Polarized light-antiquark distributions in a meson-cloud model
荧光非闪烁ii-vi族半导体核壳量子点

荧光非闪烁ii-vi族半导体核壳量子点下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!荧光非闪烁IIVI族半导体核壳量子点的研究量子点技术是近年来研究的焦点之一,这种新型半导体材料拥有独特的光学、电学和物理学性质,广泛应用于生物医药、显示、照明和能源等领域。
应用物理专业英语English Vocabulary

Chapter 8adjacent 邻近的barrier 障碍物compensation 补偿板double slit 双缝electromagnetic 电磁的grating diffraction 光栅衍射illumination 照明,照亮,阐明intensity 强度missing order 缺级monochromatic 单色的,单频的opaque 不透明的prediction 预言prevail 优胜,主导scatter 散射speck 斑点spherical 球的,球形的substitute 替代subtend 对应于(张角)transparency 透明,透明度Chapter 9analyzer 检偏器antenna 天线arbitrary 任意的,专断的circular polarized light 圆偏振光crossed polaroids 正交偏振片eliminate 排除,消除,除去elliptical 椭圆的,省略的incident 入射的molecule 分子oscillatory 摆动的orientation 取向partially polarized 部分偏振光polaroid sheet 偏振片polarizer 起偏器preferential 优先的propagation 声波symmetry 对称性transverse 横向的,横断的unpolarized light 自然光Chapter 10 anode 阳极cathode ray 阴极射线conversion factor 变换量current-varying solenoid 载流线圈curvature 曲度cyclotron 螺旋加速器cylindrical 圆柱体differential 微分的discharge tube 放电管electric field intensity 电场强度electromotive force 电动势electric motor 电动机electromagnetic 电磁铁electrostatic 静电的field lines 场力线flux 通量ferromagnetic 铁磁性galvanometer 电流计impurity 杂质integration 积分loop 环Lorentz Force 洛伦兹力magnetic monopole 磁单极magnetron 磁控管magnetic induction磁感应强度oscillator 震荡器permanent magnet 永磁铁polarity 极性repel 排斥resistivity 电阻率spiral 螺旋的test charge 试验电荷trace 轨迹uniform electric field 匀强电场Chapter 11accidentally 偶然地antiparallel 反平行bubble chamber 气泡室compass needle 罗盘针current-varying solenoid 载流线圈deflect 偏转eddy current 涡电流electromagnetic induction 电磁感应electric current 电流episode 插曲gyroscope 回转仪induced EMF 感应电动势induced current 感应电流insulation 绝缘intuitive 直观的laminate 分成薄片monopole 单极neutron star 中子星permanent magnet 永磁铁prestige 威信positron正电子rate of change 时间变化率repel 排斥rudimentary 基础的,初步的seismograph 地震仪sinusoidal 正弦的summarize 总结symmetric 对称的tenacity 韧性transformer 变压器vicinity 临近,周围voltmeter 伏特计vortex 漩涡Chapter 12annihilation 湮没angular momentum 角动量classical 经典的classical physics 经典物理学contraction 收缩,缩减deceive 欺骗delay-controlled exponential 缓发中子控制指数disappear 不见,失踪exponential 指数的General Theory of Relativity 广义相对论inertial reference frame 惯性参考系intrinsic 固有的,内在的,本质的meter stick 米尺microscopic 微观的Newtonian 牛顿的,牛顿学说的paradox 自相矛盾者platform 平台,站台postulate 假设relativistic physics 相对论性物理学satellite 卫星simultaneity 同时性spectrum 光谱special Relativity 狭义相对论subtle 稀薄的,精巧的time dilation时间膨胀transformation 转换vacuum 真空,真空状态Chapter 13amplitude 振幅barrier penetration 势垒穿透binding energy 结合能boundary 边界classical mechanics 经典力学confine 限制cosmic rays 宇宙射线de Broglie wavederivative 派生的,导出的decay 放射性衰变dimensional 空间的,维的discrete 不连续的distribution 分布double slit 双缝duality 双重性,二象性electron cloud 电子云energy level splitting 能及分裂entangle 纠缠,卷入excited energy level 激发能级exponentially 以指数级的形式地external force 外力fission 裂变ground state 基态half-life 半衰期harmonic 谐波insulator 绝缘体infinite potential well 无限深势阱integration 积分interference pattern 干涉图样judicious 明智的kinetic 动力学的,运动的leak through 漏过macroscopic 宏观的molecular 分子的muon 介子neutron 中子nucleus 原子核nuclear fission 核子分裂out of phase 反相peak 峰phase shift 相移photon 光子piezoelectric 压电的potential barrier 势垒potential well 势阱probability 概率,几率proportional 成比例的probability density 几率密度proton 质子quantum mechanics 量子力学quantization 量子化quantum 定量,量子quantum equivalence 量子当量quantum physics 量子物理学quantum state 量子态tabletop 桌面transition 跃进,迁移trapped electron 俘获电子tunneling effect 隧道效应wave function 波函数wave-particle duality波粒二象性Chapter 14absorption 吸收acronym 字首缩略词amplification 放大aperture 孔径bumper 缓冲器,减震器carve 雕刻coherent 相干的,一致的convergence 会聚性covalent bonds 共价键density gradient 密度梯度depletion 耗散层,耗尽donor 施主,给予体energy gap 禁带energy band 能带fluorescent 荧光的helium 氦hologram 全息inelastic 无弹性的kinematic 运动学的majority 多数metastable 亚稳态的metallic 金属(性)的minority 少数mono-chromatic 单色的optical pump 光泵pentavalency 五价population inversion 粒子数反转propagation 传播rectification 整流resistivity 抵抗力,电阻率semiconductor 半导体spiraling 螺旋式spontaneous 自发的stimulate 受刺激tetravalene 四价threshold 阈值triode 三极管valance electron 价电子Chapter 15antiquark 反夸克baryon 重子boson 波色子chain reaction 链式反应deuterium 氘flavor 味fusion 聚变hadron 强子ionization 电离lepton 轻子nuclear fission 原子核裂变neutron 中子penetrate 穿透proton 质子radioactive decay 放射性衰变radioisotope 放射性同位素。
新蓝光led目标80外部量子效率

新蓝光LED目标80%外部量子效率由日本松下电工(Matsushita Electric Works Ltd)与美国加州大学圣塔芭芭拉分校(USCB)共同研究的计划,已开发出具有43.6%外部量子效率的发光二极管(LED)。
外部量子效率是LED亮度的指标,而其数值大约是现有设计的两倍(图1)。
研究结果是在2008年1月于加州圣荷西举行国际光学技术展览研讨会Photonics West 2008中发表。
除了亮度以外,其芯片有特别122˚宽广的光学发射角,使它适合用在照明应用。
研究员相信效率可以更为改善,而根据一位松下电工的来源透露他们的目标是80%,超过现有商业化LED 的1.5倍。
无蓝宝石基板这新LED的结构很明显的与现有普遍的设计不同,研究团队称该结构为「mega-cone」,为一个六方锥的氧化锌(ZnO),大约0.5mm高,镶嵌在GaN半导体放射层的顶端(图2)。
其放射层的后端是连接到SiO2的介电层,铝反射膜及Si芯片通过电极上。
基本上大部分的GaN LED 是平面的组件,以p-与n-型的GaN晶体堆栈在蓝宝石基板上。
根据松下电工先进技术联合实验室LED装置nBT小组发表者Akihiko Murai表示,「这独特结构的采用是以提高其光发射效率,而不是用来改善发射层内的内部量子效率」。
外部量子效率是内部量子效率的产物(在发射层内产生的光)及光从芯片所输出的效率。
研究者藉由增加后者制造更亮的LED。
有两个关键的方法来利用,首先是在发射点使用ZnO,原因是因为它2.1的高折射率。
折射率愈高,光从GaN发射层将整个反射在ZnO界面上就愈不可能。
第二点是将ZnO形成一个六方锥。
当光从芯片输出时,其锥体的形状能有效地扩大发射角。
此种形状使用ZnO晶体的技术,是在2006年由相同的团队所提出,但他们同时也使用了蓝宝石基板,而外部量子效率最大值只达到23.7%,低于预期。
Murai解释说,「我们相信其低的效率是由于蓝宝石基板的热传导系数很低、及其它的因素」。
雷斯特电子Retro-反射光电传感器的说明书

Leuze electronic GmbH + Co. KG Post-box 1111 D-73277 Owen-Teck Tel. +49 7021 5730www.leuze.deW e r e s e r v e t h e r i g h t t o m a k e c h a n g e s • 96_b 07e .f mz Retro-reflective photoelectric sensor for safe detection of transparent media (e.g.clear glass, PE, foil)z Reliable detection of the smallest gaps between transparent objectsz User controlled sensitivity adjustment with high resolutionz The autocollimation principle used ensures that the device functions reliably over the entire range (0…max.)z All-mains design 20…230VAC/DC with relay outputz Connection via comfortable terminal com-partment up to 1.5mm²0…1.85m20-230 V AC / DCAccessories:(available separately)z Mounting systems(BT 96, BT 96.1, UMS 96, BT 450.1-96)z Spark extinction z Reflectorsz Reflective tapeszAlignment aid ARH 96Dimensioned drawingA Indicator diode greenB Indicator diode yellowC Optical axisD Screwed cable gland M16x1.5 for Ø5…10mmE Countersinking for SK nut M5, 4.2 deepF Connection terminalsG Cable entryH Sensitivity adjustment ILight/dark switchingElectrical connectionPRK 96Retro-reflective photoelectric sensors with polarisation filterPRK 96 M/R… - 07PRK 96 M/R… - 070603SpecificationsOptical dataTyp. operating range limit (TK(S) 50x50) 1)1)Typ. operating range limit: max. attainable range without performance reserve 0…1.85m Operating range 2)2)Operating range: recommended range with performance reserve0…1.5mLight source LED (modulated light)Wavelength660nm (visible red light/polarised)TimingSwitching frequency 20Hz Response time25ms Delay before start-up≤200msElectrical dataOperating voltage U B 20…230VAC, 50/60Hz20…230VDC ±10%Power consumption ≤ 1.5VA Switching output 3)3)Suitable spark extinction must be provided with inductive or capacitive loads relay, 1 change-over contact Function characteristics light/dark switching (reversible)Switching voltage, relay 250VAC/DC Switching current, relay 250VAC, 3A/30VDC, 3A Switching power, relay 750VA, cos ϕ=1Sensitivity adjustable with 10-turn potentiometer IndicatorsLED green readyLED yellowclear glass - adjustment range 1transition from quickly flashing to slowly flashing coloured glass - adjustment range 2transition from cont. illuminated to quickly flashing other - adjustment range 3continuously illuminatedMechanical dataMetal housingHousing diecast zinc Optics cover glassWeight 380g Connection type terminals Environmental dataAmbient temp. (operation/storage)-20°C …+55°C/-40°C …+55°C Protective circuit 4)4)1=transient protection, 4=interference blanking 1,4VDE safety class 5)5)Rating voltage 250VACII, all-insulated Protection class IP 67, IP 69K 6)6)IP 69K test acc. to DIN 40050 part 9 simulated, high pressure cleaning conditions without the use of additives,acids and bases are not part of the testLED class1 (acc. to EN 60825-1)Standards appliedIEC 60947-5-2OptionsSwitching delay (slow oper./release)0…10s (separately adjustable)Order guideDesignation Part No.PRK 96M/R-1850-2550080470TablesDiagramsRemarksz Integrated slit diaphragm: 3.7x20mmPRK 96。
基于太赫兹波谱图像识别无缺陷水果

基于太赫兹波谱图像识别无缺陷水果近年来,基于太赫兹波谱图像的无缺陷水果识别技术逐渐受到人们的关注。
太赫兹波谱图像识别是一种基于太赫兹波谱技术的无损检测方法,通过分析水果的太赫兹波谱图像,可以准确判断水果的品质和完整性,为消费者提供高质量的水果选择。
太赫兹波(terahertz wave)是介于微波与红外线之间的电磁波,其频率范围约为100GHz至10THz。
太赫兹波谱图像由太赫兹波谱仪获取,其中记录了水果对太赫兹波的反射、透射和散射等信息。
通过对这些信息的分析,可以得出水果的成分、结构和缺陷等有用的信息。
无缺陷水果识别是太赫兹波谱图像识别的重要应用之一。
随着人们对食品安全和质量的要求越来越高,无缺陷水果的识别成为了一个重要的问题。
传统的水果检测方法,如视觉检测和机械检测,通常需要繁琐的操作和专业知识,且容易出现误判的情况。
而基于太赫兹波谱图像的无缺陷水果识别技术能够准确、快速地判断水果是否有缺陷,提高水果的品质和安全。
在太赫兹波谱图像识别无缺陷水果方面,有许多研究工作已经取得了令人瞩目的成果。
其中,最常用的方法是基于机器学习和图像处理技术。
首先,需要建立一个太赫兹波谱图像数据库,其中包含了大量的无缺陷水果样本。
然后,利用机器学习算法对这些样本进行训练,建立一个识别模型。
最后,通过对新的太赫兹波谱图像进行处理和分析,将其与识别模型进行比对,从而得出水果是否有缺陷的结果。
在机器学习算法方面,支持向量机(SVM)和随机森林(Random Forest)是常用的分类算法。
SVM是一种广泛应用于模式识别和分类问题的机器学习算法,通过在高维空间中寻找一个最优超平面对样本进行分类。
而随机森林是一种集成学习方法,通过构建多个决策树,并对结果进行投票,来得出最终的分类结果。
这些算法都能够有效地对太赫兹波谱图像进行分类,准确判断水果是否有缺陷。
除了机器学习算法,图像处理技术在太赫兹波谱图像识别中也起到了重要的作用。
Polar Meltdown Cold Truths

Polar Meltdown Cold Truths The polar ice caps are melting at an alarming rate, and the truth of this cold reality is something that we can no longer afford to ignore. The consequences of this polar meltdown are far-reaching and will have a profound impact on our planet, our ecosystems, and our way of life. It is crucial that we address this issue from multiple perspectives in order to fully understand the magnitude of the problemand work towards sustainable solutions. From a scientific perspective, the evidence of polar ice melt is undeniable. The polar regions are experiencing unprecedented levels of ice loss, with Arctic sea ice declining at a rate of 13.1% per decade. This is not just a natural fluctuation, but a clear result of human-induced climate change. The burning of fossil fuels and deforestation have led toa rise in greenhouse gas emissions, which in turn have caused global temperatures to rise. This warming has had a direct impact on the polar ice caps, causing them to melt at an accelerated rate. The scientific community has been sounding the alarm on this issue for decades, and it is time for us to listen and take action. From an environmental perspective, the melting of the polar ice caps is a disaster for the delicate ecosystems that call these regions home. Polar bears, seals, and other arctic animals rely on the ice for their survival, using it as a platformfor hunting, breeding, and resting. As the ice disappears, these animals are being forced to travel greater distances in search of food, leading to increased stress and declining populations. Additionally, the melting ice is causing sea levels to rise, which is threatening coastal communities and habitats around the world. The loss of polar ice is not just a problem for the polar regions, but a global environmental crisis that demands our attention. From a humanitarian perspective, the consequences of polar ice melt are already being felt by communities aroundthe world. In the Arctic, indigenous peoples are seeing their traditional way of life disappear as the ice melts and the landscape changes. In coastal areas, sea level rise is causing flooding and erosion, displacing communities and threatening vital infrastructure. The loss of ice also has implications for global food security, as it disrupts the delicate balance of ocean ecosystems and affects fish populations. The impacts of polar ice melt are not just environmental, but havereal and immediate consequences for human lives. From a political perspective,addressing the issue of polar ice melt requires international cooperation and commitment. The Paris Agreement was a step in the right direction, with countries around the world pledging to reduce their greenhouse gas emissions in order tolimit global warming. However, more needs to be done to hold countries accountable and ensure that they follow through on their commitments. Additionally, there needs to be greater investment in renewable energy and sustainable practices in order to mitigate the effects of climate change and protect the polar regions. From an economic perspective, the cost of inaction on polar ice melt is staggering. The loss of polar ice will have a significant impact on global food production, as well as on industries such as fishing, shipping, and tourism. Additionally, the cost of adapting to rising sea levels and extreme weather events will be immense.It is in our best interest, both environmentally and economically, to address the issue of polar ice melt and work towards sustainable solutions. From a moral perspective, we have a responsibility to future generations to address the issueof polar ice melt. The decisions we make today will have a lasting impact on the world that we leave to our children and grandchildren. We cannot continue toignore the reality of climate change and its effects on the polar regions. We must take action now in order to preserve the beauty and diversity of our planet for future generations. In conclusion, the polar meltdown is a cold truth that we can no longer afford to ignore. From scientific, environmental, humanitarian,political, economic, and moral perspectives, the consequences of polar ice meltare far-reaching and demand our attention. It is time for us to come together as a global community to address this issue and work towards sustainable solutions. The future of our planet, and the lives of future generations, depend on the actions we take today.。
一种基于混沌的彩色图像空域半脆弱水印算法

I a e s d o a tc S se m g sBa e n Ch o i y t m
D A We-i ,U a -h n , A o X E Ja- i I N n xa L Hun zag W NG Ha , I in bn
( oeeo Eet mcSi c n n ei ,a oa U i. f e neTcnlg , agh 4 07 ,C i ) Clg f l r ce eadE / r g N tnl nv o f s ehooy Q1 sa 10 3 hn l co n  ̄e n i De n a
( 国防科技大学 电子科学与工程 学院 , 湖南 长沙 407) 103
摘 要 : 实现对数字产 品的版权保护 和完整性认证 , 出了一种 以最低有 效位 (S ) 为 提 rB 替换算法 为核 心 ,
以彩色图像 R B图层亮 度分量 为载体的基于混沌二值 密钥 随机控制 的彩色 图像 空域有意义水 印算法。实验 G 结果表 明, 实现简单 , 时性好 , 良好的透明性、 算法 实 具有 安全 性和确定性 , 可盲检 测 , 能够很好地实 现版权 并 保护和篡改检测与定位 , 同时算法对椒盐噪声的去除、 裁பைடு நூலகம்等 基本 图像操作 和位平 面去 除等恶意攻击 具有一
Ke r s c o ; dgtlwae makng;h l fa ie waemak n ; dgt sg au e y wo d : ha s ii tr ri a af r gl tr r i g ii -  ̄ in tr
近几年来 , 随着网络技术 的发展 , 多媒体内容的完整性认证, 尤其是图像的完整性认证技术亦随之 产生并 发展起 来 , 目前 的解 决 方案 集 中在数字 签名 技术 和 脆弱 水 印技 术 两 方 面。基 于 密码 学 的数字 其 签名技术 的工作流程为 : 信息发送者用其私钥对所传内容进行加密运算得到签名 , 该签名即具有不可抵 赖性 , 当接受者收到信息后 , 就可用发送者的公钥对数字签名 的真实性进行验证。此种技术复杂性低 , 易于实现, 但多媒体信息经过加密后容易引起攻击者的好奇和注意 , 并且有被破解 的可能, 而一旦破解 其内容就完全透明了, 而且密文不允许有一点改动 , 否则接受者无法恢复正确信息。脆弱数字水印技术 则 克服 了数字 签名 技术 的缺 点 。
高功率皮秒紫外激光器新进展

第8卷 第2期2015年4月 中国光学 Chinese Optics Vol.8 No.2 Apr.2015 收稿日期:2014⁃12⁃11;修订日期:2014⁃12⁃15 基金项目:固体激光技术重点实验室基金资助项目(No.2013A10403004)文章编号 2095⁃1531(2015)02⁃0182⁃09高功率皮秒紫外激光器新进展毛小洁1,2(1.固体激光技术重点实验室,北京100015;2.华北光电技术研究所,北京100015)摘要:高功率皮秒紫外激光器在高精密加工、激光医疗、光电对抗和光伏产业等领域有重要应用,近年来成为固体激光新光源研究热点。
本文对国内外基于和频技术的高功率皮秒紫外激光器研究新进展进行了归纳和总结。
首先,阐述了和频工作原理,介绍了和频产生皮秒紫外激光的非线性晶体;然后,介绍了国内外高功率皮秒紫外激光器的新进展,包括:高功率皮秒紫外激光器、高峰值功率皮秒紫外激光器、高功率和高峰值功率皮秒紫外激光器。
最后,展望了高功率皮秒紫外激光器的进一步发展及应用。
归纳和总结表明:高功率皮秒紫外激光器在国外较成熟,国内在该领域的研究刚刚起步。
光子晶体光纤和碟片激光器输出基频光的皮秒紫外激光器有突出的优势,已成为皮秒紫外激光产业的主力军。
关 键 词:激光器;皮秒激光器;和频技术;再生放大技术;紫外激光中图分类号:TN248 文献标识码:A doi:10.3788/CO.20150802.0182New progress in high⁃power picosecond ultraviolet laserMAO Xiao⁃jie 1,2(1.Science and Technology on Solid⁃State Laser Labotatory ,Beijing 100015,China ;2.North China Research Institute of Electro⁃Optics ,Beijing 100015,China )∗Corresponding author ,E⁃mail :maoxiaojie 991220@Abstract :High⁃power picosecond ultraviolet lasers have attracted considerable interests as novel laser source,due to their wide applications in high precision product,laser medical system,optoelectronic countermeasure and structuring of silicon.The research and development on high⁃power picosecond ultraviolet laser based on technology of sum frequency are classified and summarized.First,the mechanism of sum frequency and pico⁃second ultraviolet crystal are discussed.Then the high⁃power picosecond ultraviolet laser,the high⁃peak⁃power picosecond ultraviolet laser,and the high⁃power and high⁃peak⁃power picosecond ultraviolet lasers are dis⁃cussed.Finally,the prospect of further development and applications of high⁃power picosecond ultraviolet la⁃ser sources is put forward.According to the latest development,it is indicated that the high power picosecond ultraviolet lasers developed in abroad is in maturity stage but just in starting stage at.The high⁃power picosec⁃ond ultraviolet lasers based on photonic crystal fiber laser and thin disk laser have some merits,which play im⁃portant roles in laser industry.Key words :lasers;picoseconds laser;sum frequency;regenerative amplifier technology;ultraviolet laser1 引 言 与纳秒激光器相比,皮秒激光器的脉冲宽度更短,特别是小于10ps的激光脉冲,不会对加工材料造成热破坏,被称为“冷加工”,在精密加工领域得到广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a r X i v :h e p -p h /0110097v 1 6 O c t 2001SAGA-HE-176-01,TMU-NT-01-04Polarized light-antiquark distributions in a meson-cloud modelS.Kumano ∗Department of Physics,Saga UniversitySaga,840-8502,JapanM.Miyama †Department of Physics,Tokyo Metropolitan UniversityTokyo,192-0397,Japan(Dated:October 6,2001)Flavor asymmetry is investigated in polarized light-antiquark distributions by a meson-cloudmodel.In particular,ρmeson contributions to ∆¯u −∆¯dare calculated.We point out that the g 2part of ρcontributes to the structure function g 1of the proton in addition to the ordinary longitudinally polarized distributions in ρ.This kind of contribution becomes important at medium x (>0.2)with small Q 2(∼1GeV 2).Including N →ρN and N →ρ∆splitting processes,we obtain the polarized ρeffects on the light-antiquark flavor asymmetry in theproton.The results show ∆¯d excess over ∆¯u ,which is very different from some theoreticalpredictions.Our model could be tested by experiments in the near future.PACS numbers:13.60.Hb,13.88.+e,12.39.-xCONTENTSI Introduction1II Vector-meson contributions 2III Meson momentum distributions 5IV Results 7VConclusions10Acknowledgments 10AAnalytical expressions of meson momen-tum distributions 10References12I.INTRODUCTIONLight antiquark distributions are expected to be al-most flavor symmetric according to perturbative quan-tum chromodynamics (QCD).The next-to-leading-ordereffects contribute to the difference between ¯u and ¯d;how-ever,the contribution is tiny as long as they are esti-mated in the perturbative QCD region.Therefore,it was rather surprising to find the antiquark flavorasymmetry2 are some semi-inclusive data[11]which could be sensi-tive to the light antiquarkflavor asymmetry,they arenot accurate enough to provide strong constraint for thepolarized antiquarkflavor asymmetry[10,11].However,the Relativistic Heavy Ion Collider(RHIC)[12]and theCommon Muon and Proton Apparatus for Structure andSpectroscopy(COMPASS)[13]experiments should clar-ify the details of the polarized antiquark distributions ina few years.It is the right time to investigate the anti-quarkflavor asymmetry∆¯u/∆¯d by possible theoreticalmodels and to summarize various predictions.In this paper,we intend to shed light on the virtualmeson model which has been successful in the unpolar-ized studies[14].The purpose of this paper is to extendthe studies of the virtualρ-meson contributions by Friesand Sch¨a fer in Ref.[7].In particular,we point out thatthe g2part of the polarizedρcontributes to the polarizedflavor asymmetry in addition to the ordinary longitudi-nal part,which was calculated in Ref.[7].Because weshow new g2terms in this paper and because the situa-tion is still confusing in the sense that anotherρ-mesonpaper[8]claims major differences from Ref.[7]in sup-posedly the sameρcontributions,the detailed formalismis shown in the following sections.The meson model wasextended recently to a different direction in Ref.[8]byincludingπ−ρinterference terms;however,this paperis intended to investigate a different kinematical aspectwithin the meson model.The paper consists of the following.The formalismofρcontributions to∆¯u−∆¯d is presented in Sec.II.Meson momentum distributions are obtained in Sec.III,and numerical results of∆¯u−∆¯d are shown in Sec.IV.Our studies are summarized in Sec.V.II.VECTOR-MESON CONTRIBUTIONSThe cross section of polarized electron-nucleon scat-tering is generally written in terms of lepton and hadrontensors:dσ| p e|α22π X(2π)4δ4(p N+q−p X)×<p N,s N|Jµ(0)|X><X|Jν(0)|p N,s N>,(2.3)where the factorεµνρσis the antisymmetric tensor withthe conventionǫ0123=+1.p'NBFIG.1:Virtual vector-meson contribution.Next,we consider the process in Fig.1,where thenucleon splits into a virtual vector meson and a baryon,then the virtual photon interacts with the polarized me-son.Because scalar mesons do not contribute directly tothe polarized structure functions due to spinless nature,the lightest vector meson,namelyρ,is taken into ac-count in this paper.In future,we may extend the presentstudies by including heavier vector mesons.As thefinalstate baryon,the nucleon and∆are considered.Express-ing the V NB vertex multiplied by the meson propagatoras J V NB(k,s V,p N,s N,p B,s B)and calculating the crosssection due to the process in Fig.1,weobtain dσ| pe|α2(2π)3m B3tion to the nucleon tensor:W µν(p N ,s N ,q )=d 3p BE B×λV ,λB|J V NB |2W (V )µν(k,s V ,q ),(2.5)where m V is the meson mass,and the meson tensor isdefined byW (V )µν(k,s V,q )=1p N ·q+(p N ·q s σN −s N ·q p σN )g 22p N ·qi εµναβq αs N β,(2.8)is then applied to giveP µνW Aµν(p N ,s N ,q )=m 2NQ 2,(2.10)with Q 2=−q 2.In the same way,g 1and g 2structure functions of the vector meson are defined in the asym-metric part of the tensor.Operating the projection also on the meson tensor,we obtain PµνW (V )A µν(k,s V,q )=m Np N ·q k ·q(s N ·q s V ·q −q 2s N ·s V ),(2.12)A 2=m N m V q 2(p N ·q )2[q 2+(s N ·q )2]g 1(p N ,q )−γ2g 2(p N ,q )=d 3p BE BλV ,λB|J V NB |2×[A 1g V 1(k,q )+A 2g V2(k,q )].(2.14)Then,the above integration variables (p x B ,p y B ,p zB )are changed for the meson momentum fraction y ,the trans-verse momentum k ⊥of the meson,and the angle φbe-tween k ⊥and the transverse spin vector of the nucleon ( s T N ):y =k ·q(p N ·q )2[q 2+(s N ·q )2]g 1(x,Q 2)−γ2g 2(x,Q 2)=1xdy (2π)3E B∂y ′1+1+γ24 and the baryon B should move in the forward direction.The maximum transverse momentum is given by( k2⊥)max=m2N1+γ2+1)( yy′m2N(y m N,A2=γ2m2Vy′m N((2π)3E B∂y′yy′m2N(ym N,(2.26)fλV 2L (y)= ( k2⊥)max0d k2⊥γ22πCλV L m2Vy′y2m3N(y λN f1L(y)−τ2N f1T(y) g V1(x/y,Q2)+ −λN f2L(y)+τ2N f2T(y) g V2(x/y,Q2) .(2.29)Combining the longitudinal polarizationλN=1(τN=0)with the transverse polarizationτN=1(λN=0),wecan extract the g1part asg1(x,Q2)=1y× ∆f1L(y)+∆f1T(y) g V1(x/y,Q2)− ∆f2L(y)+∆f2T(y) g V2(x/y,Q2) ,(2.30)where the functions∆f V Ni(y)with i=1L,2L,1T,and2T are defined by∆f i(y)=fλV=+1i(y)−fλV=−1i(y).(2.31)The g2part is obtained in the same way asg2(x,Q2)=1y× −∆f1L(y)+∆f1T(y)/γ2 g V1(x/y,Q2)+ ∆f2L(y)−∆f2T(y)/γ2 g V2(x/y,Q2) .(2.32)In the limit Q2→∞,namelyγ2→0,only the momen-tum distribution∆f1L(y)remainsfinite,and Eq.(2.30)agrees with the expression in Ref.[7].In Eq.(2.30),there are additional terms associ-ated with g2of the meson.For discussing these g2type contributions to∆¯u−∆¯d,g V2is approximated bythe Wandzura-Wilczek(WW)relation[15]by neglectinghigher-twist terms:g V(W W)2(x,Q2)=−g V1(x,Q2)+ 1x dy5 Then,providing the leading-order expression for g V1,wehaveg V(W W) 2(x,Q2)=1y∆¯q V i(y,Q2),(2.35)and the same equation for∆q V(W W)i (x,Q2).From theseequations,we obtain a vector meson contribution to the polarized antiquark distribution∆¯q i in the proton as∆¯q V NBi (x,Q2)=1y× ∆f1L(y)+∆f1T(y) ∆¯q V i(x/y,Q2)− ∆f2L(y)+∆f2T(y) ∆¯q V(W W)i(x/y,Q2) .(2.36)If this kind of vector-meson contribution is the only source for the polarizedflavor asymmetry,the∆¯u−∆¯d distribution is then calculated by taking the difference∆¯q V NBi=u−∆¯q V NBi=din the above equation.III.MESON MOMENTUM DISTRIBUTIONSIn order to estimate the meson contributions numeri-cally,it is necessary to calculate the momentum distribu-tions∆f V Ni (y)of the meson.We calculate them by con-sidering the vector-meson creation processes N→V N′and N→V∆through the interactionsV V NN= φ∗V· T F V NN(k)2m Niσµν Kν u(p N,s N),(3.1) V V N∆= φ∗V· T F V N∆(k)m Vγ5γµ× Kµεν∗− Kνεµ∗ u(p N,s N),(3.2)where u(p N,s N)is the Dirac spinor,Uµ(p∆,s∆)is the Rarita-Schwinger spinor,andεµis the polarization vec-tor of the vector meson.The V NN and V N∆coupling constants are denoted as g V,f V,and f V N∆,and form factors are denoted as F V NN(k)and F V N∆(k).Isospin dependence is taken into account by the factor φ∗V· T, and it is defined in terms of areducedmatrixelementandaClebsch-Gordan coefficient[16,17]<B| φ∗V· T|N>=(−1)M V<T B T T N>2T B+1×<T N M N:1−M V|T B M B>(3.3)with<1/2 T 1/2>=√k=p N−p B=(E N−E B, k),(3.4) where E V=4m2N g2V−s V +g V f V −2k·ε∗− K·ε∗4m2N ( K2+ K·ε K·ε∗)(s V +2(p N· K+p′N· K)(p N·ε K·ε∗+p N·ε∗ K·ε)−2p N· K( K·εk·ε) ,(3.5)where s′µ,ˆsµV,m Nεµναβε∗νεαp Nβ,(3.6)ˆsµV=−isµV=−ikβ.(3.8)6 The meson polarization vector is given byεµ= k· ελV m V(E V+m V) k ,(3.9)whereλV is the meson helicity.The spherical unit vectorελVis defined in the frame with theˆz′axis parallel to k:ε±1=∓12(ˆx′±iˆy′), ε0=ˆz′.(3.10)In the same way,the V N∆term is calculated from Eq.(3.2)asλ∆|V V N∆|2=−| φ∗V· T|2F2V N∆(k)f2V N∆s V 2(p∆· K)2+m2∆ K2−4m N m2∆m V p∆· K s N·ˆs V+2m2N m∆m V( K2s N·s1−p∆· Ks N·ˆs2) ,(3.11) where sµ1andˆsµ2are defined bysµ1=ikβ,(3.12)ˆsµ2=i2E V(E N−E V−E B)+1y′(m2N−m2V B),(3.14)where m2V B is defined bym2V B=(k+p B)2=m2V+ k2⊥1−y′.(3.15)y∆f(y)ρNNFIG.2:Meson momentum distributions∆f1L(y)and∆f2L(y)from theρNN process.The solid and dashed curvesare obtained at Q2=1and2GeV2,respectively,with x=0.2.The isospin factors are taken out from the distributions asexplained in thetext.y∆f(y)ρNNFIG.3:Meson momentum distributions∆f1T(y)and∆f2T(y)from theρNN process.The solid and dashed curvesare obtained at Q2=1and2GeV2,respectively,with x=0.2.Therefore,J V NB is expressed asJ V NB=17y∆f (y )ρN ∆FIG.4:Meson momentum distributions ∆f 1L (y )and ∆f 2L (y )from the ρN ∆process.The solid and dashed curves are obtained at Q 2=1and 2GeV 2,respectively,with x=0.2.y∆f (y )ρN ∆FIG.5:Meson momentum distributions ∆f 1T (y )and ∆f 2T (y )from the ρN ∆process.The solid and dashed curves are obtained at Q 2=1and 2GeV 2,respectively,with x =0.2.dependence,the unphysical region y <x is not shown in these figures.In Figs.2and 3,the distributions due to the ρNN process are shown.In Figs.4and 5,the dis-tributions due to the ρN ∆process are shown.In these distributions,the isospin factors are taken out from thedistributions,so that the distributions ∆f (y )/| φ∗V· T |2are actually shown,and there are differences of factors 3(in ρNN )and 2(in ρN ∆)from those in Ref.[7].The coupling constants are taken as g 2V /(4π)=0.84,f V =6.1g V ,and f 2V N ∆/(4π)=20.45[21].In spite of the positive ∆f 1L (y )and ∆f 2L (y )distri-butions from the ρNN process in Fig.2,the distribu-tions from the ρN ∆are mainly negative.In the un-polarized case,the meson momentum distributions are,of course,positive.However,because the distribution ∆f (y )is defined by the helicity difference in Eq.(2.31),it becomes either positive or negative depending on the helicity structure at the V NB vertex.For the meson angular momentum state ℓz ,the V NB vertex amplitudeis proportional to k ℓz⊥and higher order terms.Since the momentum k ⊥is in general much smaller than the nu-cleon mass,the vertex amplitudes with ℓz =0contribute dominantly to ∆f (y ).There is only one ρNN amplitude with ℓz =0and λV =0,and it has the helicity structure λV =+1and λ′N =−1/2,where the initial helicity isfixed at λN =+1/2.This fact indicates that f λV =+11L(y )and f λV =+12L (y )are certainly larger than f λV =−11L (y )and f λV =−11L(y ),respectively,which results in the positive dis-tributions ∆f 1L (y )and ∆f 1L (y )from the ρNN process.On the other hand,there are two amplitudes with ℓz =0and λV =0in the ρN ∆process,and they have helicity states λV =−1,λ∆=+3/2and λV =+1,λ∆=−1/2.Actually calculating these helicity amplitudes,we find that both amplitudes depend much on the momentum choice,namely (A)or (B),at the ρN ∆vertex.Therefore,f λV =+11L (y )and f λV =+12L(y )are either larger or smaller than f λV =−11L (y )and f λV =−12L (y ),respectively,depending on the momentum choice.In the prescription (B),thepositive helicity distributions f λV =+11L (y )and f λV =+12L(y )are mostly smaller,so that ∆f 1L (y )and ∆f 2L (y )become negative distributions in the wide x region.However,the situation is opposite in the prescription (A),where the distributions are mostly positive.As expected,the distributions ∆f 1L (y )in Figs.2and 4are the dominant ones and they are almost independent of Q 2.However,∆f 2L (y ),∆f 1T (y ),and ∆f 2T (y )are roughly proportional to 1/Q 2,so that these new contri-butions become more important as Q 2becomes smaller.Figures 2−5clearly show this tendency.The transverse distributions ∆f 1T (y )and ∆f 2T (y )are an order of mag-nitude smaller than the longitudinal ones ∆f 1L (y )and ∆f 2L (y ).Therefore,the major correction comes from the distribution ∆f 2L (y ),which is almost comparable mag-nitude with ∆f 1L (y )in Figs.2and 4.Because the cor-rection terms are proportional to γ2=4m 2N x 2/Q 2,they are small contributions in the kinematical range x <0.05with Q 2>1GeV 2.However,their effects become more pronounced as x becomes larger.IV.RESULTSFor calculating the ∆¯u −∆¯ddistribution numerically,we need the polarized antiquark distributions in ρ,the isospin factors,and the vertex form factors.The ρ-meson parton distributions are not known,so that the same prescription is used as the one in Refs.[7,8].Considering a lattice QCD estimate [22],the polarized valence-quark distribution is assumed as∆V ρ(x,Q 2)=0.6V π(x,Q 2),(4.1)at Q 2=1GeV 2.The distribution in the pion is taken from the GRS (Gl¨u ck,Reya,and Schienbein)parametrization in 1999[23].The charge symmetry suggests the relation for the valence-quark distributions:(∆¯u )val ρ−=(∆¯d )val ρ+=2(∆¯u )val ρ0=2(∆¯d )val ρ0=∆V ρ.(4.2)For the sea-quark distributions,they are assumed to beflavor symmetric.Then,we obtain the ∆¯u −∆¯ddistri-8 butions in theρmeson:(∆¯u−∆¯d)ρ+=−∆Vρ,(∆¯u−∆¯d)ρ0=0,(∆¯u−∆¯d)ρ−=+∆Vρ.(4.3)For the g2part ofρ,the Wandzura-Wilczek relation isused as discussed in Sec.II:∆V W Wρ(x,Q2)=−∆Vρ(x,Q2)+ 1x dy3∆fρN∆1L+1T ⊗∆Vρ− −2∆fρNN2L+2T+21+γ2 1x dy| φ∗ρ· T|2,i=1,2.(4.8) The expression of Eq.(4.6)may seem to be different from Refs.[7,8]even in the limit Q2→∞;however,it is just the matter of the definition of the meson momentum distributions.They included the isospin factor |<n| φ∗ρ+· T|p>|2+|<p| φ∗ρ0· T|p>|2=3,(4.9) in the distribution∆f(y)for theρNN process and the factor|<∆0| φ∗ρ+· T|p>|2+|<∆+| φ∗ρ0· T|p>|2+|<∆++| φ∗ρ−· T|p>|2=2(4.10) for theρN∆.Therefore,our expression certainly agrees on those in Refs.[7,8]at Q2→∞.The remaining quantities are the vertex form factors. They are roughly known from the studies of one-boson-exchange potentials(OBEPs);however,a slight change of the cutoffparameter could result in a large difference of antiquark distributions.Furthermore,there is an issue of the charge and momentum conservations for the splitting process[24]if a t(=(p N−p B)2)dependent form factor is used.A possible solution is to use the t dependent form factor multiplied by a u dependent one[25].For this purpose,it is more convenient to take an exponential form factor so as to become the additional form t+u within the form factor:FρNN(k)=FρN∆(k)=exp m2N−m2V B9xx (∆u –∆d )FIG.7:∆¯u −∆¯ddistributions from the ρNN process at Q 2=1GeV 2.The 1L ,2L ,1T ,and 2T type contributions and their summation areshown.xx (u –∆d )FIG.8:∆¯u −∆¯ddistributions from the ρN ∆process at Q 2=1GeV 2.The 1L ,2L ,1T ,and 2T type contributions and their summation areshown.xx (∆u –∆d )FIG.9:∆¯u −∆¯ddistributions from the ρNN and ρN ∆pro-cesses at Q 2=1GeV 2.Each term contribution has almost the same tendency in the ρN ∆process as shown in Fig.8:the 1L term is the major one and the 2L term provides some corrections depending on the x region.There are two contributing processes,p →ρ+∆0and p →ρ−∆−,and the isospin factor is three times larger in the latter one.This fact may seem to indicate that the ρN ∆processes provideaxx (∆u –d )FIG.10:∆¯u −∆¯d distributions from the ρNN and ρN ∆processes at Q 2=1GeV 2for the vertex momentum choice (A).positive contribution to ∆¯u −∆¯din the nucleon due to the valence ¯u distribution in ρ−.This kind of explanation is certainly valid in the unpolarized flavor asymmetry [5,26].However,this is not the case in Fig.8,where the 1L and 1T distributions are mostly negative.This misleading result comes from the helicity structure at the N →ρ∆vertex.Although the helicity difference ∆f (y )is positive for the ρNN ,it is negative for the ρN ∆in the case (B)as explained in Sec.III.Therefore,theρN ∆contribution becomes also negative for the ∆¯u −∆¯ddistribution.Next,the ρNN and ρN ∆contributions are compared in Fig.9.The magnitude of the ρN ∆contribution is very small compared with the ρNN one in (B).From Figs.2and 4,we find that the magnitude of ∆f ρN ∆(y )is already three times smaller than ∆f ρNN (y ),and the ρN ∆contribution is further suppressed by the isospin factor (2/3)/2=1/3.Therefore,the overall magnitude becomes much smaller.As discussed in Sec.III,we may have another vertex choice (A)instead of (B).In showing the numerical re-sults so far,the model (B)has been used.We show the choice (A)results in Fig.10.It is obvious that the dis-tributions depend much on this vertex choice.There are two major differences from Fig.9.One is that the order of magnitude is much smaller in the ρNN distribution,and the other is that the ρN ∆distribution becomes pos-itive.These are due to the difference of helicity structure at the vertices between (A)and (B).We also discuss the vertex cutoffdependence.The ver-tex cutoffhas been taken as Λe =1GeV in this section;however,it is well known that calculated antiquark dis-tributions are very sensitive to the cutoffvalue [26].In the present paper,the exponential form factor is used instead of dipole or monopole form factor,which is more popular in the studies of OBEPs.The cutoffparameters of different form factors could be related by [26]Λ1=0.62Λ2=0.78√10xx (u –∆d )FIG.11:Cutoffdependence of ∆¯u −∆¯dis shown at Q 2=1GeV 2by taking Λe =0.5,1.0,and 1.3GeV.|x (∆u –∆d )|Λe (GeV)FIG.12:Cutoffdependence of |∆¯u −∆¯d|is shown at x =0.2and Q 2=1GeV 2as a function of the parameter Λe .by the form factorsF (1)V NB (k )=1−m 2N /Λ21(1−m 2V B /Λ22)2.(4.13)Even in the well investigated pion-nucleon coupling,the monopole cutoffparameter Λ1ranges from 0.6GeV to 1.4GeV in quark models and OBEPs [26].It roughly corresponds to Λe from 0.5GeV to 1.3GeV accordingto Eq.(4.12).We show the ∆¯u −∆¯ddistributions for various cutoffparameters,Λe =0.5,1.0,and 1.3GeV in Fig.11for the prescription (B).In the unpolarized dis-tribution ¯u −¯din Ref.[26],it is fortunate that the cutoffdependence is rather small because of the cancellation between the πNN and πN ∆processes.However,the ρNN is the dominant contribution,as shown in Fig.9,in the present polarized studies of (B),so that the overall magnitude is much dependent on the cutoffparameter.There are orders of magnitude differences between the three curves.Next,fixing x at 0.2,we show the cutoffdependence in Fig.12.In fact,there is four orders of magnitude variation from Λe =0.5to 1.5GeV.Therefore,an accurate determination of the cutoffparameters is a key for a reliable meson-cloud prediction.There have been studies in chiral soliton models [6].They predict very different distributions,namely ∆¯u ex-cess over ∆¯d and the order of magnitude of ∆¯u −∆¯dis large (∼0.4)at x =0.2.Although the soliton models and the meson-cloud models obtain very similar distri-butions for the unpolarized ¯u −¯d,it is interesting to find opposite prediction for the polarized distributions.The physics reason for the difference is not clear at this stage.In any case,the distribution ∆¯u −∆¯dshould be clari-fied experimentally in the near future by W production process [12]and semi-inclusive experiments [13].Further-more,there is a possibility to use the polarized proton-deuteron Drell-Yan process [27]in combination with the proton-proton reaction.Until the data will be taken,the theoretical predictions should be discussed in details for comparison.V.CONCLUSIONSThe ρmeson contributions to the polarized antiquarkdistribution ∆¯u −∆¯dhave been investigated.In particu-lar,we pointed out that the g 2part of ρcontributes to the polarized distributions in the nucleon.We obtained the extra contributions denoted as 2L ,1T ,and 2T in addi-tion to the ordinary one (1L ).Although the extra terms are small in the small x region (x <0.05),the magnitude of the 2L term becomes comparable to the ordinary onein the x region x >0.2.The g ρ2contributions are impor-tant in the kinematical region of medium x with smallQ 2.The obtained ∆¯u −∆¯dis very sensitive to the cutoffparameter.The model should be investigated further in order to compare with future experimental data.ACKNOWLEDGMENTSS.K.and M.M.were supported by the Grant-in-Aid for Scientific Research from the Japanese Ministry of Edu-cation,Culture,Sports,Science,and Technology.M.M.was also supported by the JSPS Research Fellowships for Young Scientists.They would like to thank R.J.Fries for communications about the calculations in Refs.[7,8,18,19].APPENDIX A:ANALYTICAL EXPRESSIONS OF MESON MOMENTUM DISTRIBUTIONSIn the limit Q 2→∞,the following meson momentumdistributions agree on those by Fries and Sch¨a fer (FS)[7]with a minor misprint in a ρN ∆term.The situation of the momentum distributions is somewhat confusing in the sense that Cao and Signal (CS)[8]pointed out two major differences from Ref.[7]although the formalism is exactly the same except for interference terms.Accord-ing to Ref.[8],all the g ρNN f ρNN (g v f v in our notation)terms should be replaced by −g ρNN f ρNN ,and the mo-mentum (B)results for ρN ∆agree on those of (A)in Ref.[7]instead of (B).11 In spite of their claim,we believe that the FS resultsare right with the following reasons.We also checkedthe helicity amplitudes in Ref.[18],which is referredto as J¨u lich in the following.In addition to obvious ty-pos,our results differ from the J¨u lich expressions.First,complex conjugate should be taken if their expressionsare given for the process N→ρB as indicated in theirappendix.Second,f v terms have different sign.If theJ¨u lich amplitudes were written for Nρ→B or B→ρN,we would agree on their expressions.Depending on theρmomentum direction,the f v term in Eq.(3.1)becomeseither positive or negative,which could lead to the dif-ferent sign of the g v f v terms.However,it is obvious thatthe outgoing meson is considered in the formalism.Fur-thermore,taking summations of the helicity amplitudes,we reproduce the unpolarized momentum distributionsof Melnitchouk and Thomas[19,28],whereas the CS re-sults are inconsistent.The V NN vertex in Eq.(3.1)isalso consistent with the one in Ref.[29].We also testedρN∆helicity amplitudes in the vertexmomentum(B),but the results disagree on the J¨u lichexpressions.However,if the momentum(A)is used,ourresults agree on them.It seems to us that the helicityamplitudes are shown for the choice(B)inρNN andfor(A)inρN∆.Therefore,as far as we investigated,we believe that the FS calculations are right also for theρN∆process.In the following,we show the helicity dependent mesonmomentum distributions.Because the distributions withλV=0are irrelevant for calculating∆f(y),so that theyare not shown.The isospin factors are extracted out fromthe expressions.fλV1L,V NB(y)= ( k2⊥)max0dk2⊥{m2N−m2V B(y′,k2⊥)}2×∂y′y′ 1+k2⊥1+γ2−1) D L,λV V NB(y′,k2⊥),(A1)fλV1T,V NB(y)= ( k2⊥)max0dk2⊥{m2N−m2V B(y′,k2⊥)}2×∂y′y′γ2k⊥16π2F2V NB(y′,k2⊥)∂y yy2m2ND L,λVV NB(y′,k2⊥),(A3)fλV2T,V NB(y)= ( k2⊥)max0dk2⊥{m2N−m2V B(y′,k2⊥)}2×∂y′y′γ2k⊥m2V1+γ2−1)D T,λV V NB(y′,k2⊥).(A4)Here,the partial derivative is given by∂y′y′= 1+γ2y′3(1−y′)2 g2V k2⊥+y′4m2N +g V f V y′ k2⊥+y′ y′2m2N−(1−y′)m2V+f2Vy′3(1−y′)2 g2V(1−y′)2−g V f V y′(1−y′)+f2Vy′3(1−y′)2 −2g2V y′2(1−y′)m N +g V f V4m2N2y′m N k2⊥+y′2m2N−(1−y′)m2V .(A8)In the V N∆process,the distributions are calculated for the vertex momentum(A)asD L,+1V N∆(y′,k2⊥)=f2V N∆3y′3(1−y′)2m2∆m2V× k4⊥m2N+k2⊥{4y′2m2N m2∆−4y′(1−y′)m N m∆m2V +(1−y′)2m4V}+3y′4m2N m4∆−6y′2(1−y′)m N m3∆m2V +3(1−y′)2m2∆m4V ,(A10)12D T,λVV N∆(y′,k2⊥)=λV f2V N∆k⊥y′3(1−y′)2 g2V k2⊥+y′4m2N+g V f V y′ (1+y′)k2⊥+2y′3m2N+f2Vy′3(1−y′)2 g2V(1−y′)2−g V f V y′(1−y′)+f2Vy′3(1−y′)2 −2g2V y′2(1−y′)m N +g V f V4m2N4y′m N k2⊥+y′2m2N ,(A14)D L,+1V N∆(y′,k2⊥)=f2V N∆3y′3(1−y′)2m2∆m2V k6⊥+k4⊥ (3+2y′)m2∆+4y′m N m∆+(1−2y′+2y′2)m2N +k2⊥ y′(6+y′)m4∆+10y′2m N m3∆−2y′(3−4y′−y′2)m2N m2∆−4y′2(1−y′)m3N m∆+y′2(1−y′)2m4N +3y′2m6∆+6y′3m N m5∆−3y′2(2−2y′−y′2)m2N m4∆−6y′3(1−y′)m3N m3∆+3y′2(1−y′)2m4N m2∆ ,(A16)D T,λVV N∆(y′,k2⊥)=λV f2V N∆k⊥13(1999);T.Morii and T.Yamanishi,Phys.Rev.D61, 057501(2000);Erratum,D62,059901(2000);M.Stratmann and W.Vogelsang,hep-ph/0107064. [12]Proposal on Spin Physics Using the RHIC PolarizedCollider(RHIC-SPIN collaboration),August1992;update,Sept.2,1993.N.Saito,in Spin structure of the nucleon,edited by T.-A.Shibata,S.Ohta, and N.Saito,World Scientific,Singapore,(1996).See /RHIC/Spin.[13]Proposal“Common Muon and Proton Apparatus forStructure and Spectroscopy”(COMPASS collabo-ration),CERN/SPSLC96-14,March1,1996.See http://axhyp1.cern.ch/compass.[14]For summaries of the unpolarized meson models,seee.g.Ref.[5];B.C.Pearce,J.Speth,and A.Szczurek,Phys.Rep.242,193(1994);W.Koepf,L.I.Frank-furt,and M.Strikman,Phys.Rev.D53,2586(1996);J.Speth and A.W.Thomas,Adv.Nucl.Phys.24, 83(1997).[15]S.Wandzura and F.Wilczek,Phys.Lett.B72,195(1977).[16]S.Kumano,Phys.Rev.D41,195(1990).[17]A.R.Edmonds,Angular Momentum in QuantumMechanics,Princeton University Press(1974). [18]H.Holtmann,A.Szczurek,and J.Speth,Nucl.Phys.A569(1996)631.[19]W.Melnitchouk and A.W.Thomas,Phys.Rev.D47,3794(1993); A.W.Thomas and W.Mel-nitchouk,in New Frontiers in Nuclear Physics, edited by S.Homma,Y.Akaishi and M.Wada, World Scientific(1993).[20]J.J.Sakurai,pp.248-250in Advanced Quantum Me-chanics,Addison-Wesley(1967).[21]R.Machleidt,K.Holinde,and Ch.Elster,Phys.Rep.149,1(1987).Used coupling constants are listed in page56.[22]C.Best et.al.,Phys.Rev.D56,2743(1997).[23]M.Gl¨u ck,E.Reya,and I.Schienbein,Eur.Phys.J.C10,313(1999).[24]P.J.Mulders,A.W.Schreiber,and H.Meyer,Nucl.Phys.A549,498(1992).[25]V.R.Zoller,Z.Phys.C53,443(1992).[26]S.Kumano,Phys.Rev.D43(1991)59&3067.[27]S.Kumano and M.Miyama,Phys.Lett.B479,149(2000);B.Dressler et al.,Eur.Phys.J.C18,719 (2001).[28]R.J.Fries,personal communications.[29]R.Machleidt,page113in Relativistic Dynamics andQuark-Nuclear Physics,edited by M.B.Johnson andA.Picklesimer,John Wiley&Sons(1986).。