-上不是增函数,得选项B 错误;求出图象变换后的解析式得到选项C 正确; 求出函数的对称轴方程,得到选项D 正确. 【详解】 A, 如图所示:1732422T πππ=-=, 6T π∴=,∴2163πωπ==,(2)2f π=,∴2(2)2sin()23f ππϕ=+=,即2sin()13πϕ+=, ∴22()32k k Z ππϕπ+=+∈, ∴2()6k k Z πϕπ=-∈,||ϕπ<,∴6πϕ=-,∴1()2sin()36f x x π=-,故选项A 正确;B, 把()y f x =的横坐标缩短为原来的23倍,纵坐标不变,得到的函数12sin()26y x π=-,[x π∈-,]π,∴213263x πππ--,∴12sin()26y x π=-在[π-,]π上不单调递增,故选项B 错误;C, 把()y f x =的图象向左平移2π个单位,则所得函数12sin[()]2sin 3223xy x ππ=-+=,是奇函数,故选项C 正确; D, 设1,,32,362x k k Z x k πππππ-=+∈∴=+当24k x π=-⇒=-,所以函数()y f x =的图象关于直线4x π=-对称,故选项D 正确.故选:ACD 【点睛】方法点睛:求三角函数的解析式,一般利用待定系数法,一般先设出三角函数的解析式sin()y A wx k ,再求待定系数,,,A w k ,最值确定函数的,A k ,周期确定函数的w ,非平衡位置的点确定函数的φ.8.已知函数()()()2sin 0,0f x x ωϕωϕπ=+><<的部分图象如图所示,则下列说法正确的是( )A .23ϕπ=B .()f x 的最小正周期为πC .()f x 的图象关于直线12x π=对称D .()f x 的图象关于点5,06π⎛⎫⎪⎝⎭对称 【答案】BCD 【分析】利用图象,把(3代入求ϕ,利用周期求出2ω=,从而2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭,研究对称轴和对称中心. 【详解】由图可知2sin 3ϕ=3sin 2ϕ=,根据图象可知0x =在()f x 的单调递增区间上,又0ϕπ<<,所以3πϕ=,A 项错误;因为()2sin 3f x x πω⎛⎫=+⎪⎝⎭,所以结合图像,由五点法得33ωπππ+=,解得2ω=,则()f x 的最小正周期2T ππω==,B 项正确;将12x π=代入2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭,得2sin 21263f πππ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,所以()f x 的图象关于直线12x π=对称,C 项正确﹔将56x π=代入可得552sin 0633f πππ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,所以点5,06π⎛⎫ ⎪⎝⎭是()f x 图象的一个对称中心,D 项正确. 故选:BCD. 【点睛】求三角函数解析式的方法: (1)求A 通常用最大值或最小值; (2)求ω通常用周期;()求φ通常利用函数上的点带入即可求解.9.已知4παπ≤≤,32ππβ≤≤,4sin 25α=,cos()10αβ+=-,则( )A .cos 10α=- B .sin cos 5αα-=C .34πβα-= D .cos cos 5αβ=-【答案】BC 【分析】先根据4sin 25α=,判断角α的范围,再根据cos2α求cos α; 根据平方关系,判断sin cos αα-的值;利用公式cos()cos[()2]βααβα-=+-求值,并根据角的范围判断角βα-的值;利用公式()cos βα+和()cos βα-,联合求cos cos αβ.【详解】 ①因为4παπ≤≤,所以222παπ≤≤,又4sin 205α=>,故有22παπ≤≤,42ππα≤≤,解出2231cos 22cos 1cos cos 55αααα=-=-⇒=⇒=,故A 错误; ②()21sin cos 1sin 25ααα-=-=,由①知:42ππα≤≤,所以sin cos αα>,所以sin cos 5αα-=,故B 正确; ③由①知:42ππα≤≤,而32ππβ≤≤,所以524παβπ≤+≤,又cos()010αβ+=-<,所以5342ππαβ≤+≤,解得sin()αβ+=所以34cos()cos[()2]1051052βααβα⎛⎫⎛⎫-=+-=--+-⨯=- ⎪ ⎪ ⎪⎝⎭⎝⎭又因为5342ππαβ≤+≤,22ππα-≤-≤-, 所以4πβαπ≤-≤,有34πβα-=,故C 正确;④由cos()cos cos sin sin 1010αβαβαβ+=-⇒-=-,由③知,cos()cos cos sin sin 2βααβαβ-=+=-,两式联立得:cos cos 10αβ=-,故D 错误. 故选:BC 【点睛】关键点点睛:本题的关键是三角函数恒等变形的灵活应用,尤其是确定角的范围,根据三角函数值4sin 25α=,确定22παπ≤≤,且cos()010αβ+=-<,进一步确定5342ππαβ≤+≤,这些都是确定函数值的正负,以及角的大小的依据.10.已知函数)()lg1( 2.7)x x f x x e e e -=+-+≈⋯,若不等式(sin cos )2(sin 2)f f t θθθ+<--对任意R θ∈恒成立,则实数t 的可能取值为( )A .1BC .3D .4【答案】CD 【分析】令)()lgx x g x x e e -=+-,则()()1f x g x =+,可判断()g x 是奇函数且单调递增,不等式可变形可得(sin cos )(sin 2)g g t θθθ+<-,所以sin cos sin 2t θθθ>++,令()sin cos sin 2h θθθθ=++,换元法求出()h θ的最大值,()max t h θ>即可.【详解】令)()lg x x g x x e e -=+-,则()()1f x g x =+, ()g x 的定义域为R ,))()()lg lg x x x x g x g x x e e x e e ---+=+-++-0=, 所以()()g x g x -=-,所以()g x 是奇函数,不等式(sin cos )2(sin 2)f f t θθθ+<--等价于[](sin cos )1(sin 2)1f f t θθθ+-<---,即(sin cos )(sin 2)(sin 2)g g t g t θθθθ+<--=-,当0x >时y x =单调递增,可得)lg y x =单调递增, x y e =单调递增,x y e -=单调递减,所以)()lg x x g x x e e -=+-在()0,∞+单调递增,又因为)()lgx x g x x e e -=+-为奇函数,所以)()lg x x g x x e e -=+-在R 上单调递增,所以sin cos sin 2t θθθ+<-,即sin cos sin 2t θθθ>++,令()sin cos sin 2h θθθθ=++,只需()max t h θ>,令sin cos m θθ⎡+=∈⎣,则21sin 2m θ=+,2sin 21m θ=-,所以()21h m m m =+-,对称轴为12m =-,所以m =()max 211h m ==,所以1t >可得实数t 的可能取值为3或4,故选:CD【点睛】关键点点睛:本题解题的关键点是构造函数()g x 奇函数且是增函数,将原不等式脱掉f 转化为函数恒成立问题.。
专题05 三角函数与解三角形-高考数学(理)十年真题(2010-2019)分类汇编(解析版)

专题05三角函数与解三角形历年考题细目表题型年份考点试题位置单选题2019 三角函数2019年新课标1理科11 单选题2017 三角函数2017年新课标1理科09 单选题2016 三角函数2016年新课标1理科12 单选题2015 三角函数2015年新课标1理科02 单选题2015 三角函数2015年新课标1理科08 单选题2014 三角函数2014年新课标1理科08 单选题2012 三角函数2012年新课标1理科09 单选题2011 三角函数2011年新课标1理科05 单选题2011 三角函数2011年新课标1理科11 单选题2010 三角函数2010年新课标1理科09 填空题2018 三角函数2018年新课标1理科16 填空题2015 解三角形2015年新课标1理科16 填空题2014 解三角形2014年新课标1理科16 填空题2013 三角函数2013年新课标1理科15 填空题2011 解三角形2011年新课标1理科16 填空题2010 解三角形2010年新课标1理科16 解答题2019 解三角形2019年新课标1理科17 解答题2018 解三角形2018年新课标1理科17 解答题2017 解三角形2017年新课标1理科17 解答题2016 解三角形2016年新课标1理科17 解答题2013 解三角形2013年新课标1理科17 解答题2012 解三角形2012年新课标1理科17历年高考真题汇编1.【2019年新课标1理科11】关于函数f(x)=sin|x|+|sin x|有下述四个结论:①f(x)是偶函数②f(x)在区间(,π)单调递增③f(x)在[﹣π,π]有4个零点④f(x)的最大值为2其中所有正确结论的编号是()A.①②④B.②④C.①④D.①③【解答】解:f(﹣x)=sin|﹣x|+|sin(﹣x)|=sin|x|+|sin x|=f(x)则函数f(x)是偶函数,故①正确,当x∈(,π)时,sin|x|=sin x,|sin x|=sin x,则f(x)=sin x+sin x=2sin x为减函数,故②错误,当0≤x≤π时,f(x)=sin|x|+|sin x|=sin x+sin x=2sin x,由f(x)=0得2sin x=0得x=0或x=π,由f(x)是偶函数,得在[﹣π,)上还有一个零点x=﹣π,即函数f(x)在[﹣π,π]有3个零点,故③错误,当sin|x|=1,|sin x|=1时,f(x)取得最大值2,故④正确,故正确是①④,故选:C.2.【2017年新课标1理科09】已知曲线C1:y=cos x,C2:y=sin(2x),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【解答】解:把C1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=cos2x图象,再把得到的曲线向左平移个单位长度,得到函数y=cos2(x)=cos(2x)=sin(2x)的图象,即曲线C2,故选:D.3.【2016年新课标1理科12】已知函数f(x)=sin(ωx+φ)(ω>0,|φ|),x为f(x)的零点,x为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11 B.9 C.7 D.5【解答】解:∵x为f(x)的零点,x为y=f(x)图象的对称轴,∴,即,(n∈N)即ω=2n+1,(n∈N)即ω为正奇数,∵f(x)在(,)上单调,则,即T,解得:ω≤12,当ω=11时,φ=kπ,k∈Z,∵|φ|,∴φ,此时f(x)在(,)不单调,不满足题意;当ω=9时,φ=kπ,k∈Z,∵|φ|,∴φ,此时f(x)在(,)单调,满足题意;故ω的最大值为9,故选:B.4.【2015年新课标1理科02】sin20°cos10°﹣cos160°sin10°=()A.B.C.D.【解答】解:sin20°cos10°﹣cos160°sin10°=sin20°cos10°+cos20°sin10°=sin30°.故选:D.5.【2015年新课标1理科08】函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为()A.(kπ,kπ),k∈z B.(2kπ,2kπ),k∈zC.(k,k),k∈z D.(,2k),k∈z【解答】解:由函数f(x)=cos(ωx+ϕ)的部分图象,可得函数的周期为2()=2,∴ω=π,f(x)=cos(πx+ϕ).再根据函数的图象以及五点法作图,可得ϕ,k∈z,即ϕ,f(x)=cos(πx).由2kπ≤πx2kπ+π,求得2k x≤2k,故f(x)的单调递减区间为(,2k),k∈z,故选:D.6.【2014年新课标1理科08】设α∈(0,),β∈(0,),且tanα,则()A.3α﹣βB.3α+βC.2α﹣βD.2α+β【解答】解:由tanα,得:,即sinαcosβ=cosαsinβ+cosα,sin(α﹣β)=cosα=sin(),∵α∈(0,),β∈(0,),∴当时,sin(α﹣β)=sin()=cosα成立.故选:C.7.【2012年新课标1理科09】已知ω>0,函数f(x)=sin(ωx)在区间[,π]上单调递减,则实数ω的取值范围是()A.B.C.D.(0,2]【解答】解:法一:令:不合题意排除(D)合题意排除(B)(C)法二:,得:.故选:A.8.【2011年新课标1理科05】已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x 上,则cos2θ=()A.B.C.D.【解答】解:根据题意可知:tanθ=2,所以cos2θ,则cos2θ=2cos2θ﹣1=21.故选:B.9.【2011年新课标1理科11】设函数f(x)=sin(ωx+φ)+cos(ωx+φ)的最小正周期为π,且f(﹣x)=f(x),则()A.f(x)在单调递减B.f(x)在(,)单调递减C.f(x)在(0,)单调递增D.f(x)在(,)单调递增【解答】解:由于f(x)=sin(ωx+ϕ)+cos(ωx+ϕ),由于该函数的最小正周期为T,得出ω=2,又根据f(﹣x)=f(x),得φkπ(k∈Z),以及|φ|,得出φ.因此,f(x)cos2x,若x∈,则2x∈(0,π),从而f(x)在单调递减,若x∈(,),则2x∈(,),该区间不为余弦函数的单调区间,故B,C,D都错,A正确.故选:A.10.【2010年新课标1理科09】若,α是第三象限的角,则()A.B.C.2 D.﹣2【解答】解:由,α是第三象限的角,∴可得,则,应选A.11.【2018年新课标1理科16】已知函数f(x)=2sin x+sin2x,则f(x)的最小值是.【解答】解:由题意可得T=2π是f(x)=2sin x+sin2x的一个周期,故只需考虑f(x)=2sin x+sin2x在[0,2π)上的值域,先来求该函数在[0,2π)上的极值点,求导数可得f′(x)=2cos x+2cos2x=2cos x+2(2cos2x﹣1)=2(2cos x﹣1)(cos x+1),令f′(x)=0可解得cos x或cos x=﹣1,可得此时x,π或;∴y=2sin x+sin2x的最小值只能在点x,π或和边界点x=0中取到,计算可得f(),f(π)=0,f(),f(0)=0,∴函数的最小值为,故答案为:.12.【2015年新课标1理科16】在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是.【解答】解:方法一:如图所示,延长BA,CD交于点E,则在△ADE中,∠DAE=105°,∠ADE=45°,∠E=30°,∴设AD x,AE x,DE x,CD=m,∵BC=2,∴(x+m)sin15°=1,∴x+m,∴0<x<4,而AB x+m x x,∴AB的取值范围是(,).故答案为:(,).方法二:如下图,作出底边BC=2的等腰三角形EBC,B=C=75°,倾斜角为150°的直线在平面内移动,分别交EB、EC于A、D,则四边形ABCD即为满足题意的四边形;当直线移动时,运用极限思想,①直线接近点C时,AB趋近最小,为;②直线接近点E时,AB趋近最大值,为;故答案为:(,).13.【2014年新课标1理科16】已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sin A﹣sin B)=(c﹣b)sin C,则△ABC面积的最大值为.【解答】解:因为:(2+b)(sin A﹣sin B)=(c﹣b)sin C⇒(2+b)(a﹣b)=(c﹣b)c⇒2a﹣2b+ab﹣b2=c2﹣bc,又因为:a=2,所以:,△ABC面积,而b2+c2﹣a2=bc⇒b2+c2﹣bc=a2⇒b2+c2﹣bc=4⇒bc≤4所以:,即△ABC面积的最大值为.故答案为:.14.【2013年新课标1理科15】设当x=θ时,函数f(x)=sin x﹣2cos x取得最大值,则cosθ=.【解答】解:f(x)=sin x﹣2cos x(sin x cos x)sin(x﹣α)(其中cosα,sinα),∵x=θ时,函数f(x)取得最大值,∴sin(θ﹣α)=1,即sinθ﹣2cosθ,又sin2θ+cos2θ=1,联立得(2cosθ)2+cos2θ=1,解得cosθ.故答案为:15.【2011年新课标1理科16】在△ABC中,B=60°,AC,则AB+2BC的最大值为.【解答】解:设AB=cAC=bBC=a由余弦定理cos B所以a2+c2﹣ac=b2=3设c+2a=m代入上式得7a2﹣5am+m2﹣3=0△=84﹣3m2≥0 故m≤2当m=2时,此时a,c符合题意因此最大值为2另解:因为B=60°,A+B+C=180°,所以A+C=120°,由正弦定理,有2,所以AB=2sin C,BC=2sin A.所以AB+2BC=2sin C+4sin A=2sin(120°﹣A)+4sin A=2(sin120°cos A﹣cos120°sin A)+4sin Acos A+5sin A=2sin(A+φ),(其中sinφ,cosφ)所以AB+2BC的最大值为2.故答案为:216.【2010年新课标1理科16】在△ABC中,D为边BC上一点,BD DC,∠ADB=120°,AD=2,若△ADC的面积为,则∠BAC=.【解答】解:由△ADC的面积为可得解得,则.AB2=AD2+BD2﹣2AD•BD•cos120°,,则.故∠BAC=60°.17.【2019年新课标1理科17】△ABC的内角A,B,C的对边分别为a,b,c.设(sin B﹣sin C)2=sin2A ﹣sin B sin C.(1)求A;(2)若a+b=2c,求sin C.【解答】解:(1)∵△ABC的内角A,B,C的对边分别为a,b,c.设(sin B﹣sin C)2=sin2A﹣sin B sin C.则sin2B+sin2C﹣2sin B sin C=sin2A﹣sin B sin C,∴由正弦定理得:b2+c2﹣a2=bc,∴cos A,∵0<A<π,∴A.(2)∵a+b=2c,A,∴由正弦定理得,∴解得sin(C),∴C,C,∴sin C=sin()=sin cos cos sin.18.【2018年新课标1理科17】在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.【解答】解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5.∴由正弦定理得:,即,∴sin∠ADB,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB.(2)∵∠ADC=90°,∴cos∠BDC=sin∠ADB,∵DC=2,∴BC5.19.【2017年新课标1理科17】△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sin B sin C;(2)若6cos B cos C=1,a=3,求△ABC的周长.【解答】解:(1)由三角形的面积公式可得S△ABC ac sin B,∴3c sin B sin A=2a,由正弦定理可得3sin C sin B sin A=2sin A,∵sin A≠0,∴sin B sin C;(2)∵6cos B cos C=1,∴cos B cos C,∴cos B cos C﹣sin B sin C,∴cos(B+C),∴cos A,∵0<A<π,∴A,∵2R2,∴sin B sin C•,∴bc=8,∵a2=b2+c2﹣2bc cos A,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c∴周长a+b+c=3.20.【2016年新课标1理科17】△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.(Ⅰ)求C;(Ⅱ)若c,△ABC的面积为,求△ABC的周长.【解答】解:(Ⅰ)∵在△ABC中,0<C<π,∴sin C≠0已知等式利用正弦定理化简得:2cos C(sin A cos B+sin B cos A)=sin C,整理得:2cos C sin(A+B)=sin C,即2cos C sin(π﹣(A+B))=sin C2cos C sin C=sin C∴cos C,∴C;(Ⅱ)由余弦定理得7=a2+b2﹣2ab•,∴(a+b)2﹣3ab=7,∵S ab sin C ab,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC的周长为5.21.【2013年新课标1理科17】如图,在△ABC中,∠ABC=90°,AB,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB,求P A;(2)若∠APB=150°,求tan∠PBA.【解答】解:(I)在Rt△PBC中,,∴∠PBC=60°,∴∠PBA=30°.在△PBA中,由余弦定理得P A2=PB2+AB2﹣2PB•AB cos30°.∴P A.(II)设∠PBA=α,在Rt△PBC中,PB=BC cos(90°﹣α)=sinα.在△PBA中,由正弦定理得,即,化为.∴.22.【2012年新课标1理科17】已知a,b,c分别为△ABC三个内角A,B,C的对边,a cos C a sin C﹣b﹣c=0(1)求A;(2)若a=2,△ABC的面积为,求b,c.【解答】解:(1)由正弦定理得:a cos C a sin C﹣b﹣c=0,即sin A cos C sin A sin C=sin B+sin C∴sin A cos C sin A sin C=sin(A+C)+sin C,即sin A﹣cos A=1∴sin(A﹣30°).∴A﹣30°=30°∴A=60°;(2)若a=2,△ABC的面积,∴bc=4.①再利用余弦定理可得:a2=b2+c2﹣2bc•cos A=(b+c)2﹣2bc﹣bc=(b+c)2﹣3×4=4,∴b+c=4.②结合①②求得b=c=2.考题分析与复习建议本专题考查的知识点为:同角三角函数基本关系、诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形的综合应用等.历年考题主要以选择填空或解答题题型出现,重点考查的知识点为:诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形等.预测明年本考点题目会比较稳定,备考方向以同角三角函数基本关系、诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形的综合应用等为重点较佳.最新高考模拟试题1.函数2sin()(0,0)y x ωϕωϕπ=+><<的部分图象如图所示.则函数()f x 的单调递增区间为( )A .,63k k ππππ轾犏-+犏臌,k z ∈B .,33k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈C .,36k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈D .,66k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈【答案】C 【解析】根据函数2sin()(0,0)y x ωϕωϕπ=+><<的部分图象, 可得:332113441264T ππππω=⋅=-=, 解得:2ω=, 由于点,26π⎛⎫⎪⎝⎭在函数图象上,可得:2sin 226πϕ⎛⎫⨯+= ⎪⎝⎭,可得:2262k ππϕπ⨯+=+,k ∈Z ,解得:26k πϕπ=+,k ∈Z ,由于:0ϕπ<<, 可得:6π=ϕ,即2sin 26y x π⎛⎫=+ ⎪⎝⎭,令222262k x k πππππ-≤+≤+,k ∈Z 解得:36k x k ππππ-≤≤+,k ∈Z ,可得:则函数()f x 的单调递增区间为:,36k k ππππ⎡⎤-+⎢⎥⎣⎦,k ∈Z .故选C .2.将函数()2sin(2)3f x x π=+的图像先向右平移12π个单位长度,再向上平移1个单位长度,得到()g x 的图像,若()()129g x g x =且12,[2,2]x x ππ∈-,则122x x -的最大值为( ) A .4912π B .356π C .256π D .174π 【答案】C 【解析】由题意,函数()2sin(2)3f x x π=+的图象向右平移12π个单位长度,再向上平移1个单位长度,得到()2sin[2()]12sin(2)11236g x x x πππ=-++=++的图象, 若()()129g x g x =且12,[2,2]x x ππ∈-, 则()()123g x g x ==,则22,62x k k Z πππ+=+∈,解得,6x k k Z ππ=+∈,因为12,[2,2]x x ππ∈-,所以121157,{,,,}6666x x ππππ∈--, 当12711,66x x ππ==-时,122x x -取得最大值,最大值为711252()666πππ⨯--=, 故选C.3.将函数222()2cos4x f x ϕ+=(0πϕ-<<)的图像向右平移3π个单位长度,得到函数()g x 的图像,若()(4)g x g x π=-则ϕ的值为( )A .23-π B .3π-C .6π-D .2π-【答案】A 【解析】 因为222()2coscos()14x f x x ϕϕ+==++, 将其图像向右平移3π个单位长度,得到函数()g x 的图像, 所以()cos()13g x x πϕ=-++,又()(4)g x g x π=-,所以()g x 关于2x π=对称, 所以2()3k k Z ππϕπ-+=∈,即(2)()3k k Z πϕπ=+-∈,因为0πϕ-<<,所以易得23πϕ=-.故选A4.已知函数()sin()(0,0)f x x ωϕωϕπ=+><<的图象经过两点2(0,),(,0)24A B π, ()f x 在(0,)4π内有且只有两个最值点,且最大值点大于最小值点,则()f x =( ) A .sin 34x π⎛⎫+ ⎪⎝⎭B .3sin 54x π⎛⎫+⎪⎝⎭C .sin 74x π⎛⎫+⎪⎝⎭D .3sin 94x π⎛⎫+⎪⎝⎭【答案】D 【解析】根据题意可以画出函数()f x 的图像大致如下因为2(0)sin 2f ϕ==32,()4k k Z πϕπ=+∈ 又因为0ϕπ<<,所以34πϕ=,所以3()sin()4f x x πω=+, 因为3()sin()0444f πππω=+=,由图可知,3244k ππωππ+=+,解得18,k k Z ω=+∈, 又因为24T ππω=<,可得8ω>,所以当1k =时,9ω=, 所以3()sin(9)4f x x π=+, 故答案选D.5.已知函数()cos 3f x x x =-,则下列结论中正确的个数是( ). ①()f x 的图象关于直线3x π=对称;②将()f x 的图象向右平移3π个单位,得到函数()2cos g x x =的图象;③,03π⎛⎫- ⎪⎝⎭是()f x 图象的对称中心;④()f x 在,63ππ⎡⎤⎢⎥⎣⎦上单调递增. A .1 B .2C .3D .4【答案】A由题意,函数1()cos 2cos 2cos 23f x x x x x x π⎛⎫⎛⎫=-=-=+ ⎪ ⎪⎪⎝⎭⎝⎭, ①中,由22cos 133f ππ⎛⎫==-⎪⎝⎭不为最值,则()f x 的图象不关于直线3x π=对称,故①错; ②中,将()f x 的图象向右平移3π个单位,得到函数()2cos g x x =的图象,故②对; ③中,由2cos 023f π⎛⎫-== ⎪⎝⎭,可得,03π⎛⎫- ⎪⎝⎭不是()f x 图象的对称中心,故③错; ④中,由22,3k Z x k k ππππ-+≤∈≤,解得422,33k x k k Z ππππ-≤-∈≤,即增区间为42k ,2k ,33k Z ππππ⎡⎤--⎢⎥⎣⎦∈, 由22,3k x k k Z ππππ≤+≤+∈,解得22,233k x k k Z ππππ-≤≤+∈,即减区间为22,2,33k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,可得()f x 在,63ππ⎡⎤⎢⎥⎣⎦上单调递减,故④错. 故选:A .6.在ABC ∆中,角A 、B 、C 的对边长分别a 、b 、c ,满足()22sin 40a a B B -++=,b =则ABC △的面积为A .BC .D 【答案】C 【解析】把22(sin )40a a B B -++=看成关于a 的二次方程,则2224(sin )164(3cos 4)B B sin B cos B B B =-=++-V24(2cos 3)4(cos 222)cos B B B B B =+-=+- 4[2sin(2)2]06B π=+-…,故若使得方程有解,则只有△0=,此时6B π=,b =代入方程可得,2440a a -+=,由余弦定理可得,2428cos3022c c+-︒=⨯,解可得,c =∴111sin 2222ABC s ac B ∆==⨯⨯=故选:C .7.设锐角三角形ABC 的内角,,A B C 所对的边分别为,,a b c ,若2,2a B A ==,则b 的取值范围为( )A .(0,4)B .(2,C .D .4)【答案】C 【解析】由锐角三角形ABC 的内角,,A B C 所对的边分别为,,a b c ,若2,2a B A ==,∴ 022A π<<,3A B A +=,32A ππ∴<< 63A ππ∴<<,04A π<<cos 22A <<2,2a B A ==Q ,由正弦定理得12cos 2b b A a ==,即4cos b A =4cos A ∴<<则b 的取值范围为,故选C.8.已知V ABC 的内角,,A B C 所对的边分别为,,a b c ,若6sin cos 7sin2C A A =,53a b =,则C =( ). A .3πB .23π C .34π D .56π 【答案】B 【解析】由题意,因为672sinCcosA sin A =,可得:614sinCcosA sinAcosA =, 即(614)0sinC sinA cosA -⋅=,可得∴614sinC sinA =或0cosA =, 又由a b <,则A 为锐角,所以0cosA =不符合舍去, 又由正弦定理可得:37c a =,即:73a c =, 由余弦定理可得22222257133cos 52223a a a a b c C a ab a ⎛⎫⎛⎫+- ⎪ ⎪+-⎝⎭⎝⎭===-⎛⎫⋅ ⎪⎝⎭, ∵(0,)C π∈,∴23C π=. 故选:B .9.若函数()2sin()f x x ωϕ=+ (01ω<<,02πϕ<<)的图像过点,且关于点(2,0)-对称,则(1)f -=_______. 【答案】1 【解析】函数()()2sin f x x ωϕ=+的图像过点(2sin ϕ∴=sin ϕ=02πϕ<<Q 3πϕ∴=又函数图象关于点()2,0-对称 2sin 203πω⎛⎫∴-+= ⎪⎝⎭,即:23k πωπ-+=,k Z ∈126k πωπ∴=-+,k Z ∈01ω<<Q 6πω∴=()2sin 63f x x ππ⎛⎫∴=+⎪⎝⎭,()12sin 2sin 1636f πππ⎛⎫∴-=-+== ⎪⎝⎭本题正确结果:110.若实数,x y 满足()()()2221122cos 11x y xyx y x y ++--+-=-+.则xy 的最小值为____________【答案】1.4【解析】∵()()()2221122cos 11x y xyx y x y ++--+-=-+,∴10x y -+>, ()()()()2221121111111x y xyx y x y x y x y x y ++---++==-++-+-+-+Q()()11121211x y x y x y x y ∴-++≥-+⋅=-+-+,当且仅当11x y -+=时即=x y 时取等号()22cos 12x y +-≥Q ,当且仅当()1x y k k Z π+-=∈时取等号∴()()()2221122cos 12111x y xyx y x y x y ,即++--=+-=-+=-+且()1x y k k Z π+-=∈,即()12k x y k Z π+==∈, 因此21124k xy π+⎛⎫=≥⎪⎝⎭(当且仅当0k =时取等号), 从而xy 的最小值为1.411.设函数()sin(2)3f x x π=+,若120x x <,且12()()0f x f x +=,则21x x -的取值范围是_______.【答案】(3π,+∞) 【解析】不妨设120x x <<,则2121x x x x -=-,由图可知210()33x x ππ->--=.故答案为:(3π,+∞) 12.已知角α为第一象限角,sin cos a αα-=,则实数a 的取值范围为__________.【答案】(1,2] 【解析】由题得sin 2sin()3a πααα==+,因为22,,2k k k Z ππαπ<<+∈所以52++2,,336k k k Z ππππαπ<<+∈ 所以1sin()1,12sin()2233ππαα<+≤∴<+≤. 故实数a 的取值范围为(1,2]. 故答案为:(1,2]13.已知函数sin 2cos ()()(()0)f x x x ϕϕϕ+=+<<π-的图象关于直线x π=对称,则cos 2ϕ=___. 【答案】35【解析】因为函数sin 2cos ()()(()0)f x x x ϕϕϕ+=+<<π-的图象关于直线x π=对称,322f f ππ⎛⎫⎛⎫∴= ⎪⎪⎝⎭⎝⎭, 即cos 2sin cos 2sin ϕϕϕϕ+=--,即cos 2sin ϕϕ=-, 即1tan 2ϕ=-, 则22222211cos sin 1tan 34cos 21cos sin 1tan 514ϕϕϕϕϕϕϕ---====+++, 故答案为35.14.如图,四边形ABCD 中,4AB =,5BC =,3CD =,90ABC ∠=︒,120BCD ∠=°,则AD 的长为______【答案】65123-【解析】连接AC,设ACBθ∠=,则120ACDθ∠=-o,如图:故在Rt ABC∆中,sin4141θθ==,()131343cos120cos22224141241θθθ-=-+=-=oQ,又Q在ACD∆中由余弦定理有()(222413435cos1202341241ADθ+---==⨯⨯o,解得265123AD=-即65123AD=-65123-15.在锐角ABC∆中,角A B C,,的对边分别为a b c,,.且cos cosA Ba b+=23sin C23b=.则a c+的取值范围为_____.【答案】(6,3]【解析】cos cos233A B Ca b a+=Q23cos cos sin3b A a B C∴+=∴由正弦定理可得:23sin cos sin cos sinB A A B B C+=,可得:sin()sin sin A B C B C +==,sin B ∴=, 又ABC ∆为锐角三角形,3B π∴=,∴可得:sin sin 24(sin sin )4sin 4sin sin sin 3b A b C a c A C A A B B π⎛⎫+=+=+=+- ⎪⎝⎭3A π⎛⎫=- ⎪⎝⎭ 2,3A A π-Q 均为锐角,可得:,62636A A πππππ<<-<-<,(6,a c ∴+∈.故答案为: (6,.16.在ABC ∆中,已知AB 边上的中线1CM =,且1tan A ,1tan C ,1tan B成等差数列,则AB 的长为________.【解析】因为1tan A ,1tan C ,1tan B 成等差数列, 所以211tan tan tan C A B =+,即2cos cos cos sin()sin sin sin sin sin sin sin sin C A B A B CC A B A B A B+=+==, 所以2sin 2cos sin sin C C A B =,由正弦定理可得2cos 2c C ab=,又由余弦定理可得222cos 2a b c C ab +-=,所以222222a b c c ab ab+-=,故2222a b c +=, 又因为AB 边上的中线1CM =,所以1CM =u u u u v ,因为()12CM CA CB u u u u v u u u v u u u v=+, 所以22222422cos CM CA CB CA CB CA CB CA CB C =++⋅=++u u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r,即22224232c b a ab c ab=++⋅=,解c =即AB 的长为3.17.在ABC ∆中,A B C ,,的对边分别a b c ,,,60,cos A B ︒==(Ⅰ)若D 是BC 上的点,AD 平分BAC ∠,求DCBD的值; (Ⅱ)若 ccos cos 2B b C +=,求ABC ∆的面积. 【答案】(Ⅰ)4;【解析】(Ⅰ)因为cos 3B =,∴sin 3B =, ()1sin sin sin cos cos sin 2C A B A B A B =+=+==, 由正弦定理得sin sin sin AD BD AD B BAD C ==∠,sin DCCAD∠, 因为AD 平分BAC ∠,所以sin 4sin DC BBD C ===.(Ⅱ)由cos cos 2c B b C +=,即222222cos cos 222a c b a b c c B b C c b a ac ab+-+-+=⋅+⋅==,所以sin sin a b A B =,∴sin sin 3a Bb A ==,故11sin 222ABC S ab C ==⨯=V 18.在ABC ∆中,角,,A B C 所对的边分别,,a b c ,()()()()2sin cos sin f x x A x B C x R =-++∈,函数()f x 的图象关于点,06π⎛⎫⎪⎝⎭对称.(1)当0,2x π⎛⎫∈ ⎪⎝⎭时,求()f x 的值域;(2)若7a =且sin sin B C +=ABC ∆的面积.【答案】(1)⎛⎤⎥ ⎝⎦(2)【解析】(1)()()()2sin cos sin f x x A x B C =-++ ()2sin cos sin x A x A =-+=2sin()cos sin(())x A x x x A -+--=2sin()cos sin cos()sin()cos x A x x x A x A x -+--- =sin()cos sin cos()x A x x x A -+-()sin 2x A =-∵函数()f x 的图像关于点π,06⎛⎫⎪⎝⎭对称, ∴π06f ⎛⎫=⎪⎝⎭∴π3A =∴()πsin 23f x x ⎛⎫=-⎪⎝⎭∵()f x 在区间5π0,12⎛⎤ ⎥⎝⎦上是增函数,5ππ,122⎛⎫⎪⎝⎭上是减函数,且()0f =,5π112f ⎛⎫= ⎪⎝⎭,π2f ⎛⎫=⎪⎝⎭∴()f x 的值域为⎛⎤⎥ ⎝⎦(2)∵sin sin B C +=1313sin sin sin 1377B C A b c a ∴+=∴+=⨯= ∴13b c +=由余弦定理,2222cos a b c bc A =+- ∴40bc =∴1sinA 2ABC S bc ==V 19.在ABC ∆中,已知2AB =,cos 10B =,4C π=.(1)求BC 的长; (2)求sin(2)3A π+的值.【答案】(1)5BC =(2【解析】解:(1)因为cos B =,0B π<<,所以sin B ===在ABC ∆中,A B C π++=,所以()A B C π=-+, 于是sin sin(())sin()A B C B C π=-+=+4sin cos cos sin 1021025B C B C =+=⨯+⨯=. 在ABC ∆中,由正弦定理知sin sin BC AB A C=,所以4sin sin 552AB BC A C =⨯==. (2)在ABC ∆中,A B C π++=,所以()A B C π=-+, 于是cos cos(())cos()A B C B C π=-+=-+3(cos cos sin sin )5B C B C =--=-=⎝⎭,于是4324sin 22sin cos 25525A A A ==⨯⨯=, 2222347cos 2cos sin 5525A A A ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭.因此,sin 2sin 2cos cos 2sin 333A A A πππ⎛⎫+=+ ⎪⎝⎭ 24173247325225250-⎛⎫=⨯+-⨯= ⎪⎝⎭. 20.如图,在四边形ABCD 中,60A ∠=︒,90ABC ∠=︒.已知3AD =,6BD =.(Ⅰ)求sin ABD ∠的值;(Ⅱ)若2CD =,且CD BC >,求BC 的长.【答案】(Ⅰ)64(Ⅱ)1BC = 【解析】(Ⅰ)在ABD V 中,由正弦定理,得sin sin AD BD ABD A =∠∠. 因为60,3,6A AD BD ︒∠=== 所以36sin sin sin 6046AD ABD A BD ︒∠=⨯∠== (Ⅱ)由(Ⅰ)可知,6sin ABD ∠=, 因为90ABC ︒∠=,所以()6cos cos 90sin CBD ABD ABD ︒∠=-∠=∠=. 在BCD ∆中,由余弦定理,得2222cos CD BC BD BC BD CBD =+-⋅∠. 因为2,6CD BD ==所以264626BC BC =+-,即2320BC BC -+=,解得1BC =或2BC =.又CD BC >,则1BC =.21.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且234cos2sin 22A b b a B =+. (1)求cos A ;(2)若a =5c =,求b .【答案】(1) 3cos 5A =(2) 1b =或5. 【解析】解:(1)由题意知234cos 2sin 22A b b aB =+, 化简得4cos 3sin b A a B =,由正弦定理得4sin cos 3sin sin B A A B =, 因为sin 0B ≠, 所以4tan 3A =,且A 为ABC ∆的内角, 即3cos 5A =. (2)由余弦定理得2222cos a b c bc A =+-, 所以220256b b =+-,所以2650b b -+=,所以1b =或5.22.已知在△ABC 中,222a c ac b +-=. (Ⅰ)求角B 的大小;(Ⅱ)求cos cos A C +的最大值.【答案】(Ⅰ)3π;(Ⅱ)1. 【解析】 (Ⅰ)由余弦定理得2221cos ==222a cb ac B a c a c +-⋅=⋅⋅ 因为角B 为三角形内角3B π∴∠=(Ⅱ)由(Ⅰ)可得23A C B ππ∠+∠=-∠= 23A C π∴∠=-∠ cos cos A C ∴+=2cos cos 3C C π⎛⎫-+⎪⎝⎭ =22cos cos sin sin cos 33C C C ππ⋅+⋅+=1cos sin cos 2C C C -⋅++1sin cos 2C C +⋅ =cos sin sin cos 66C C ππ⋅+⋅ =sin 6C π⎛⎫+ ⎪⎝⎭ 203C π<<Q 5666C πππ∴<+< 1sin 126C π⎛⎫∴<+≤ ⎪⎝⎭ cos cos A C ∴+的最大值是1。
2023-2024学年高考数学专项复习——三角函数与解三角形(含答案)

决胜3.在中,角,,所对的边分别为,,,且,.ABC A B C a b c 23a c b +=3A C π-=(1)求;cos B (2)若,求的面积.5b =ABC 4.设()()()()πsin 2πcos 2cos sin πf ααααα⎛⎫++ ⎪⎝⎭=---(1)将化为最简形式;()f α(2)已知,求的值.()3f θ=-()sin 1sin2sin cos θθθθ++5.已知函数.()π1sin 232f x x ⎛⎫=-- ⎪⎝⎭(1)求函数的单调递增区间,并解不等式;()f x ()0f x ≥(2)关于的方程在上有两个不相等的实数解,求实数的取x 11022m f x +⎛⎫+= ⎪⎝⎭[]0,πx ∈12,x x m 值范围及的值.()12f x x +6.已知角为第四象限角,且角的终边与单位圆交于点.αα1,3P y ⎛⎫ ⎪⎝⎭(1)求的值;sin α(2)求的值.()πtan sin 2sin cos παααα⎛⎫+ ⎪⎝⎭+7.在平面直角坐标系中,角以为始边,它的终边与单位圆交于第二象限内的点xOy αOx .(),P x y (1)若,求及的值;255y =tan α7sin 2cos sin 4cos αααα+-(2)若,求点P 的坐标.sin 11cos 2αα=-(1)若,求;3BC =ADCD (2)若,求线段的长11cos 14A =AD(1)求函数在区间上的最大值和最小值;()f x ππ[,]64-(2)若函数在区间上恰有2个零点,求的值.5()()4g x f x =-π(0,)212,x x 12cos()x x -11.在中,,点D 在AB 边上,且为锐角,,的面积为ABC 25BC =BCD ∠2CD =BCD △4.(1)求的值;cos BCD ∠(2)若,求边AC 的长.30A =︒12.记三个内角的对边分别为,已知为锐角,ABC ,,A B C ,,a b c B .sin sin sin 2sin sin a A b B c C a A B +-=(1)求;()sin A C -(2)求的最小值.sin sin A B 13.已知函数且的最小正周期为.()πsin 23f x x ω⎛⎫=+ ⎪⎝⎭()f x π(1)求函数的单调递减区间;()f x (2)若,求x 的取值范围.()22f x ≤14.已知函数在上单调递增.()sin (0)f x x ωω=>ππ,34⎡⎤-⎢⎥⎣⎦(1)求的取值范围:ω(2)当取最大值时,将的图象向左平移个单位,再将图象上所有点的横坐标变为原来ω()f x π9的3倍,得到的图象,求在内的值域.()g x ()g x ππ,32⎡⎤-⎢⎥⎣⎦15.在中,角所对的边分别为,已知.ABC ,,A B C ,,a b c sin cos cos cos cos sin sin A B C B C A B +=--(1)求;C (2)若外接圆的半径为,求的面积最大值.ABC 233ABC 16.已知函数.()()πe e sin ,32x xf x xg x --==(1)若,求;321π3f α⎛⎫+= ⎪⎝⎭32πf α⎛⎫- ⎪⎝⎭(2)设函数,证明:在上有且仅有一个零点,且()()ln h x x f x =+()h x ()0,∞+0x .()()034g f x >-17.在平面直角坐标系中,角的顶点与原点重合,始边与轴的非负半轴重合,终xOy αO x 边与单位圆交于第三象限点.525,55P ⎛⎫-- ⎪⎝⎭(1)求的值;sin cos αα-(2)若角的终边绕原点按逆时针方向旋转,与单位圆交于点,求点的坐标.αO π2Q Q 18.设函数,且.2()2cos 23sin cos (0)f x x x x m ωωωω=++>(0)1f =(1)求的值;m (2)再从条件①、条件②、条件③这三个条件中选择一个作为已知,使函数存在,求()f x 的值及的零点.ω()f x 条件①:是奇函数;()f x 条件②:图象的两条相邻对称轴之间的距离是;()f x π条件③:在区间上单调递增,在区间上单调递减.()f x π0,6⎡⎤⎢⎥⎣⎦ππ,63⎡⎤⎢⎥⎣⎦注:如果选择的条件不符合要求,第(2)问得分;如果选择多个符合要求的条件分别解答,0按第一个解答计分.答案:1.(1)1-(2)12-【分析】(1)根据点坐标求得.P tan α(2)根据点坐标求得,利用诱导公式求得正确答案.P sin ,cos αα【详解】(1)即,3π,cos π3sin 44P ⎛⎫ ⎪⎝⎭22,22P ⎛⎫- ⎪ ⎪⎝⎭所以.22tan 122α-==-(2)由(1)得,所以,22,22P ⎛⎫- ⎪ ⎪⎝⎭22222sin 22222α-==-⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭,22222cos 22222α==⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭()1617πsin πsin πsin sin 808π22αααα⎛⎫⎛⎫-+=++ ⎪ ⎪⎝⎭⎝⎭πsin sin sin cos 2αααα⎛⎫=+= ⎪⎝⎭.221222⎛⎫=-⨯=- ⎪ ⎪⎝⎭2.(1),1tan 7α=1tan 3β=(2)π4【分析】(1)先根据同角三角函数平方关系求出,再根据商数关系和两角和正切公式cos α化简得结果;(2)根据二倍角公式得,,再根据两角和余弦公式得,最后根据sin 2,cos 2ββ()cos 2αβ+范围求结果.【详解】(1)因为为锐角,,所以,,αβ2sin 10α=272cos 1sin 10αα=-=所以,2sin 110tan cos 77210ααα===又因为,所以,tan tan 1tan()1tan tan 2αβαβαβ++==-1tan 3β=(2)因为为锐角,,所以,解得,,αβ1tan 3β=22sin 1cos 3sin cos 1ββββ⎧=⎪⎨⎪+=⎩10sin 10310cos 10ββ⎧=⎪⎪⎨⎪=⎪⎩所以,sin 22sin cos 103103101052βββ==⨯=⨯,24cos 212sin 5ββ=-=所以,()724232cos 2cos cos 2sin sin 21051052αβαβαβ+=-=⨯-⨯=又因为为锐角,所以,,αβ3π022αβ<+<所以.π24αβ+=3.(1)78(2)111512【分析】(1)根据已知条件,利用正弦定理化为,结合23a c b +=sin sin 23sin A C B +=已知条件,有,,代入解三角形即可.3A C π-=32B C π=-232B A π=-sin sin 23sin A C B +=(2)根据(1)终结论,利用余弦定理,结合,,解得,利用面5b =23a c b +=443ac =积公式即可求得面积为.11115sin 212ABC S ac B ==△【详解】(1)因为,所以由正弦定理得,23a c b +=sin sin 23sin A C B +=因为,且,所以,,3A C π-=A B C π++=32B C π=-232B A π=-所以2sin sin 23sin 3232B B B ππ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭即,22sin cos cos sin sin cos cos sin 23sin 32323232B B B B B ππππ-+-=所以,所以,3cos 23sin 2B B =cos 4sin cos 222B B B =因为,所以,所以;022B π<<1sin 24B =27cos 12sin 28B B =-=(2)由余弦定理可得,2222cos b a c ac B =+-即,得,得,()27524a c ac ac =+--()2155234b ac =-443ac =因为,所以,所以7cos 8B =15sin 8B =11115sin 212ABC S ac B ==△4.(1)tan α-(2)65【分析】(1)根据三角函数的诱导公式,结合同角三角函数的商式关系,可得答案;(2)利用正弦函数的二倍角公式以及同角三角函数的平方式,整理齐次式,可得答案.【详解】(1).()()()()πsin 2πcos sin sin 2tan cos sin πcos sin f αααααααααα⎛⎫++ ⎪-⎝⎭===----(2)由,则,()tan 3f θθ=-=-tan 3θ=,()()()()()22222sin 1sin2sin (sin cos )tan (tan 1)sin cos sin cos sin cos tan 1tan 1θθθθθθθθθθθθθθθ+++==+++++.()()2223(31)34641053131⨯+⨯===⨯+⨯+5.(1)答案见解析(2)(()1212,3,2f x x ⎤--+=-⎦【分析】(1)由题意分别令,πππ2π22π,Z 232k x k k -+≤-≤+∈,解不等式即可得解.ππ5π2π22π,Z 366k x k k +≤-≤+∈(2)由题意得在上有两个不相等的实数解,结合三角()π2sin 3m x g x ⎛⎫=--= ⎪⎝⎭[]0,πx ∈12,x x 函数单调性、最值即可求出的取值范围,结合对称性代入求值即可得的值.m ()12f x x +【详解】(1)由题意令,解得,πππ2π22π,Z 232k x k k -+≤-≤+∈π5πππ,Z 1212k x k k -+≤≤+∈即函数的单调递增区间为,()f x ()π5ππ,π,Z 1212k k k ⎡⎤-++∈⎢⎥⎣⎦令,所以,()π1sin 2032f x x ⎛⎫=--≥ ⎪⎝⎭π1sin 232x ⎛⎫-≥ ⎪⎝⎭所以,解得,ππ5π2π22π,Z 366k x k k +≤-≤+∈π7πZ 412ππ,k x k k +≤≤+∈所以不等式的解集为.()0f x ≥()π7ππ,π,Z 412k k k ⎡⎤++∈⎢⎥⎣⎦(2)由题意即,11022m f x +⎛⎫+= ⎪⎝⎭πsin 032m x ⎛⎫-+= ⎪⎝⎭即在上有两个不相等的实数解,()π2sin 3m x g x ⎛⎫=--= ⎪⎝⎭[]0,πx ∈12,x x 当时,,而在上单调递减,在上单[]0,πx ∈ππ2π,333t x ⎡⎤=-∈-⎢⎥⎣⎦2sin y t =-ππ,32⎡⎤-⎢⎥⎣⎦π2π,23⎡⎤⎢⎥⎣⎦调递增,所以当即时,,ππ32t x =-=5π6x =()min 2g x =-当即时,,ππ33t x =-=-0x =()max 3g x =又即时,,π2π33t x =-=πx =()3g x =-所以若在上有两个不相等的实数解,()π2sin 3m x g x ⎛⎫=--= ⎪⎝⎭[]0,πx ∈12,x x 则实数的取值范围为,m (2,3⎤--⎦因为,所以是的对称轴,()min 5π26g x g ⎛⎫==- ⎪⎝⎭5π6x =()g x所以.()125π5ππ112sin 263322f x x f ⎛⎫⎛⎫+=⨯=⨯--=- ⎪ ⎪⎝⎭⎝⎭6.(1)223-(2)3-【分析】(1)将点代入单位圆后结合任意角三角函数定义求解即可.(2)利用诱导公式化简求值即可.【详解】(1)在单位圆中,解得,22113y ⎛⎫+= ⎪⎝⎭223y =±因为第四象限角,所以α223y =-22sin 3α∴=-(2)第四象限角22sin ,3αα=-1cos 3α∴=.()πtan sin 123sin cos πcos ααααα⎛⎫+ ⎪⎝⎭∴=-=-+7.(1),;2-2(2).34(,)55-【分析】(1)根据给定条件,求出点的坐标及,再利用齐次式法计算即得.P tan α(2)利用同角公式,结合三角函数定义求解即得.【详解】(1)角以Ox 为始边,它的终边与单位圆交于第二象限内的点,α(),P x y 当时,,则,255y =22551()55x =--=-tan 2y x α==-所以.7tan 27(2)227ta 4sin 2cos sin 42c 4os n αααααα+⨯-++==---=-(2)依题意,,sin 0,cos 0αα><由,得,代入,sin 11cos 2αα=-cos 12sin αα=-22sin cos 1αα+=于是,解得,22sin (12sin )1αα+-=2sin ,cos 1sin 5543ααα==--=-即,所以点P 的坐标为.34,55x y =-=34(,)55-8.(1);π3A =(2).2AD =【分析】(1)由正弦定理化边为角,然后由三角恒等变换求解;(2)设,利用由余弦定理求得,从而由正弦定理求得AD x =πADB ADC ∠+∠=cos ADB ∠(用表示),再代入余弦定理的结论中求得值.AC x x 【详解】(1)由正弦定理及已知得2cos cos cos 2c a A B b A =-,sin 2sin cos cos sin cos 2sin 2cos sin cos 2sin(2)C A A B B A A B B A A B =-=-=-或,C 2A B =-2πC A B +-=又,所以,A B ≤22πC A B C B B C B +-≤+-=+<所以,从而,所以;C 2A B =-2πB C A A +==-π3A =(2)由余弦定理得,,2222cos AB BD AD AD BD ADB =+-⋅∠,2222cos AC CD AD AD CD ADC =+-⋅∠又是角平分线,所以,又,则,记,因为AD 2AC CD AB BD ==3a =2,1CD BD ==AD x =,πADB ADC ∠+∠=所以,所以,2244cos 412cos x x ADC x x ADC +-∠=++∠cos 4x ADC ∠=-,则,0πADC <∠<2sin 116x ADC ∠=-由正弦定理得,sin sin AC CD ADC CAD =∠∠所以,222116π16sin 6x AC x =⋅-=-所以,解得,即.221644()4x x x x -=+-⋅-2x =2AD =9.(1)263(2)677【分析】(1)利用正弦定理及其余弦定理求解;(2)利用三角形的面积公式求解.【详解】(1)因为平分,,故,AD BAC ∠3AB BC ==2C BAC θ∠=∠=在中,由正弦定理知:,ADC △sin sin 22cos sin sin AD ACD CD DAC θθθ∠===∠由余弦定理有,2222223231cos 2cos 22323CA CB BA C CA CB θ+-+-====⋅⨯⨯又因为,所以,21cos 22cos 13θθ==-6cos 3θ=即;262cos 3AD CDθ==(2)由,得,则,11cos 14A =11cos 214θ=cos 2157cos 214θθ+==又由,()11sin 2sin 22ABC ABD ACD S AB AC S S AB AC AD θθ=⋅=+=+△△△得.()sin 21267cos sin 57AB AC AD AB AC θθθ⋅===+10.(1)最大值和最小值分别为;2,1-(2).58【分析】(1)求出函数的解析式,再利用余弦函数的性质求解即得.()f x (2)利用余弦函数图象的对称性,结合诱导公式计算.12cos()x x -【详解】(1)由函数的最小正周期为,得,解得,()f x π2ππω=π2,()2cos(2)3x f x ω==-当时,,则当,即时,,ππ[,]64x ∈-π2ππ2[,]336x -∈-π2π233x -=-π6x =-min ()1f x =-当,即时,,π203x -=π6x =max ()2f x =所以函数在区间上的最大值和最小值分别为.()f x ππ[,]64-2,1-(2)()2222252cos 25222525BD BC CD BC CD BCD =+-⨯∠=+-⨯⨯⨯,故,204816=+-=4BD =有,故,22216420BD CD BC +=+==CD AB ⊥则,即.21sin sin 302CD A AC AC ==︒==4AC =12.(1);()sin 1A C -=(2)无最小值;【分析】(1)利用正弦定理和余弦定理可得,结合为锐角可得,所sin cos A C =B π2A C =+以;()sin 1A C -=(2)利用诱导公式可得,再由导数判断出在3sin sin 2sin sin A B A A =-()32f t t t =-上单调递增,可得无最小值;2,12t ⎛⎫∈ ⎪ ⎪⎝⎭sin sin A B 【详解】(1)因为,sin sin sin 2sin sin a A b B c C a A B +-=由正弦定理得,2222sin a b c ab A +-=由余弦定理可得,2222cos a b c ab C +-=所以可得,解得或;sin cos A C =π2A C =-π2A C =+又为锐角,所以(舍),即,B π2A C =-π2A C =+因此;()πsin sin12A C -==(2)结合(1)中,又可得:π2A C =+πA B C ++=;33πsin sin sin sin 2sin cos 22sin sin 2A B A A A A A A ⎛⎫=-=-=- ⎪⎝⎭令,则,sin t A =()3sin sin 2A B f t t t ==-又为锐角,,所以,B 3ππ20,22A ⎛⎫-∈ ⎪⎝⎭π3π24A <<可得,212t <<所以,当时,恒成立,()261f t t '=-212t <<()2610f t t '=->即可得为单调递增,()32f t t t =-所以时,,所以无最值;2,12t ⎛⎫∈ ⎪ ⎪⎝⎭()()0,1f t ∈()f t 因此无最小值;sin sin A B 13.(1)答案见解析(2)答案见解析【分析】(1)根据最小正周期为求得,求出单调递减区间;π=1ω±(2)根据写出x 的取值范围.()22f x ≤【详解】(1)因为的周期为,()πsin 23f x x ω⎛⎫=+ ⎪⎝⎭π故,所以.2ππ2ω==1ω±当时,,=1ω()πsin 23f x x ⎛⎫=+ ⎪⎝⎭由,得到,ππ3π2π22π232k x k +≤+≤+π7πππ1212k x k +≤≤+故的递减区间为.()f x π7ππ,π,Z 1212k k k ⎡⎤++∈⎢⎥⎣⎦当时,,1ω=-()ππsin 2sin 233f x x x ⎛⎫⎛⎫=-+=-- ⎪ ⎪⎝⎭⎝⎭由,得到πππ2π22π232k x k -+≤-≤+π5πππ1212k x k -+≤≤+故的递减区间为.()f x π5ππ,π,Z 1212k k k ⎡⎤-++∈⎢⎥⎣⎦(2)当时,,=1ω()π2sin 232f x x ⎛⎫=+≤ ⎪⎝⎭所以,5πππ2π22π434k x k -+≤+≤+解得.19ππππ,Z 2424k x k k -+≤≤-+∈当时,,1ω=-()ππ2sin 2sin 2332f x x x ⎛⎫⎛⎫=-+=--≤ ⎪ ⎪⎝⎭⎝⎭即,π2sin 232x ⎛⎫-≥- ⎪⎝⎭所以,ππ5π2π22π434k x k -+≤-≤+解得.π19πππ2424k x k +≤≤+综上:当时,;=1ω19ππππ2424k x k -+≤≤-+当时,.1ω=-π19πππ,Z 2424k x k k +≤≤+∈14.(1)302ω<≤(2)260,4⎡⎤+⎢⎥⎣⎦【分析】(1)由题设条件,列出不等式,求解即可.,32πππ4π2ωω-≥-≤(2)根据函数图像平移变换,写出函数,再结合区间和三角函数性质求1π()sin 26g x x ⎛⎫=+ ⎪⎝⎭出值域.【详解】(1)由,得 ,ππ,34x ⎡⎤∈-⎢⎥⎣⎦ππ,34x ωωω⎡⎤∈-⎢⎥⎣⎦又函数在上单调递增,()sin (0)f x x ωω=>ππ,34⎡⎤-⎢⎥⎣⎦所以,解得,32πππ4π2ωω-≥-≤32ω≤因为,所以.0ω>302ω<≤(2)由(1)知的最大值为,此时,ω323()sin 2f x x =根据题意,,31π1π()sin sin 23926g x x x ⎡⎤⎛⎫⎛⎫=+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦当时,.ππ,32x ⎡⎤∈-⎢⎥⎣⎦1πππ02664x ≤+≤+所以,故值域为.ππ260()sin 644g x +⎛⎫≤≤+= ⎪⎝⎭260,4⎡⎤+⎢⎥⎣⎦15.(1)π3C =(2)3【分析】(1)利用正弦定理、三角恒等变换计算即可.(2)利用正余弦定理、三角形面积公式及基本不等式计算即可.【详解】(1)由已知可得:,222sin sin sin cos cos A A B B C -=-∴,()222sin sin sin 1sin 1sin A A B B C -=---∴,222sin sin sin sin sin A B C A B +-=根据正弦定理可知:,222a b c ab +-=∴.2221cos 22a b c C ab +-==又.π(0,π),3C C ∈∴=(2)∵外接圆的半径为,ABC 233r =∴,解得.432sin 3c r C==2c =又由(1)得,222a b c ab +-=故,∴,当且仅当时等号成立22424a b ab ab +-=≥-4ab ≤2a b ==∴,13sin 324ABC S ab C ab ==≤△∴的面积最大值为.ABC 316.(1)23(2)证明见解析【分析】(1)化简已知条件求得,利用诱导公式求得.πsin 3α⎛⎫+ ⎪⎝⎭32πf α⎛⎫- ⎪⎝⎭(2)先求得的表达式,然后对进行分类讨论,结合零点存在性定理证得在()h x x ()h x 上有且仅有一个零点,求得的表达式,然后利用函数的单调性证得不等()0,∞+0x()()0g f x 式成立.()()034g f x >-【详解】(1)由,则,321π3f α⎛⎫+= ⎪⎝⎭π2sin 33α⎛⎫+= ⎪⎝⎭所以32π2sin π3f αα⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭.ππ2sin πsin 333αα⎡⎤⎛⎫⎛⎫=-+=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦(2)证明:由题意得.()πln sin 3h x x x =+①当时,,所以单调递增.30,2x ⎛⎤∈ ⎥⎝⎦ππ0,32x ⎛⎤∈ ⎥⎝⎦()h x 又,由于,而,1πsin ln226h ⎛⎫=- ⎪⎝⎭π1sin 62=1ln2ln e 2>=所以.又,102h ⎛⎫< ⎪⎝⎭()3102h =>所以由零点存在定理得在内有唯一零点,使得.()h x 30,2⎛⎤ ⎥⎝⎦0x ()00h x =当时,,所以,则在上无零点;3,32x ⎛⎤∈ ⎥⎝⎦πln 0,sin 03x x >≥()0h x >()h x 3,32⎛⎤ ⎥⎝⎦当时,,所以,则在上无零点.()3,x ∈+∞πln 1,1sin 13x x >-≤≤()0h x >()h x ()3,+∞综上,在上有且仅有一个零点.()h x ()0,∞+0x ②由①得,且,0112x <<()00ln 0x f x +=则.()()()()00000011ln ,ln 2f x x g f x g x x x ⎛⎫=-=-=- ⎪⎝⎭由函数的单调性得函数在上单调递增,()000112x x x ϕ⎛⎫=-⎪⎝⎭1,12⎛⎫ ⎪⎝⎭则,()01324x ϕϕ⎛⎫>=- ⎪⎝⎭故.()()034g f x >-求解已知三角函数值求三角函数值的问题,可以考虑利用诱导公式等三角恒等变换的公式来进行求解.判断函数零点的个数,除了零点存在性定理外,还需要结合函数的单调性来进行判断.17.(1)55-(2)255,55⎛⎫- ⎪ ⎪⎝⎭【分析】(1)直接根据三角函数的定义求解;(2)利用诱导公式求出旋转后的角的三角函数值即可.【详解】(1)由三角函数的定义可得,5sin c 5o 255s αα-=-=,所以;5s 5in 5c 2os 555αα⎛⎫--=- ⎪ ⎪⎝⎭-=-(2)角的终边绕原点O 按逆时针方向旋转,得到角,απ2π2α+则,,π5sin cos 25αα⎛⎫+==- ⎪⎝⎭π25cos sin 25αα⎛⎫+=-= ⎪⎝⎭所以点Q 的坐标为.255,55⎛⎫- ⎪ ⎪⎝⎭18.(1)1m =-(2)选择①,不存在;选择②,,;选择③,,12ω=ππ,Z 6k k -+∈1ω=ππ,Z 122k k -+∈【分析】(1)利用二倍角公式以及辅助角公式化简函数,根据,即可求解;(0)1f =(2)根据奇函数性质、三角函数图象的性质以及三角函数的单调性,即可逐个条件进行判断和求解.【详解】(1)2()2cos 23sin cos f x x x x m ωωω=++,πcos 23sin212sin 216x x m x m ωωω⎛⎫=+++=+++ ⎪⎝⎭又,所以.1(0)2112f m =⨯++=1m =-(2)由(1)知,,()π2sin 26f x x ω⎛⎫=+ ⎪⎝⎭选择①:因为是奇函数,()f x 所以与已知矛盾,所以不存在.()00f =()f x 选择②:因为图象的两条相邻对称轴之间的距离是,()f x π所以,,,π2T =2πT =2π21T ω==12ω=则,()π2sin 6f x x ⎛⎫=+ ⎪⎝⎭令,()π2sin 06f x x ⎛⎫=+= ⎪⎝⎭解得.ππ,Z 6k x k -+∈=即零点为.()f x ππ,Z 6k k -+∈选择③:对于,,()π2sin 26f x x ω⎛⎫=+ ⎪⎝⎭0ω>令,,πππ2π22π,Z 262k x k k ω-+≤+≤+∈ππ3π2π22π,Z 262k x k k ω+≤+≤+∈解得,,ππππ,Z 36k k x k ωωωω-+≤≤+∈ππ2ππ,Z 63k k x k ωωωω+≤≤+∈即增区间为,()f x ππππ,,Z 36k k k ωωωω⎡⎤-++∈⎢⎥⎣⎦减区间为,()f x ππ2ππ,,Z 63k k k ωωωω⎡⎤++∈⎢⎥⎣⎦因为在区间上单调递增,在区间上单调递减,()f x π0,6⎡⎤⎢⎥⎣⎦ππ,63⎡⎤⎢⎥⎣⎦所以时符合,0k =即在上单调递增,在上单调递减,()f x ππ,36ωω⎡⎤-⎢⎥⎣⎦π2π,63ωω⎡⎤⎢⎥⎣⎦所以且,π03ππ66ωω⎧-≤⎪⎪⎨⎪≥⎪⎩2ππ33ππ66ωω⎧≥⎪⎪⎨⎪≤⎪⎩解得,则,1ω=()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭所以令,()π2sin 206f x x ⎛⎫=+= ⎪⎝⎭解得,ππ,Z 122k x k =-+∈即零点为.()f x ππ,Z 122k k -+∈。
解三角形与三角函数题型综合训练(典型例题+跟踪训练)【解答题抢分专题】备战2023年高考数学

【解答题抢分专题】备战2023年高考数学解答题典型例题+跟踪训练(新高考通用)专题08解三角形与三角函数题型综合训练1.正弦定理R CcB b A a 2sin sin sin ===.(其中R 为ABC ∆外接圆的半径)2sin ,2sin ,2sin ;a R A b R B c R C ⇔===(边化角)sin ,sin ,sin ;222a b c A B C R R R⇔===(角化边)2.余弦定理:222222222cos 2cos 2cos .2b c a A bc a c b B ac a b c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩⇒2222222222cos ,2cos ,2cos .a b c bc A b a c ac B c a b ab C ⎧=+-⎪=+-⎨⎪=+-⎩3.三角形面积公式:B ac A bcC ab S ABC sin 21sin 21sin 21===∆=12++为三角形ABC 的内切圆半径4.三角形内角和定理:在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A Bπ+⇔=-222()C A B π⇔=-+.5.二倍角的正弦、余弦、正切公式①αααcos sin 22sin =②ααα22sin cos 2cos -=1cos 22-=αα2sin 21-=升幂公式:221cos 22cos 1cos 22sin αααα⎧+=⎪⎨-=⎪⎩降幂公式:221cos (1cos 2)21sin (1cos 2)2αααα=+=-⎧⎪⎨⎪⎩③ααα2tan 1tan 22tan -=.6.辅助角公式22sin cos sin()a x b x a b x ϕ±=+±,(其中tan baϕ=);一、梳理必备知识求()sin()f x A x B ωϕ=++解析式,A B 求法方法一:代数法maxmin()()A B f x A B f x +=⎧⎨-+=⎩方法二:读图法B 表示平衡位置;A 表示振幅ω求法方法一:图中读出周期T ,利用2T πω=求解;方法二:若无法读出周期,使用特殊点代入解析式但需注意根据具体题意取舍答案.ϕ求法方法一:将最高(低)点代入()sin()f x A x B ωϕ=++求解;方法二:若无最高(低)点,可使用其他特殊点代入()sin()f x A x B ωϕ=++求解;但需注意根据具体题意取舍答案.7.三角形中线问题如图在ABC ∆中,D 为CB 的中点,2AD AC AB =+,然后再两边平方,转化成数量关系求解!(常用)8.角平分线如图,在ABC ∆中,AD 平分BAC ∠,角A ,B ,C 所对的边分别为a ,b ,c ①等面积法ABC ABD ADC S S S ∆∆∆=+⇒111sin sin sin 22222A AAB AC A AB AD AC AD ⨯⨯=⨯⨯+⨯⨯(常用)②内角平分线定理:AB AC BD DC =或AB BDAC DC=③边与面积的比值:ABDADCS AB AC S = 9.基本不等式(最值问题优先用基本不等式)2a bab +≤②222a b ab+≥10.利用正弦定理化角(函数角度求值域问题)利用正弦定理2sin a R A =,2sin b R B =,代入面积公式,化角,再结合辅助角公式,根据角的取值范围,求面积或者周长的最值。
专题02 三角函数与解三角形大题压轴练(解析版)

【一专三练】专题02 三角函数与解三角形大题压轴练-新高考数学复习分层训练(新高考通用)1.(2022秋·广东汕头·高三统考期末)设锐角三角形ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,已知cos cos a b A a B =-.(1)求证:B =2A ;(2)求b ca+的取值范围.cos 1sin tan AA B=+.(1)若A B =,求C ;(2)求sin sin 2cos a B b Ab B+的取值范围.3.(2023·浙江·统考一模)记ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin2sin 2C A a b C Aa c -+=++.(1)若π4A =,求B ;(2)求c ca b+的取值范围.4.(2023·浙江金华·浙江金华第一中学校考模拟预测)记ABC V 的内角,,A B C 的对边分别为,,a b c .已知sin cos tan A B C ==.(1)求2A C +;(2)证明:25c b a >>.从而得cos A 的范围,再利用三角函数平方关系与商式关系判断其他三角函数值,结合正弦定理边角互化证明边的关系.5.(2022秋·江苏泰州·高三江苏省泰兴中学校联考阶段练习)ABC V 的内角A ,B ,C 的对边分别为a ,b ,c .已知()()sin =sin b c B b A C --(1)求角A ;(2)若ABC V 为锐角三角形,且ABC V 的面积为S ,求222a b cS ++的取值范围.6.(2022·江苏盐城·盐城市第一中学校考模拟预测)如图,在锐角ABC V 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3,60︒==c C .(1)求ABC V 面积的最大值;(2)若AB 边上的点D 满足2AD DB =,求线段CD 长的最大值.7.(2023秋·山西太原·高三统考期末)在ABCV中,内角A,B,C所对的边分别为a,b,c,且满足22b bc a+=.(1)求证:2A B=;(2)求62cosb cb B+的取值范围.8.(2022秋·江苏苏州·高三校考阶段练习)在ABC V 中,角A ,B ,C 成等差数列,角A ,B ,C 所对的边分别为a ,b ,c .(1)若a a bba b c+=++,判断ABC V 的形状;(2)若ABC V 不是钝角三角形,求ac的取值范围.9.(2022秋·黑龙江绥化·高三海伦市第一中学校考期中)在ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c ,cos cos A C =D 是边BC 上的一点,且sin sin 32BAD CAD b c a∠∠+=.(1)求证:3aAD =;(2)若2CD BD =,求cos ADC ∠.【答案】(1)详见解析;3(2)由2CD BD =,可得2,3CD a BD =则2222133cos ,cos 122a a b ADC a a ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭∠=⨯⨯10.(2023·云南·高三云南师大附中校考阶段练习)在ABCV中,设角A,B,C所对的边分別为a,b,c,BC边上的高为h,且b c a h+=+.(1)若23h a=,且sin cos1k A A-=,求实数k的值;(2)求tan A的最小值.在Rt BCE V 中,BE则a h b c AC +=+=即224a h a h +≥+,解得则111,2h A a ⎛+=∈ ⎝11.(2022秋·安徽宿州·高三砀山中学校考阶段练习)在ABC V 中,sin sin sin sin sin sin sin C B A BA B C-+=+,(1)求角C 的大小;(2)求sin 22πsin 4B B +⎛⎫+ ⎪⎝⎭的取值范围.V中,内角A,B,12.(2022春·重庆沙坪坝·高三重庆八中校考阶段练习)已知在ABCC所对的边分别是a,b,c,且满足cos cos2cosb Cc B a A+=.(1)求角A;(2)若D 点在线段BC 上,且AD 平分BAC ∠,若2BD CD =,且AD =ABC V 的面积.213.(2022·辽宁沈阳·东北育才双语学校校考一模)如图,设ABC V 中角A ,B ,C 所对的边分别为a ,b ,c ,AD 为BC 边上的中线,已知1c =且12sin cos sin sin sin 4c A B a A b B b C =-+,cos BAD ∠(1)求b 边的长度;(2)求ABC V 的面积;(3)设点E ,F 分别为边AB ,AC 上的动点(含端点),线段EF 交AD 于G ,且AEF△的面积为ABC V 面积的16,求AG EF g 的取值范围.14.(2023春·辽宁大连·高三瓦房店市高级中学校考开学考试)ABC V 的内角,,A B C 的对边分别是,,a b c ,且sin sin sin A B a cC a b--=+,(1)求角B 的大小;(2)若3b =,D 为AC 边上一点,2BD =,且BD 为B ∠的平分线,求ABC V 的面积.因为ABC ABD CBD S S S =+V V V 化简得32BA BC BA +=又由余弦定理得2AC =15.(2023秋·河北衡水·高三河北衡水中学校考阶段练习)已知ABC V 的外心为O ,,M N 为线段,AB AC 上的两点,且O 恰为MN 中点.(1)证明:||||||||AM MB AN NC ⋅=⋅(2)若||AO ||1OM =,求AMNABCS S V V 的最大值.16.(2023·河北·高三河北衡水中学校考阶段练习)在锐角ABC V 中,,,(,,BC a AC b AB c a b c ===均为已知常数),.ABC V 的外接圆,内切圆半径分别为,R r .(1)求Rr ;(2)点,,D E F 分别在线段,,BC AC AB 上,DEF V 的周长为0P ,请证明:()0rP a b c R≥++.由对称可得12,,FD FD ED ED AD ==所以DEF V 的周长为0P FD ED =+又在12AD D V 中,22121D D AD AD =+17.(2023·福建泉州·高三福建省晋江市养正中学校考阶段练习)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,△ABC 的面积214S c =.(1)cos B b =-,求sin sin AB的值;(2)求ab的取值范围.18.(2022秋·福建·高三校联考阶段练习)在ABC V 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且tan sin A B =.(1)证明:2222ac b c a =+-;(2)若BD DC = ,且AD AB =,求sin sin BAC C ∠.19.(2023·江苏南通·模拟预测)记ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin cos sin a B Ba C C-=-.(1)若b c ≠,证明:2a b c =+;(2)若2B C =,证明:223c b >>.【答案】(1)见详解;(2)见详解.【分析】(1)根据正余弦定理角化边,整理即可;20.(2022·山东烟台·统考一模)如图,四边形ABCD 中,222ABBC AB BC AC ++⋅=.(1)若33AB BC ==,求△ABC 的面积;(2)若CD=,30CAD ∠= ,120BCD ∠= ,求∠ACB 的值.21.(2022秋·山东青岛·高三校考阶段练习)如图,在平面四边形ABCD中,.,90,2=∠===AD BD ADB CD BC(1)若45BDC∠= ,求线段AC的长:(2)求线段AC长的最大值.22.(2022·湖北武汉·统考模拟预测)在ABC V 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知2cos 2c B a b =-.(1)求C ;(2)若AB AC =,D 是ABC V 外的一点,且2AD =,1CD =,则当D ∠为多少时,平面四边形ABCD 的面积S 最大,并求S 的最大值.3πθ⎛⎫- ⎪⎝⎭23.(2022·湖南岳阳·统考一模)D 为ABC V 边AB 上一点,满足2AD =,8DB =,记ABC α∠=,CAB β∠=.(1)当CD AB ⊥时,且2βα=,求CD 的值;(2)若4παβ+=,求ACD V 面积的最大值.24.(2023·湖南岳阳·统考二模)在ABC V sin sin cos sin B CC C A++=.(1)求A ;(2)若ABC V 的内切圆半径2r =,求+AB AC 的最小值.25.(2022·湖南·校联考模拟预测)在ABC V 中,12tan ,5A D =为BC 上一点,=AD(1)若D 为BC 的中点,求ABC V 的面积的最大值;(2)若45DAB ∠=︒,求ABC V 的面积的最小值.【答案】(1)12;26.(2023·湖南衡阳·校考模拟预测)已知ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,满足sin sin 1sin sin sin sin A b B B C b A c B+=++(1)求角C ;(2)CD 是ACB ∠的角平分线,若CD =ABC V 的面积为c 的值.)27.(2023·湖南长沙·统考一模)在锐角ABC V 中,角A ,B ,C 所对应的边分别为a ,b ,c sin C a b =+.(1)求角B 的值;(2)若2a =,求ABC V 的周长的取值范围.28.(2022·广东珠海·高三校联考阶段练习)在ABC V 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知2π3A =.(1)若6a =,ABC V 的面积为D 为边BC 的中点,求AD 的长度;(2)若E 为边BC 上一点,且AE =:2:BE EC c b =,求2b c +的最小值.29.(2023·江苏苏州·苏州中学校考模拟预测)在PAB V 中,PA PB =,点C ,D 分别在PB ,PA 边上.(1)若3APB π∠=,1CD =,求PCD V 面积的最大值;(2)设四边形ABCD 的外接圆半径为R ,若,3APB π∠π⎡⎫∈⎪⎢⎣⎭,且AB BC CD DA ⋅⋅⋅的最大值为49,求R 的值.30.(2022秋·湖北·高三校联考开学考试)如图,在平面四边形ABCD 中,242DC AD ==,2BAD π∠=,6BDC π∠=.(1)若cos ABD ∠=ABD △的面积;(2)若C ADC ∠=∠,求BC .。
高中数学三角函数与解三角形解答题专项训练(附详解)

三角函数与解三角形解答题专项训练1.在△ABC中,角A,B,C的对边分别是a,b,c,若acosC=csinA.(Ⅰ)求角C的大小;(Ⅱ)若a=3,△ABC的面积为,求的值.2.已知函数f(x)=msinxcosx+mcos2x+n(m,n∈R)在区间[0,]上的值域为[1,2].(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)在△ABC中,角A,B,C所对的边长分别为a,b,c,当m>0时,若f(A)=1,sinB=4sin(π﹣C),△ABC的面积为,求边长a的值.3.已知函数f(x)=cosx•sin(x+)﹣cos2x+.(1)求f(x)的最小正周期;(2)若f(x)<m在上恒成立,求实数m的取值范围.4.函数f(x)=3sin(2x+)的部分图象如图所示.(Ⅰ)写出f(x)的最小正周期及图中x0,y0的值;(Ⅱ)求f(x)在区间[﹣,﹣]上的最大值和最小值.5.已知函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)的图象关于直线x=对称,且图象上相邻两个最高点的距离为π.(Ⅰ)求ω和φ的值;(Ⅱ)若f()=(<α<),求cos(α+)的值.6.已知函数f(x)=Asin(x+),x∈R,且f()=.(1)求A的值;(2)若f(θ)+f(﹣θ)=,θ∈(0,),求f(﹣θ).7.△ABC中,角A,B,C所对的边分别为a,b,c.已知a=3,cosA=,B=A+.(Ⅰ)求b的值;(Ⅱ)求△ABC的面积.8.设△ABC的内角A,B,C所对的边长分别为a,b,c,且.(Ⅰ)求的值;(Ⅱ)求tan(A﹣B)的最大值.9.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=,cos2A﹣cos2B= sinAcosA﹣sinBcosB.(Ⅰ)求角C的大小;(Ⅱ)若sinA=,求△ABC的面积.10.设△ABC的内角为A、B、C所对边的长分别是a、b、c,且b=3,c=1,A=2B.(Ⅰ)求a的值;(Ⅱ)求sin(A+)的值.11.△ABC的内角A、B、C所对的边分别为a,b,c.(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);(Ⅱ)若a,b,c成等比数列,且c=2a,求cosB的值.12.如图,在△ABC中,∠B=,AB=8,点D在边BC上,且CD=2,cos∠ADC=.(1)求sin∠BAD;(2)求BD,AC的长.4.(2015•泸州模拟)在△ABC中,角A,B,C的对边分别是a,b,c,若acosC=csinA.(Ⅰ)求角C的大小;(Ⅱ)若a=3,△ABC的面积为,求的值.考点:正弦定理;平面向量数量积的运算.专题:解三角形.分析:(Ⅰ)已知等式利用正弦定理化简,由sinA不为0求出tanC的值,即可确定出角C 的大小;(Ⅱ)利用三角形面积公式列出关系式,把a,sinC,以及已知面积代入求出b的值,再利用余弦定理求出c的值,求出cosA的值,利用平面向量的数量积运算法则即可确定出原式的值.解答:解:(Ⅰ)∵acosC=csinA,由正弦定理得:sinAcosC=sinCsinA,∵0<A<π,∴sinA>0,∴cosC=sinC,即tanC=,又0<C<π,∴C=;(Ⅱ)∵a=3,△ABC的面积为,∴S=absinC=×3bsin=,∴b=2,由余弦定理得:c2=4+9﹣6=7,即c=,cosA==,则•=bccos(π﹣A)=2×(﹣)=﹣1.点评:此题考查了正弦、余弦定理,平面向量的数量积运算,以及三角形面积公式,熟练掌握定理及公式是解本题的关键.6.(2015•资阳模拟)已知函数f(x)=msinxcosx+mcos2x+n(m,n∈R)在区间[0,]上的值域为[1,2].(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)在△ABC中,角A,B,C所对的边长分别为a,b,c,当m>0时,若f(A)=1,sinB=4sin(π﹣C),△ABC的面积为,求边长a的值.考点:余弦定理的应用;三角函数中的恒等变换应用.专题:计算题;三角函数的图像与性质;解三角形.分析:(Ⅰ)运用二倍角公式和两角和的正弦公式,化简f(x),对m讨论,m>0,m<0,根据值域求得m,n,再求单调增区间;(Ⅱ)当m>0时,求得A,再由正弦定理得到b=4c,由面筋公式,即可得到b,c 再由余弦定理求得a.解答:解:(Ⅰ)===,当时,,则.由题意知m≠0,①若m>0,则,解得m=2,n=﹣1,则,由(k∈Z),得函数f(x)的单调递增区间是,k∈Z.②若m<0,则,解得m=﹣2,n=4.则,由(k∈Z),故函数f(x)的单调递增区间是,k∈Z;(Ⅱ)当m>0时,由,所以.因为sinB=4sin(π﹣C),所以sinB=4sinC,则b=4c,又△ABC面积为,所以,即bc=4,所以b=4,c=1,则,所以.点评:本题考查三角函数的化简和求值,考查三角函数的图象和性质,求单调区间和求值域,考查正弦、余弦定理和面积公式及运用,考查运算能力,属于中档题.7.(2015•重庆一模)已知函数f(x)=cosx•sin(x+)﹣cos2x+.(1)求f(x)的最小正周期;(2)若f(x)<m在上恒成立,求实数m的取值范围.考点:三角函数的最值;两角和与差的正弦函数.专题:三角函数的图像与性质.分析:(1)由条件利用三角函数的恒等变换求得f(x)的解析式,再根据正弦函数的周期性求得f(x)的最小正周期.(2)由条件利用正弦函数的定义域和值域求得f(x)的最大值,可得实数m的取值范围.解答:解:(1)∵函数f(x)=cosx•sin(x+)﹣cos2x+=cosx(sinx+cosx )﹣•+=sin2x﹣cos2x=sin(2x﹣),∴函数的最小正周期为.(2)∵,∴,∴.∵f(x)<m在上恒成立,∴.点评:本题主要考查三角函数的恒等变换及化简求值,三角函数的周期性和求法,正弦函数的定义域和值域,函数的恒成立问题,属于基础题.8.(2014•北京)函数f(x)=3sin(2x+)的部分图象如图所示.(Ⅰ)写出f(x)的最小正周期及图中x0,y0的值;(Ⅱ)求f(x)在区间[﹣,﹣]上的最大值和最小值.考点:三角函数的周期性及其求法;正弦函数的定义域和值域.专题:三角函数的图像与性质.分析:(Ⅰ)由题目所给的解析式和图象可得所求;(Ⅱ)由x∈[﹣,﹣]可得2x+∈[﹣,0],由三角函数的性质可得最值.解答:解:(Ⅰ)∵f(x)=3sin(2x+),∴f(x)的最小正周期T==π,可知y0为函数的最大值3,x0=;(Ⅱ)∵x∈[﹣,﹣],∴2x+∈[﹣,0],∴当2x+=0,即x=时,f(x)取最大值0,当2x+=,即x=﹣时,f(x)取最小值﹣3点评:本题考查三角函数的图象和性质,属基础题.9.(2014•重庆)已知函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)的图象关于直线x=对称,且图象上相邻两个最高点的距离为π.(Ⅰ)求ω和φ的值;(Ⅱ)若f()=(<α<),求cos(α+)的值.考点:函数y=Asin(ωx+φ)的图象变换;运用诱导公式化简求值.专题:三角函数的图像与性质.分析:(Ⅰ)由题意可得函数f(x)的最小正周期为π求得ω=2.再根据图象关于直线x=对称,结合﹣≤φ<可得φ的值.(Ⅱ)由条件求得sin(α﹣)=.再根据α﹣的范围求得cos(α﹣)的值,再根据cos(α+)=sinα=sin[(α﹣)+],利用两角和的正弦公式计算求得结果.解答:解:(Ⅰ)由题意可得函数f(x)的最小正周期为π,∴=π,∴ω=2.再根据图象关于直线x=对称,可得2×+φ=kπ+,k∈z.结合﹣≤φ<可得φ=﹣.(Ⅱ)∵f()=(<α<),∴sin(α﹣)=,∴sin(α﹣)=.再根据0<α﹣<,∴cos(α﹣)==,∴cos(α+)=sinα=sin[(α﹣)+]=sin(α﹣)cos+cos(α﹣)sin=+=.点评:本题主要考查由函数y=Asin(ωx+φ)的部分图象求函数的解析式,两角和差的三角公式、的应用,属于中档题.12.(2014•广东)已知函数f(x)=Asin(x+),x∈R,且f()=.(1)求A的值;(2)若f(θ)+f(﹣θ)=,θ∈(0,),求f(﹣θ).考点:由y=Asin(ωx+φ)的部分图象确定其解析式;两角和与差的正弦函数.专题:三角函数的图像与性质.分析:(1)由函数f(x)的解析式以及f()=,求得A的值.(2)由(1)可得f(x)=sin(x+),根据f(θ)+f(﹣θ)=,求得cosθ的值,再由θ∈(0,),求得sinθ的值,从而求得f(﹣θ)的值.解答:解:(1)∵函数f(x)=Asin(x+),x∈R,且f()=.∴Asin(+)=Asin=A•=,∴A=.(2)由(1)可得f(x)=sin(x+),∴f(θ)+f(﹣θ)=sin(θ+)+sin(﹣θ+)=2sin cosθ=cosθ=,∴cosθ=,再由θ∈(0,),可得sinθ=.∴f(﹣θ)=sin(﹣θ+)=sin(π﹣θ)=sinθ=.点评:本题主要考查三角函数的恒等变换,同角三角函数的基本关系,属于中档题.13.(2014•山东)△ABC中,角A,B,C所对的边分别为a,b,c.已知a=3,cosA=,B=A+.(Ⅰ)求b的值;(Ⅱ)求△ABC的面积.考点:正弦定理.专题:解三角形.分析:(Ⅰ)利用cosA求得sinA,进而利用A和B的关系求得sinB,最后利用正弦定理求得b的值.(Ⅱ)利用sinB,求得cosB的值,进而根两角和公式求得sinC的值,最后利用三角形面积公式求得答案.解答:解:(Ⅰ)∵cosA=,∴sinA==,∵B=A+.∴sinB=sin(A+)=cosA=,由正弦定理知=,∴b=•sinB=×=3.(Ⅱ)∵sinB=,B=A+>∴cosB=﹣=﹣,sinC=sin(π﹣A﹣B)=sin(A+B)=sinAcosB+cosAsinB=×(﹣)+×=,∴S=a•b•sinC=×3×3×=.点评:本题主要考查了正弦定理的应用.解题过程中结合了同角三角函数关系,三角函数恒等变换的应用,注重了基础知识的综合运用.14.(2014•东城区一模)设△ABC的内角A,B,C所对的边长分别为a,b,c,且.(Ⅰ)求的值;(Ⅱ)求tan(A﹣B)的最大值.考点:正弦定理;两角和与差的正切函数.分析:本题考查的知识点是正弦定理及两角和与差的正切函数,(Ⅰ)由正弦定理的边角互化,我们可将已知中,进行转化得到sinAcosB=4cosAsinB,再利用弦化切的方法即可求的值.(Ⅱ)由(Ⅰ)的结论,结合角A,B,C为△ABC的内角,我们易得tanA=4tanB>0,则tan(A﹣B)可化为,再结合基本不等式即可得到tan(A﹣B)的最大值.解答:解:(Ⅰ)在△ABC中,,由正弦定理得即sinAcosB=4cosAsinB,则;(Ⅱ)由得tanA=4tanB>0当且仅当时,等号成立,故当时,tan(A﹣B)的最大值为.点评:在解三角形时,正弦定理和余弦定理是最常用的方法,正弦定理多用于边角互化,使用时要注意一般是等式两边是关于三边的齐次式.15.(2014•浙江)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=,cos2A﹣cos2B=sinAcosA﹣sinBcosB.(Ⅰ)求角C的大小;(Ⅱ)若sinA=,求△ABC的面积.考点:正弦定理;二倍角的正弦;二倍角的余弦.专题:解三角形.分析:(Ⅰ)△ABC中,由条件利用二倍角公式化简可得﹣2sin(A+B)sin(A﹣B)=2•cos(A+B)sin(A﹣B).求得tan(A+B)的值,可得A+B的值,从而求得C的值.(Ⅱ)由sinA=求得cosA的值.再由正弦定理求得a,再求得sinB=sin[(A+B)﹣A]的值,从而求得△ABC的面积为的值.解答:解:(Ⅰ)∵△ABC中,a≠b,c=,cos2A﹣cos2B=sinAcosA﹣sinBcosB,∴﹣=sin2A﹣sin2B,即cos2A﹣cos2B=sin2A﹣sin2B,即﹣2sin(A+B)sin(A﹣B)=2•cos(A+B)sin(A﹣B).∵a≠b,∴A≠B,sin(A﹣B)≠0,∴tan(A+B)=﹣,∴A+B=,∴C=.(Ⅱ)∵sinA=<,C=,∴A<,或A>(舍去),∴cosA==.由正弦定理可得,=,即=,∴a=.∴sinB=sin[(A+B)﹣A]=sin(A+B)cosA﹣cos(A+B)sinA=﹣(﹣)×=,∴△ABC的面积为=×=.点评:本题主要考查二倍角公式、两角和差的三角公式、正弦定理的应用,属于中档题.16.(2014•安徽)设△ABC的内角为A、B、C所对边的长分别是a、b、c,且b=3,c=1,A=2B.(Ⅰ)求a的值;(Ⅱ)求sin(A+)的值.考点:正弦定理;两角和与差的正弦函数.专题:综合题;三角函数的求值.分析:(Ⅰ)利用正弦定理,可得a=6cosB,再利用余弦定理,即可求a的值;(Ⅱ)求出sinA,cosA,即可求sin(A+)的值.解答:解:(Ⅰ)∵A=2B,,b=3,∴a=6cosB,∴a=6,∴a=2;(Ⅱ)∵a=6cosB,∴cosB=,∴sinB=,∴sinA=sin2B=,cosA=cos2B=2cos2B﹣1=﹣,∴sin(A+)=(sinA+cosA)=.点评:本题考查余弦定理、考查正弦定理,考查二倍角公式,考查学生的计算能力,属于中档题.22.(2014•北京)如图,在△ABC中,∠B=,AB=8,点D在边BC上,且CD=2,cos∠ADC=.(1)求sin∠BAD;(2)求BD,AC的长.考点:余弦定理的应用.专题:解三角形.分析:根据三角形边角之间的关系,结合正弦定理和余弦定理即可得到结论.解答:解:(1)在△ABC中,∵cos∠ADC=,∴sin∠ADC===,则sin∠BAD=sin(∠ADC﹣∠B)=sin∠ADC•cosB﹣cos∠ADC•sinB=×﹣=.(2)在△ABD中,由正弦定理得BD==,在△ABC中,由余弦定理得AC2=AB2+CB2﹣2AB•BCcosB=82+52﹣2×8×=49,即AC=7.点评:本题主要考查解三角形的应用,根据正弦定理和余弦定理是解决本题本题的关键,难度不大.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
斯巴秀教育高二数学月考试卷
出卷人:王延许 审核人:杨杰 考试时间:120分钟 满分150分
注意事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至
5页.
2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.
3.全部答案在答题卡上完成,答在本试题上无效.
4.考试结束后,将本试题和答题卡一并交回.
第Ⅰ卷
一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的
1.已知集合{}1,2,3,4A =,{}2,4,6,8B =,则A B ⋂中的元素的个数为( )
A .1 B. 2 C. 3 D. 4
2.已知tan α=2,则sin 2α-sin αcos α的值是 ( )
A . 25
B .-25
C .-2
D .2 3.在ABC ∆中,已知角,3
34,22,45===b c B 则角A 的值是 ( ) A .15° B .75° C .105° D .75°或15°
4、在△ABC 中,若b=12,A=30°,B=90°,则a = ( )
A .2
B ..4 D .6
5、在ABC ∆中,角A,B,C 所对的边长分别为,,a b c ;若2π=
C ,a c 332=,则=A A 、6π B 、3π C 、6π或65π
D 、3π或3
2π 6. 在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且C c B b A a sin sin sin =+,
则ABC ∆的形状是( )
A .等腰三角形
B .直角三角形
C .等腰直角三角形
D .等腰或直角三角形
7. 在ABC ∆中,a=15,b=10,A=︒60,则B cos = ( )
A .322-
B .322
C .36-
D .3
6 8.tan 8π3
的值为 ( ) A.
33 B .-33 C. 3 D .- 3 9. 在△ABC 中,若sin 2A +sin 2B -sin A sin B =sin 2C ,且满足ab =4,则该三角形的面积为
( )
A .1
B .2 C. 2 D. 3
10在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c
,若22a b -=,
sinC=2,则A=( )
(A )30° (B )60° (C )120° (D )150°
11. 如果函数()cos 2y x φ=3+的图像关于点
43π⎛⎫ ⎪⎝⎭,0中心对称,那么||ϕ的最小值为( ) (A )6π (B )4π (C )3π (D) 2π
12.在ABC ∆中,角A B C 、、的对边分别为a 、b 、c ,若2b =,45B =,75C =,则a 的值是( )
第II 卷
本卷包括第(13)题~第(22)题为必考题,每个试题考生都必须作答.考生根据要求作答.
二、填空题:本大题共4小题,每小题5分
13.在ABC ∆中,A B C 、、所对应的边分别为a b c 、、
,若sin :sin :sin :2A B C =,则
::a b c = .
14.在ABC ∆中,A B C 、、所对应的边分别为a b c 、、,若1,1a b c ===,则
B = .
15. 在ABC ∆中,角A B C 、、的对边分别为a 、b 、c ,若1,a b ==,2A C B +=,则
sin C = .
16. ABC ∆内角C B A ,,的对边分别为c b a ,,,已知3,6,600===c b C ,则=A ________
三.解答题:本大题共6小题,解答应写出文字说明,证明过程或演算步骤.
17. (本小题满分12分) 设锐角三解形ABC 的内角A ,B ,C 所对的边分别为a ,b ,c,,a=2bsinA 。
求:(1)求角B 的大小(2)若5a c ==,求b 边的长。
18. (本小题满分12分) 在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且.222bc a c b =-+
(1)求角A ;
(2)若2=b ,且ABC ∆的面积为32=S ,求a 的值.
19. (本小题满分12分)已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫13
x -π6,x ∈R . (1)求f ⎝ ⎛⎭
⎪⎫5π4 的值; (2)设α,β∈⎣
⎢⎡⎦⎥⎤0,π2,f ⎝ ⎛⎭⎪⎫3α+π2=1013,f (3β+2π)=65,求cos(α+β)的值.
20. (本小题满分12分)化简:
(1)
)-()+(-)++()+()-(-)++(-αααααα︒︒︒︒180cos cos 180tan 360tan sin 180sin ; (2) )-()+()-()++(πcos πsin πsin πsin n n n n αααα(n ∈Z ).
21. (本小题满分12分)默写公式
(1)两角和公式:
=
-=
+=
-=+=
-=
+)t a n ()t a n ()s i n ()c o s ()s i n ()s i n (βαβαβαβαβαβα (2) 诱导公式:
=-=
+=
-=+=-=+)t a n ()2t a n ()s i n ()c o s ()2c o s ()2
s i n (απααππααπ
απk
22. (本小题满分10分)
(1)正弦定理:(要求写出上课要求的连等公式)
(2)余弦定理:(要求写出基本公式及所有配方公式)
=
==
222c b a
=
==
C B A cos cos cos。