2020-2021学年山东济宁市七年级上期末数学试卷及答案解析

合集下载

2019-2020学年山东济宁七年级上数学期末试卷及答案

2019-2020学年山东济宁七年级上数学期末试卷及答案

2021-2021学年山东济宁七年级上数学期末试卷一、选择题1. 2020的相反数是( ) A.−12020 B.12020C.2020D.−20202. 假设a ,b 互为倒数,那么−4ab 的值为( ) A.−4 B.−1 C.1 D.03. 单项式2x 3y 1+2m 与3x n+1y 3的和是单项式,那么m +n 的值是( 〕 A.−3 B.3 C.6 D.−64. 下面各式中,计算正确的选项是( ) A.−42=16 B.(−12)3=−18C.23=6D.−5−2=−35. 如果x =3是关于x 的方程2x +m =7的解,那么m 的值为( 〕 A.−1 B.2C.1D.−26. 如图是由假设干个小正方体所搭成的几何体,那么从左边看这个几何体时,所看到的几何图形是( )A.B.C.D.7. 如图,检测4个足球,其中超过标准质量的克数记为正数,缺乏标准质量的克数记为负数,从轻重的角度看,最接近标准的是( )A.B. C. D.8. 一个几何体的展开图如下图,这个几何体是( )D.圆柱9. 如图,点A 在点O 的北偏西60∘方向上,点B 在点O 的南偏东20∘的方向上,那么∠AOB 的大小为( )A.150∘B.140∘C.120∘D.110∘10. 实数a ,b 在数轴上的对应点的位置如下图,把−a ,b ,0按照从小到大的顺序排列,正确的选项是( )A.0<−a <bB.−a <0<bC.b <0<−aD.b <−a <011. 如图,C ,D ,E 是线段AB 的四等分点,以下等式不正确的选项是( )A.AB =4ACB.CE =12ABC.AE =34ABD.AD =12CB12. 某商场销售甲、乙两种服装,乙服装每件的本钱比甲服装贵50元,甲、乙服装均按本钱价提高 40% 作为标价出售.一段时间后,甲服装卖出了350件,乙服装卖出了200件,销售金额为129500元,假设用方程 350×1.4x +200×1.4×(x +50)=129500 表示其中的数量关系,那么式子中x 所表示的量是( )二、填空题13. 假设a是最小的正整数,b是最大的负整数,那么a+b=________.14. 写出一个含有两个字母,且次数为3的单项式________.15. 用科学记数法表示北京故宫的占地面积约为7.2×105m2,那么7.2×105的原数是________.16. 如图,射线ON,OE分别为正北、正东方向,∠AOE=35∘15′,那么射线OA的方向是北偏东________∘________′.17. 假设(m+3)x|m|−2+2=1是关于x的一元一次方程,那么m的值为________.18. 如图①,O为直线AB上一点,作射线OC,使∠AOC=120∘ ,将一个直角三角尺如图摆放,直角顶点在点O处,一条直角边OP在射线OA上,将图①中的三角尺绕点O以每秒5∘的速度按逆时针方向旋转〔如图②所示〕,在旋转一周的过程中第t秒时,OQ所在直线恰好平分∠BOC,那么t的值为________.三、解答题19. 计算:(1)(45−34+12)×(−20);(2)32×(−13)2÷(−3)−112×(−2).20. 计算:(1)(45−34+12)×(−20);(2)32×(−13)2÷(−3)−112×(−2).21. 如图,∠ABC=90∘,∠CBD=30∘,BP平分∠ABD.求∠ABP的度数.22. 解方程:x+12−3=2−x4.23.(1)如图1,点M在直线AB上,点P,Q在直线CD上.按以下语句画图:①画直线PM;②画线段QM;③过点P画直线,交线段QM于点N.(2)如图2,用适当语句表示图中点与直线的位置关系:①点P与直线AB的位置关系;②点Q与直线AB的位置关系.24. 先化简,再求值:3x2y−[2x2y−3(2xy−x2y)−xy],其中x=−1,y=−2.25. 列方程解应用题:登山运动是最简单易行的健身运动,在秀美的景色中进行有氧运动,特别是山脉中森林覆盖率高,负氧离子多,真正到达了身心愉悦的进行体育锻炼.张老师和李老师登一座山,张老师每分钟登高10米,并且先出发30分钟,李老师每分钟登高15米,两人同时登上山顶,求这座山的高度.26. 如图,P是线段AB的中点,点C,D把线段AB三等分.线段CP的长为1.5cm,求线段AB的长.27. (1)阅读思考:小迪在学习过程中,发现“数轴上两点间的距离〞可以用“表示这两点数的差〞来表示,探索过程如下:如下图1,线段AB,BC,CD的长度可表示为:AB=3=4−1,BC=5=4−(−1),CD=3=(−1)−(−4),于是他归纳出这样的结论:如果点A表示的数为a,点B表示的数为b,当b>a时,AB=b−a(较大数−较小数〕.(2)尝试应用:①如下图2,计算:OE=________,EF=________;②把一条数轴在数m处对折,使表示−19和2019两数的点恰好互相重合,那么m=________;(3)问题解决:①如下图3,点P表示数x,点M表示数−2,点N表示数2x+8,MN=4PM,求出点P和点N分别表示的数;②在上述①的条件下,是否存在点Q,使PQ+QN=3QM,假设存在,请直接写出点Q所表示的数;假设不存在,请说明理由.参考答案与试题解析2021-2021学年山东济宁七年级上数学期末试卷一、选择题1.【答案】D2.【答案】A3.【答案】B4.【答案】B5.【答案】C6.【答案】B7.【答案】C8.【答案】C9.【答案】B10.【答案】A11.【答案】D12.【答案】C 二、填空题13.【答案】14.【答案】−2m2n(答案不唯一)15.【答案】72000016.【答案】54,4517.【答案】318.【答案】24 s或60 s三、解答题19.【答案】解:(1)原式=45×(−20)−34×(−20)+12×(−20) =−16+15−10=−11.(2)原式=9×19÷(−3)−32×(−2)=1÷(−3)+3=−13+3=83.20.【答案】解:(1)原式=45×(−20)−34×(−20)+12×(−20) =−16+15−10=−11.(2)原式=9×19÷(−3)−32×(−2)=1÷(−3)+3=−13+3=83.21.【答案】解:∵ ∠ABC=90∘,∠CBD=30∘,∵ ∠ABD=120∘,∵ BP平分∠ABD,∵ ∠ABP=60∘.22.【答案】解:去分母得:2(x+1)−12=2−x,去括号得:2x+2−12=2−x,移项得:3x=12,系数化1得:x=4.23.【答案】解:(1)如下图1,直线PM、线段QM、直线PN即为所求;解:(2)①点P与直线的位置关系:点P在直线AB上;②点Q与直线AB的位置关系:点Q在直线AB外.24.【答案】解:原式=3x2y−2x2y+6xy−3x2y+xy=−2x2y+7xy,当x=−1,y=−2时,原式=−2x2y+7xy=−2×(−1)2×(−2)+7×(−1)×(−2)=18.25.【答案】解:设这座山高x米,根据题意得:x10−x15=30,解得:x=900,答:这座山高900米.26.【答案】解:∵ P为AB的中点,∵ AP=PB,∵ C,D把线段AB三等分,∵ AC=DB,∵ PC=PD,∵ P为CD中点,∵ CP=1.5,∵ CD=3,∵ AB=3CD=9cm.27.【答案】5,8,1000(3)①MN=2x+8−(−2),PM=−2−x,∵ MN=4PM,即2x+10=4(−2−x),∴ x=−3.∵ 点P表示的数为−3,点N表示的数为2;②存在.理由如下:设点Q表示的数为a,根据题意得:−3−a+2−a=3(−2−a),解得a=−5,或a+3+2−a=3(a+2),解得a=−13,故点表示的数为−5或−13.。

2020-2021学年山东省济宁市兖州区七年级(上)期末数学试卷 (含解析)

2020-2021学年山东省济宁市兖州区七年级(上)期末数学试卷 (含解析)

2020-2021学年山东省济宁市兖州区七年级第一学期期末数学试卷一、选择题(共10小题).1.如图,点O为数轴的原点,若点A表示的数是﹣1,则点B表示的数是()A.﹣5B.﹣3C.3D.42.下列运算正确的是()A.﹣2(a+b)=﹣2a﹣b B.﹣2(a+b)=﹣2a+bC.﹣2(a+b)=﹣2a﹣2b D.﹣2(a+b)=﹣2a+2b3.如图,学校(记作A)在蕾蕾家(记作B)南偏西25°的方向上,且与蕾蕾家的距离是4km,若∠ABC=90°,且AB=BC,则超市(记作C)在蕾蕾家的()A.南偏东65°的方向上,相距4kmB.南偏东55°的方向上,相距4kmC.北偏东55°的方向上,相距4kmD.北偏东65°的方向上,相距4km4.下列方程变形中,正确的是()A.方程5x﹣2=2x+1,移项,得5x﹣2x=﹣1+2B.方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x+1C.方程x=,系数化为1,得x=1D.方程=,去分母得x+1=3x﹣15.若关于x的方程2x+a﹣4=0的解是x=2,则a的值等于()A.﹣8B.0C.2D.86.下面四个图形中,经过折叠能围成如图所示的几何图形的是()A.B.C.D.7.已知等式3a=2b+5,则下列等式中不一定成立的是()A.3a﹣5=2b B.3ac=2bc+5C.3a+1=2b+6D.8.有下列四个算式:①(﹣5)+(+3)=﹣8,②﹣(﹣2)3=6,③(+)+(﹣)=,④﹣3÷(﹣)=9.其中正确的有()A.0个B.1个C.2个D.3个9.某商店有两个进价不同的计算器都卖了64元,其中一个盈利60%,另一个亏损20%,在这次买卖中,这家商店()A.不赔不赚B.赚了32元C.赔了8元D.赚了8元10.高速公路上,从3千米处开始,每隔4千米经过一个限速标志牌,并且从10千米处开始,每隔9千米经过一个速度监控仪,司机小王刚好在19千米的A处第一次同时经过这两种设施,那么,司机小王第二次同时经过这两种设施需要从A处继续行驶()千米.A.36B.37C.55D.91二、填空题(共5小题).11.如果盈利100元记作+100元,那么亏损50元记作元.12.如图,从学校A到书店B最近的路线是①号路线,得到这个结论的根据是:.13.2020年10月29日,中国共产党十九届五中全会在北京闭幕.会后发表公报指出,“十三五”时期,脱贫攻坚成果举世瞩目,农村55750000贫困人口脱贫.数据55750000用科学记数法表示为.14.观察下列算式:12﹣02=1+0=1;22﹣12=2+1=3;32﹣22=3+2=5;42﹣32=4+3=7;52﹣42=5+4=9;….若字母n表示自然数,请把你观察到的规律用含n的等式表示出来:.15.今年3.15期间,惠东商场为感谢新老顾客,决定对某产品实行优惠政策:购买该产品,另外赠送礼品一份.经过与该产品的供应商协调,供应商同意将该产品供货价格降低5%,同时免费为顾客提供礼品;而该产品的商场零售价保持不变.这样一来,该产品的单位利润率由原来的x%提高到(x+6)%,则x的值是.三、解答题:本大题共7道小题,满分共55分,解答应写出文字说明和推理步骤.16.计算:(1)﹣8﹣(﹣8)﹣10+5;(2)(﹣1)2021+(﹣18)×|﹣|﹣4÷(﹣2);(3)先化简,再求值:(3m2﹣mn+5)﹣2(5mn﹣4m2+2),其中m2﹣mn=2.17.解方程:(1)2(2x+1)=1﹣5(x﹣2);(2).18.如图,在平面内有A,B,C三点.(1)画直线AB,射线AC,线段BC;(2)在线段BC上任取一点D(不同于B,C),连接AD,并延长AD至E,使DE=AD;(3)数一数,此时图中线段共有条.19.如图,C为线段AD上一点,点B为CD的中点,且AD=8cm,BD=1cm,(1)求AC的长;(2)若点E在直线AD上,且EA=2cm,求BE的长.20.公园门票价格规定如表:购票张数1~50张51~100张100张以上每张票的价格15元13元11元某校七年级(1)(2)两个班共102人去游园,其中(1)班有40多人,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1422元.问:(1)两个班各有多少学生?(2)如果两个班联合起来,作为一个团体购票,可比两个班都以班为单位购票省多少元钱?(2)如果七年级(1)班单独组织去游园,作为组织者的你如何购票才最省钱?21.如图,长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF,将∠BEF对折,点B落在直线EF上的点B′处,得折痕EM,将∠AEF对折,点A落在直线EF上的点A′处,得折痕EN,求∠NEM的度数.并直接写出∠B′ME互余的角.22.某市出租车的起步价是7元(起步价是指不超过3km行程的出租车价格),超过3km 行程后,其中除3km的行程按起步价计费外,超过部分按每千米1.6元计费(不足1km 按1km计算).如果仅去程乘出租车而回程时不乘坐此车,并且去程超过3km,那么顾客还需付回程的空驶费,超过3km部分按每千米0.8元计算空驶费(即超过部分实际按每千米2.4元计费).如果往返都乘同一出租车并且中间等候时间不超过3分钟,则不收取空驶费而加收1.6元等候费.现设小文等4人从市中心A处到相距xkm(x<12)的B处办事,在B处停留的时间在3分钟以内,然后返回A处.现在有两种往返方案:方案一:去时4人同乘一辆出租车,返回都乘公交车(公交车票为每人2元);方案二:4人乘同一辆出租车往返.问选择哪种计费方式更省钱?(写出过程)参考答案一、选择题(共10小题).1.如图,点O为数轴的原点,若点A表示的数是﹣1,则点B表示的数是()A.﹣5B.﹣3C.3D.4【分析】符号和绝对值是确定有理数的两个必要条件,在原点右侧,符号为正,到原点的距离就是绝对值.解:点B在原点的右侧,且到原点3个单位长度,因此点B表示的数为3,故选:C.2.下列运算正确的是()A.﹣2(a+b)=﹣2a﹣b B.﹣2(a+b)=﹣2a+bC.﹣2(a+b)=﹣2a﹣2b D.﹣2(a+b)=﹣2a+2b【分析】利用去括号法则将﹣2(a+b)去括号后得到结果,即可作出判断.解:A、﹣2(a+b)=﹣2a﹣2b,本选项错误;B、﹣2(a+b)=﹣2a﹣2b,本选项错误;C、﹣2(a+b)=﹣2a﹣2b,本选项正确;D、﹣2(a+b)=﹣2a﹣2b,本选项错误.故选:C.3.如图,学校(记作A)在蕾蕾家(记作B)南偏西25°的方向上,且与蕾蕾家的距离是4km,若∠ABC=90°,且AB=BC,则超市(记作C)在蕾蕾家的()A.南偏东65°的方向上,相距4kmB.南偏东55°的方向上,相距4kmC.北偏东55°的方向上,相距4kmD.北偏东65°的方向上,相距4km【分析】直接利用方向角的定义得出∠2的度数,进而确定超市(记作C)与蕾蕾家的位置关系.解:如图所示:由题意可得:∠1=25°,∠ABC=90°,BC=4km,则∠2=65°,故超市(记作C)在蕾蕾家的南偏东65°的方向上,相距4km.故选:A.4.下列方程变形中,正确的是()A.方程5x﹣2=2x+1,移项,得5x﹣2x=﹣1+2B.方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x+1C.方程x=,系数化为1,得x=1D.方程=,去分母得x+1=3x﹣1【分析】根据移项、去括号法则、等式基本性质2分别判断即可得.解:A.方程5x﹣2=2x+1,移项,得5x﹣2x=1+2,此选项错误;B.方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x+5,此选项错误;C.方程x=,系数化为1,得x=,此选项错误;D.方程=,去分母得x+1=3x﹣1,此选项正确;故选:D.5.若关于x的方程2x+a﹣4=0的解是x=2,则a的值等于()A.﹣8B.0C.2D.8【分析】把x=2代入方程计算即可求出a的值.解:把x=2代入方程得:4+a﹣4=0,解得:a=0,故选:B.6.下面四个图形中,经过折叠能围成如图所示的几何图形的是()A.B.C.D.【分析】根据展开图邻面间的关系,可得答案.解:由正方体图,得三角形面、正方形面、圆面是邻面,故A符合题意,故选:A.7.已知等式3a=2b+5,则下列等式中不一定成立的是()A.3a﹣5=2b B.3ac=2bc+5C.3a+1=2b+6D.【分析】根据等式的性质即可求出答案.解:(A)等式的两边同时减去5即可成立;(C)等式的两边同时加上1即可成立;(D)等式的两边同时除以3即可成立;故选:B.8.有下列四个算式:①(﹣5)+(+3)=﹣8,②﹣(﹣2)3=6,③(+)+(﹣)=,④﹣3÷(﹣)=9.其中正确的有()A.0个B.1个C.2个D.3个【分析】原式各项计算得到结果,即可做出判断.解:①(﹣5)+(+3)=﹣2,错误;②﹣(﹣2)3=﹣(﹣8)=8,错误;③(+)+(﹣)=,错误;④﹣3÷(﹣)=﹣3×(﹣3)=9,正确.则其中正确的有1个.故选:B.9.某商店有两个进价不同的计算器都卖了64元,其中一个盈利60%,另一个亏损20%,在这次买卖中,这家商店()A.不赔不赚B.赚了32元C.赔了8元D.赚了8元【分析】要计算赔赚,就要分别求出两个计算器的进价,再与售价作比较即可.因此就要先设出未知数,根据进价+利润=售价,利用题中的等量关系列方程求解.解:设盈利60%的进价为x元,则:x+60%x=64,解得:x=40,再设亏损20%的进价为y元,则;y﹣20%y=64,解得:y=80,所以总进价是120元,总售价是128元,售价>进价,所以赚了8元.故选:D.10.高速公路上,从3千米处开始,每隔4千米经过一个限速标志牌,并且从10千米处开始,每隔9千米经过一个速度监控仪,司机小王刚好在19千米的A处第一次同时经过这两种设施,那么,司机小王第二次同时经过这两种设施需要从A处继续行驶()千米.A.36B.37C.55D.91【分析】让4和9的最小公倍数即为第二次同时经过这两种设施的千米数.解:∵4和9的最小公倍数为36,∴司机小王第二次同时经过这两种设施需要从A处继续行驶36千米.故选:A.二、填空题:本题共5道小题,每小题3分,共15分,请把正确答案填在试卷相应的横线上,要求只写出最后结果.11.如果盈利100元记作+100元,那么亏损50元记作﹣50元.【分析】根据盈利为正,亏损为负,可以将亏损50元表示出来,本题得以解决.解:∵盈利100元记作+100元,∴亏损50元记作﹣50元,故答案为:﹣50.12.如图,从学校A到书店B最近的路线是①号路线,得到这个结论的根据是:两点之间,线段最短.【分析】根据线段的性质:两点之间线段最短即可得出答案.解:根据线段的性质:两点之间,线段最短可得,从学校A到书店B最近的路线是①号路线,得到这个结论的根据是两点之间,线段最短.故答案为:两点之间,线段最短.13.2020年10月29日,中国共产党十九届五中全会在北京闭幕.会后发表公报指出,“十三五”时期,脱贫攻坚成果举世瞩目,农村55750000贫困人口脱贫.数据55750000用科学记数法表示为 5.575×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.解:数字55750000科学记数法可表示为5.575×107.故答案为:5.575×107.14.观察下列算式:12﹣02=1+0=1;22﹣12=2+1=3;32﹣22=3+2=5;42﹣32=4+3=7;52﹣42=5+4=9;….若字母n表示自然数,请把你观察到的规律用含n的等式表示出来:(n+1)2﹣n2=2n+1.【分析】根据题意,分析可得:(0+1)2﹣02=1+2×0=1;(1+1)2﹣12=2×1+1=3;(1+2)2﹣22=2×2+1=5;…进而发现规律,用n表示可得答案.解:根据题意,分析可得:(0+1)2﹣02=1+2×0=1;(1+1)2﹣12=2×1+1=3;(1+2)2﹣22=2×2+1=5;…若字母n表示自然数,则有:(n+1)2﹣n2=2n+1;故答案为:(n+1)2﹣n2=2n+1.15.今年3.15期间,惠东商场为感谢新老顾客,决定对某产品实行优惠政策:购买该产品,另外赠送礼品一份.经过与该产品的供应商协调,供应商同意将该产品供货价格降低5%,同时免费为顾客提供礼品;而该产品的商场零售价保持不变.这样一来,该产品的单位利润率由原来的x%提高到(x+6)%,则x的值是14.【分析】设原来的进价为a元,则现在的进价为(1﹣0.05)a元,则原来的售价为a(1+x%),现在的售价为0.95a[1+(x+6)%],根据两次的售价相等建立方程求出其解得.解:原来的进价为a元,则现在的进价为(1﹣0.05)a元,由题意,得a(1+x%)=0.95a[1+(x+6)%],解得:x=14故答案为:14三、解答题:本大题共7道小题,满分共55分,解答应写出文字说明和推理步骤.16.计算:(1)﹣8﹣(﹣8)﹣10+5;(2)(﹣1)2021+(﹣18)×|﹣|﹣4÷(﹣2);(3)先化简,再求值:(3m2﹣mn+5)﹣2(5mn﹣4m2+2),其中m2﹣mn=2.【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式先计算乘方及绝对值运算,再计算乘除运算,最后算加减运算即可求出值;(3)原式去括号合并得到最简结果,把已知等式代入计算即可求出值.解:(1)原式=﹣8+8﹣10+5=0﹣10+5=﹣5;(2)原式=﹣1﹣18×+4÷2=﹣1﹣4+2=﹣3;(3)原式=3m2﹣mn+5﹣10mn+8m2﹣4=11m2﹣11mn+1=11(m2﹣mn)+1,当m2﹣mn=2时,原式=22+1=23.17.解方程:(1)2(2x+1)=1﹣5(x﹣2);(2).【分析】(1)先去括号得4x+2=1﹣5x+10,然后移项、合并得到9x=9,再把x的系数化为1即可;(2)先去分母得45﹣5(2x﹣1)=3(4﹣3x)﹣15x,再去括号、移项、合并得14x=﹣38,然后把x的系数化为1即可.解:(1)去括号得4x+2=1﹣5x+10,移项得4x+5x=1+10﹣2,合并得9x=9,系数化为1得x=1;(2)去分母得45﹣5(2x﹣1)=3(4﹣3x)﹣15x,去括号得45﹣10x+5=12﹣9x﹣15x,移项得﹣10x+9x+15x=12﹣45﹣5,合并得14x=﹣38,系数化为1得x=﹣.18.如图,在平面内有A,B,C三点.(1)画直线AB,射线AC,线段BC;(2)在线段BC上任取一点D(不同于B,C),连接AD,并延长AD至E,使DE=AD;(3)数一数,此时图中线段共有8条.【分析】(1)依据直线、射线、线段的定义,即可得到直线AB,线段BC,射线AC;(2)依据在线段BC上任取一点D(不同于B,C),连接线段AD即可;(3)根据图中的线段为AB,AC,AD,AE,DE,BD,CD,BC,即可得到图中线段的条数.解:(1)如图,直线AB,线段BC,射线AC即为所求;(2)如图,线段AD和线段DE即为所求;(3)由题可得,图中线段的条数为8,故答案为:8.19.如图,C为线段AD上一点,点B为CD的中点,且AD=8cm,BD=1cm,(1)求AC的长;(2)若点E在直线AD上,且EA=2cm,求BE的长.【分析】点B为CD的中点,根据中点的定义,得到CD=2BD,由BD=1cm便可求得CD的长度,然后再根据AC=AD﹣CD,便可求出AC的长度;(2)中由于E在直线AD 上位置不明定,可分E在线段DA的延长线和线段AD上两种情况求解.解:(1)∵点B为CD的中点,BD=1cm,∴CD=2BD=2cm,∵AD=8cm,∴AC=AD﹣CD=8﹣2=6cm(2)若E在线段DA的延长线,如图1∵EA=2cm,AD=8cm∴ED=EA+AD=2+8=10cm,∵BD=1cm,∴BE=ED﹣BD=10﹣1=9cm,若E线段AD上,如图2EA=2cm,AD=8cm∴ED=AD﹣EA=8﹣2=6cm,∴BE=ED﹣BD=6﹣1=5cm,综上所述,BE的长为5cm或9cm.20.公园门票价格规定如表:购票张数1~50张51~100张100张以上每张票的价格15元13元11元某校七年级(1)(2)两个班共102人去游园,其中(1)班有40多人,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1422元.问:(1)两个班各有多少学生?(2)如果两个班联合起来,作为一个团体购票,可比两个班都以班为单位购票省多少元钱?(2)如果七年级(1)班单独组织去游园,作为组织者的你如何购票才最省钱?【分析】(1)设(1)班有x人,根据共付1422元构建方程即可解决问题.(2)根据题意和表格中的数据可以解答本题.(3)计算购买51张票的费用与原来费用比较即可解决问题.解:(1)设(1)班有x人,则15x+13(102﹣x)=1422解得:x=48答:(1)班有48人,(2)班有54人.(2)1422﹣102×11=300(元)答:两个班联合购票比分别购票要少300元.(3)七(1)班单独组织去游园,如果按实际人数购票,需花费:48×15=720(元),若购买51张票,需花费:51×13=663(元),∴七(1)班单独组织去游园,直接购买51张票更省钱.21.如图,长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF,将∠BEF对折,点B落在直线EF上的点B′处,得折痕EM,将∠AEF对折,点A落在直线EF上的点A′处,得折痕EN,求∠NEM的度数.并直接写出∠B′ME互余的角.【分析】先由翻折的性质得到∠AEN=∠A′EN,∠BEM=∠B′EM,从而可知∠NEM =×180°=90°,然后根据余角的定义找出∠B′ME的余角即可.解:由翻折的性质可知:∠AEN=∠A′EN,∠BEM=∠B′EM.∠NEM=∠A′EN+∠B′EM==×180°=90°.由翻折的性质可知:∠MB′E=∠B=90°.由直角三角形两锐角互余可知:∠B′ME的一个余角是∠B′EM.∵∠BEM=∠B′EM,∴∠BEM也是∠B′ME的一个余角.∵∠NBF+∠B′EM=90°,∴∠NEF=∠B′ME.∴∠ANE、∠A′NE是∠B′ME的余角.综上所述,∠B′ME的余角有∠ANE、∠A′NE、∠B′EM、∠BEM.22.某市出租车的起步价是7元(起步价是指不超过3km行程的出租车价格),超过3km 行程后,其中除3km的行程按起步价计费外,超过部分按每千米1.6元计费(不足1km 按1km计算).如果仅去程乘出租车而回程时不乘坐此车,并且去程超过3km,那么顾客还需付回程的空驶费,超过3km部分按每千米0.8元计算空驶费(即超过部分实际按每千米2.4元计费).如果往返都乘同一出租车并且中间等候时间不超过3分钟,则不收取空驶费而加收1.6元等候费.现设小文等4人从市中心A处到相距xkm(x<12)的B 处办事,在B处停留的时间在3分钟以内,然后返回A处.现在有两种往返方案:方案一:去时4人同乘一辆出租车,返回都乘公交车(公交车票为每人2元);方案二:4人乘同一辆出租车往返.问选择哪种计费方式更省钱?(写出过程)【分析】先根据题意列出方案一的费用:起步价+超过3km的km数×1.6元+回程的空驶费+乘公交的费用,再求出方案二的费用:起步价+超过3km的km数×1.6元+返回时的费用1.6x+1.6元的等候费,最后分三种情况比较两个式子的大小.解:方案一的费用:7+(x﹣3)×1.6+0.8(x﹣3)+4×2=7+1.6x﹣4.8+0.8x﹣2.4+8=7.8+2.4x,方案二的费用:7+(x﹣3)×1.6+1.6x+1.6=7+1.6x﹣4.8+1.6x+1.6=3.8+3.2x,①费用相同时x的值7.8+2.4x=3.8+3.2x,解得x=5,所以当x=5km时费用相同;②方案一费用高时x的值7.8+2.4x>3.8+3.2x,解得x<5,所以当x<5km方案一费用高;③方案二费用高时x的值7.8+2.4x<3.8+3.2x,解得x>5,所以当x>5km方案二费用高.。

济宁市七年级上册数学期末试题及答案解答

济宁市七年级上册数学期末试题及答案解答

济宁市七年级上册数学期末试题及答案解答一、选择题1.根据等式的性质,下列变形正确的是( ) A .若2a =3b ,则a =23b B .若a =b ,则a +1=b ﹣1 C .若a =b ,则2﹣3a =2﹣3bD .若23a b=,则2a =3b 2.某车间有26名工人,每人每天能生产螺栓12个或螺母18个.若要使每天生产的螺栓和螺母按1:2配套,则分配几人生产螺栓?设分配x 名工人生产螺栓,其他工人生产螺母,所列方程正确的是( ) A .()121826x x =- B .()181226x x =- C .()2181226x x ⨯=-D .()2121826x x ⨯=-3.下列四个式子:9,327-,3-,(3)--,化简后结果为3-的是( ) A .9B .327-C .3-D .(3)--4.已知线段AB a ,,,C D E 分别是,,AB BC AD 的中点,分别以点,,C D E 为圆心,,,CB DB EA 为半径作圆得如图所示的图案,则图中三个阴影部分图形的周长之和为( )A .9a πB .8a πC .98a πD .94a π5.如图所示,数轴上A ,B 两点表示的数分别是2﹣1和2,则A ,B 两点之间的距离是( )A .2B .2﹣1C .2+1D .1 6.已知2a ﹣b =3,则代数式3b ﹣6a+5的值为( )A .﹣4B .﹣5C .﹣6D .﹣77.互不相等的三个有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C 。

若:||||||a b b c a c -+-=-,则点B ( )A .在点 A, C 右边B .在点 A,C 左边C .在点 A, C 之间D .以上都有可能8.当x=3,y=2时,代数式23x y-的值是( )A .43B .2C .0D .39.若代数式3x ﹣9的值与﹣3互为相反数,则x 的值为( ) A .2B .4C .﹣2D .﹣410.某服装店销售某新款羽绒服,标价为300元,若按标价的八折销售,仍可款利60元.设这款服装的进价为x 元,根据题意可列方程为( ) A .300-0.2x =60B .300-0.8x =60C .300×0.2-x =60D .300×0.8-x =6011.下列调查中,调查方式选择正确的是( ) A .为了了解1 000个灯泡的使用寿命,选择全面调查 B .为了了解某公园全年的游客流量, 选择抽样调查 C .为了了解生产的一批炮弹的杀伤半径,选择全面调查 D .为了了解一批袋装食品是否含有防腐剂,选择全面调查 12.如果2|2|(1)0a b ++-=,那么()2020a b +的值是( )A .2019-B .2019C .1-D .1二、填空题13.如图,线段AB 被点C ,D 分成2:4:7三部分,M ,N 分别是AC ,DB 的中点,若MN=17cm ,则BD=__________cm.14.在数轴上,若A 点表示数﹣1,点B 表示数2,A 、B 两点之间的距离为 . 15.5535______.16. 已知线段AB =8 cm ,在直线AB 上画线段BC ,使得BC =6 cm ,则线段AC =________cm.17.小明妈妈支付宝连续五笔交易如图,已知小明妈妈五笔交易前支付宝余额860元,则五笔交易后余额__________元. 支付宝帐单 日期交易明细 10.16乘坐公交¥ 4.00- 10.17 转帐收入¥200.00+ 10.18 体育用品¥64.00- 10.19 零食¥82.00- 10.20 餐费¥100.00-18.﹣213的倒数为_____,﹣213的相反数是_____.19.52.42°=_____°___′___″.20.小何买了5本笔记本,10支圆珠笔,设笔记本的单价为a元,圆珠笔的单价为b元,则小何共花费_____元(用含a,b的代数式表示).21.若关于x的方程2x+a﹣4=0的解是x=﹣2,则a=____.22.当12点20分时,钟表上时针和分针所成的角度是___________.23.一个几何体的主视图、俯视图和左视图都是大小相同的正方形,则该几何体是___.24.若4a+9与3a+5互为相反数,则a的值为_____.三、解答题25.计算:()1()20230---+()2()()2242314-÷--⨯-+26.如图,在平面内有,,A B C三点.(1)请按要求作图:画直线AC,射线BA,线段BC,取BC的中点D,过点D作DE AC⊥于点E.(2)在完成第(1)小题的作图后,图中以,,,,A B C D E这些点为端点的线段共有条.27.周末,小明和父母以每分钟40米的速度步行从家出发去景蓝小区看望外婆,走了5分钟后,忽然发现自己给外婆带的礼物落在家里,父母继续保持原速度行进,小明则立刻以每分钟60米的速度折返,取到礼物后立刻出发追赶父母,恰好在景蓝小区门口追上父母.求小明家到景蓝小区门口的距离.28.在大课间活动中,同学们积极参加体育锻炼,小龙在全校随机抽取一部分同学就“我最喜爱的体育项目”进行了一次抽样调查,下面是他通过收集的数据绘制的两幅不完整的统计图,请你根据图中提供的信息,解答以下问题:(1)小龙共抽取______名学生; (2)补全条形统计图;(3)在扇形统计图中,“其他”部分对应的圆心角的度数是_______; (4)若全校共2100名学生,请你估算“立定跳远”部分的学生人数.29.已知方程313752x x -=+与关于 x 的方程3a -8=2(x +a)-a 的解相同. (1)求 a 的值;(2)若 a 、b 在数轴上对应的点在原点的两侧,且到原点的距离相等,c 是倒数等于本身的数,求(a + b - c )2018的值. 30.解方程:5711232x x -+-=+. 四、压轴题31.某商场在黄金周促销期间规定:商场内所有商品按标价的50%打折出售;同时,当顾客在该商场消费打折后的金额满一定数额,还可按如下方案抵扣相应金额:说明:[)a,b 表示在范围a b ~中,可以取到a ,不能取到b .根据上述促销方法,顾客在该商场购物可以获得双重优惠:打折优惠与抵扣优惠. 例如:购买标价为900元的商品,则打折后消费金额为450元,获得的抵扣金额为30元,总优惠额为:()900150%30480⨯-+=元,实际付款420元.(购买商品得到的优惠率100%)=⨯购买商品获得的总优惠额商品的标价,请问:()1购买一件标价为500元的商品,顾客的实际付款是多少元? ()2购买一件商品,实际付款375元,那么它的标价为多少元?()3请直接写出,当顾客购买标价为______元的商品,可以得到最高优惠率为______.32.如图,已知数轴上点A 表示的数为10,B 是数轴上位于点A 左侧一点,且AB=30,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B表示的数是________,点P表示的数是________(用含的代数式表示);(2)若M为线段AP的中点,N为线段BP的中点,在点P运动的过程中,线段MN的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度;(3)动点Q从点B处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时与点Q相距4个单位长度?33.(阅读理解)若A,B,C为数轴上三点,若点C到A的距离是点C到B的距离的2倍,我们就称点C是(A,B)的优点.例如,如图①,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是(A,B)的优点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是(A,B)的优点,但点D是(B,A)的优点.(知识运用)如图②,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.(1)数所表示的点是(M,N)的优点;(2)如图③,A、B为数轴上两点,点A所表示的数为﹣20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以4个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B中恰有一个点为其余两点的优点?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】利用等式的性质对每个式子进行变形即可找出答案.【详解】解:A 、根据等式性质2,2a =3b 两边同时除以2得a =32b ,原变形错误,故此选项不符合题意;B 、根据等式性质1,等式两边都加上1,即可得到a+=b+1,原变形错误,故此选项不符合题意;C 、根据等式性质1和2,等式两边同时除以﹣3且加上2应得2﹣3a =2﹣3b,原变形正确,故此选项符合题意;D 、根据等式性质2,等式两边同时乘以6,3a =2b ,原变形错误,故此选项不符合题意. 故选:C . 【点睛】本题主要考查等式的性质.解题的关键是掌握等式的性质.运用等式性质1必须注意等式两边所加上的(或减去的)必须是同一个数或整式;运用等式性质2必须注意等式两边所乘的(或除的)数或式子不为0,才能保证所得的结果仍是等式.2.D解析:D 【解析】 【分析】设分配x 名工人生产螺栓,则(26-x )名生产螺母,根据每天生产的螺栓和螺母按1:2配套,可得出方程. 【详解】解:设分配x 名工人生产螺栓,则(26-x )名生产螺母,∵要使每天生产的螺栓和螺母按1:2配套,每人每天能生产螺栓12个或螺母18个, ∴可得2×12x=18(26-x ). 故选:D . 【点睛】本题考查了根据实际问题抽象一元一次方程,要保证配套,则生产的螺母的数量是生产的螺栓数量的2倍,所以列方程的时候,应是螺栓数量的2倍=螺母数量.3.B解析:B 【解析】 【分析】由题意直接利用求平方根和立方根以及绝对值的性质和去括号分别化简得出答案. 【详解】解:,故排除A;=3-,选项B 正确; C. 3-=3,故排除C; D. (3)--=3,故排除D.【点睛】本题主要考查求平方根和立方根以及绝对值的性质和去括号原则,正确掌握相关运算法则是解题关键.4.D解析:D【解析】【分析】根据中点的定义及线段的和差关系可用a表示出AC、BD、AD的长,根据三个阴影部分图形的周长之和等于三个圆的周长之和即可得答案.【详解】∵AB a,C、D分别是AB、BC的中点,∴AC=BC=12AB=12a,BD=CD=12BC=14a,∴AD=AC+BD=34 a,∴三个阴影部分图形的周长之和=aπ+12aπ+34aπ=94a,故选:D.【点睛】本题考查线段中点的定义,线段上一点,到线段两端点距离相等的点是线段的中点;正确得出三个阴影部分图形的周长之和等于三个圆的周长之和是解题关键.5.D解析:D【解析】【分析】根据题意列出算式,计算即可得到结果.【详解】解:∵A,B﹣1,∴A,B﹣1)=1;故选:D.【点睛】此题考查了实数与数轴,掌握数轴上点的特点,利用数轴,数形结合求出答案.6.A解析:A【解析】【分析】由已知可得3b﹣6a+5=-3(2a﹣b)+5,把2a﹣b=3代入即可.3b ﹣6a+5=-3(2a ﹣b )+5=-9+5=-4. 故选:A 【点睛】利用乘法分配律,将代数式变形.7.C解析:C 【解析】 【分析】根据a b b c -+-表示数b 的点到a 与c 两点的距离的和,a c -表示数a 与c 两点的距离即可求解. 【详解】∵绝对值表示数轴上两点的距离a b -表示a 到b 的距离 b c -表示b 到c 的距离a c -表示a 到c 的距离∵a b b c a c -+-=-丨丨丨丨丨丨 ∴B 在A 和C 之间 故选:C 【点睛】本题考查的是数轴的特点,熟知数轴上两点之间的距离公式是解答此题的关键.8.A解析:A 【解析】 【分析】当x=3,y=2时,直接代入代数式即可得到结果. 【详解】23x y -=2323⨯-=43, 故选A 【点睛】本题考查的是代数式求值,正确的计算出代数式的值是解答此题的关键.9.B解析:B 【解析】 【分析】利用相反数的性质列出方程,求出方程的解即可得到x 的值.解:根据题意得:3x ﹣9﹣3=0, 解得:x =4, 故选:B . 【点睛】此题考查了相反数的性质及解一元一次方程,熟练掌握运算法则是解本题的关键.10.D解析:D 【解析】 【分析】要列方程,首先根据题意找出题中存在的等量关系:售价-进价=利润60元,此时再根据等量关系列方程 【详解】解:设进价为x 元,由已知得服装的实际售价是300×0.8元,然后根据利润=售价-进价, 可列方程:300×0.8-x=60 故选:D 【点睛】本题考查了由实际问题抽象出一元一次方程,列方程的关键是正确找出题目的相等关系,此题应弄清楚两点:(1)利润、售价、进价三者之间的关系; (2)打八折的含义.11.B解析:B 【解析】选项A 、C 、D ,了解1000个灯泡的使用寿命,了解生产的一批炮弹的杀伤半径,了解一批袋装食品是否含有防腐剂,都是具有破坏性的调查,无法进行普查,不适于全面调查,适用于抽样调查.选项B ,了解某公园全年的游客流量,工作量大,时间长,需要用抽样调查.故选B .12.D解析:D 【解析】 【分析】根据非负数的性质可求得a ,b 的值,然后代入即可得出答案. 【详解】解:因为2|2|(1)0a b ++-=, 所以a +2=0,b -1=0, 所以a =-2,b =1, 所以()2020a b +=(-2+1)2020=(-1)2020=1.【点睛】本题主要考查了非负数的性质——绝对值和偶次方,根据几个非负数的和为零,则这几个数均为零求出a,b的值是解决此题的关键.二、填空题13.14【解析】因为线段AB被点C,D分成2:4:7三部分,所以设AC=2x,CD=4x,BD=7x,因为M,N分别是AC,DB的中点,所以CM=,DN=,因为mn=17cm,所以x+4x+=1解析:14【解析】因为线段AB被点C,D分成2:4:7三部分,所以设AC=2x,CD=4x,BD=7x,因为M,N分别是AC,DB的中点,所以CM=12AC x=,DN=1722BD x=,因为mn=17cm,所以x+4x+72x=17,解得x=2,所以BD=14,故答案为:14.14.3【解析】试题分析:用数轴上右边的点表示的数减去左边的点表示的数即可得到两点之间的距离.解:2﹣(﹣1)=3.故答案为3考点:数轴.解析:3【解析】试题分析:用数轴上右边的点表示的数减去左边的点表示的数即可得到两点之间的距离.解:2﹣(﹣1)=3.故答案为3考点:数轴.15.【解析】【分析】分别对其进行6次方,比较最后的大小进而得出答案.【详解】解:,5,都大于0,则,,故答案为:.【点睛】本题考查的是根式的比较大小,解题关键是把带根式的数化为常数进5<<【解析】【分析】分别对其进行6次方,比较最后的大小进而得出答案.【详解】解:50,则62636555=<=<,5<<,5<<. 【点睛】本题考查的是根式的比较大小,解题关键是把带根式的数化为常数进行比较即可. 16.2或14【解析】【分析】由题意分两种情况讨论:点C 在线段AB 上,点C 在线段AB 的延长线上,根据线段的和差,可得答案.【详解】解:当点C 在线段AB 上时,由线段的和差,得AC=AB-BC=8解析:2或14【解析】【分析】由题意分两种情况讨论:点C 在线段AB 上,点C 在线段AB 的延长线上,根据线段的和差,可得答案.【详解】解:当点C 在线段AB 上时,由线段的和差,得AC=AB-BC=8-6=2cm ;当点C 在线段AB 的延长线上时,由线段的和差,得AC=AB+BC=8+6=14cm ;故答案为2或14.点睛:本题考查了两点间的距离,分类讨论是解题关键,不能遗漏.17.810【分析】根据有理数的加减运算法则,对题干支出与收入进行加减运算即可.【详解】解:由题意五笔交易后余额为860+200-4-64-82-100=810元,故填810.【点睛解析:810【解析】【分析】根据有理数的加减运算法则,对题干支出与收入进行加减运算即可.【详解】解:由题意五笔交易后余额为860+200-4-64-82-100=810元,故填810.【点睛】本题考查有理数的加减运算,理解题意根据题意对支出与收入进行加减运算从而求解. 18.﹣ 2【解析】【分析】根据乘积是1的两数互为倒数;只有符号不同的两个数叫做互为相反数可得答案.【详解】﹣2的倒数为﹣,﹣2的相反数是2.【点睛】本题考查的是相反数和倒数,解析:﹣37213【解析】【分析】根据乘积是1的两数互为倒数;只有符号不同的两个数叫做互为相反数可得答案.【详解】﹣213的倒数为﹣37,﹣213的相反数是213.【点睛】本题考查的是相反数和倒数,熟练掌握两者的性质是解题的关键. 19.52; 25; 12.【解析】将高级单位化为低级单位时,乘60,用0.42乘60,可得:0.42°=25.2′;用0.2乘60,可得:0.2′=12′′;据此求解即解析:52; 25; 12.【解析】【分析】将高级单位化为低级单位时,乘60,用0.42乘60,可得:0.42°=25.2′;用0.2乘60,可得:0.2′=12′′;据此求解即可.【详解】52.42°=52°25′12″.故答案为52、25、12.【点睛】此题主要考查了度分秒的换算,要熟练掌握,解答此题的关键是要明确:1度=60分,即1°=60′,1分=60秒,即1′=60″.20.(5a+10b ).【解析】【分析】由题意得等量关系:小何总花费本笔记本的花费支圆珠笔的花费,再代入相应数据可得答案.【详解】解:小何总花费:,故答案为:.【点睛】此题主要考查了列代数解析:(5a +10b ).【解析】【分析】由题意得等量关系:小何总花费5=本笔记本的花费10+支圆珠笔的花费,再代入相应数据可得答案.【详解】解:小何总花费:510a b +,故答案为:(510)a b +.【点睛】此题主要考查了列代数式,关键是正确理解题意,找出题目中的数量关系.21.8【解析】【分析】把x=﹣2代入方程2x+a﹣4=0求解即可.【详解】把x=﹣2代入方程2x+a﹣4=0,得2×(﹣2)+a﹣4=0,解得:a=8.故答案为:8.【点睛】本题考查了一解析:8【解析】【分析】把x=﹣2代入方程2x+a﹣4=0求解即可.【详解】把x=﹣2代入方程2x+a﹣4=0,得2×(﹣2)+a﹣4=0,解得:a=8.故答案为:8.【点睛】本题考查了一元一次方程的解,解答本题的关键是把x=﹣2代入方程2x+a﹣4=0求解.22.110°【解析】【分析】12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.【详解】解:因为解析:110°【解析】【分析】12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.【详解】解:因为时针在钟面上每分钟转0.5°,分针每分钟转6°,所以钟表上12时20分时,时针转过的角度是:0.5°×20=10°,分针转过的角度是:6°×20=120°,所以12时20分钟时分针与时针的夹角120°-10°=110°.故答案为:110°【点睛】本题考查了角的度量,解决的关键是理解钟面上的分针每分钟旋转6°,时针每分钟旋转0.5°.23.正方体.【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】解:正方体的主视图、左视图、俯视图都是大小相同的正方形,故答案为正方体.【点睛】考解析:正方体.【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】解:正方体的主视图、左视图、俯视图都是大小相同的正方形,故答案为正方体.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.24.-2【解析】【分析】利用相反数的性质求出a的值即可.【详解】解:根据题意得:4a+9+3a+5=0,移项合并得:7a=﹣14,解得:a=﹣2,故答案为:﹣2.【点睛】本题考查了解解析:-2【解析】【分析】利用相反数的性质求出a的值即可.【详解】解:根据题意得:4a+9+3a+5=0,移项合并得:7a=﹣14,解得:a=﹣2,故答案为:﹣2.【点睛】本题考查了解一元一次方程,以及相反数,熟练掌握运算法则是解本题的关键.三、解答题25.(1)12;(2)9【解析】【分析】(1)根据有理数的加减法则进行计算;(2)先计算乘方,再计算乘除,最后计算加减.【详解】=-++=;解:(1)原式2023012=-÷--⨯+=.(2)原式16(2)3149【点睛】本题主要考查有理数的运算,掌握基本运算法则是解题的关键.26.(1)见解析;(2)8.【解析】【分析】(1)根据直线是向两方无限延伸的,线段有两个端点,射线是向一方无限延伸的画出直线AC、射线BA、线段BC,根据中点的定义找出BC中点D,利用网格的特点连接小正方形对⊥.角线并延长交AC于E即可得DE AC【详解】(1)答案如图所示:(2)图中以A、B、C、D、E为端点的线段有:AB、AE、AC、EC、BD、BC、DC、DE,共8条,故答案为:8【点睛】本题考查了基本作图,直线、射线、线段的定义,是基础题,主要训练了同学们把几何文字语言转化为几何图形语言的能力.27.小明家到景蓝小区门口的距离为1000米.【解析】【分析】可设小明家到景蓝小区门口的距离是x 米,根据等量关系:小明家到景蓝小区门口的时间=小明的父母到景蓝小区门口的时间,依此列出方程求解即可.【详解】解:设小明家到景蓝小区门口的距离为x 米,由题意得:54054060x x ⨯+=+ 解得:x =1000,答:小明家到景蓝小区门口的距离为1000米.【点睛】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.28.(1)50;(2)补图见解析;(3)72°;(4)672人.【解析】【分析】(1)画出统计图,根据跳绳的人数除以占的百分比即可得出抽取的学生总数;(2)根据总学生数,求出踢毽子与其他的人数,补全条形统计图即可(3)根据其他占的百分比乘以360°即可得到结果(4)由立定跳远的百分比,乘以2100即可得到结果【详解】(1)根据题意得:15÷30%=50(名)则共抽取50名学生(2)根据题意得:踢毽子人数为50×18%=9(名),其他人数为50×(1-30%-18%-32%)=10名,补全条形统计图,如图所示(3)根据题意得:360°×20%=72°则“其他"部分对应的圆心角的度数是72°;(4)根据题意得'立定跳远"部分的学生有2100×32%=672(名)【点睛】此题考查条形统计图,用样本估计总体和扇形统计图,看懂图中数据是解题关键29.(1)4a =-;(2)1.【解析】【分析】(1)先求出方程313752x x -=+的解x=-8,再代入方程3a -8=2(x +a)-a 求出a 的值即可; (2)根据数a ,b 在数轴上的位置特点,可知a ,b 互为相反数,即a+b=0,再由倒数的定义可知xy=1,把它们代入所求代数式(a+b-c )2018,根据运算法则即可得出结果.【详解】(1)313752x x -=+解得8x =-, 再将8x =-代入()382a x a a -=+-,解得4a =-,(2)∵a ,b 互为相反数,∴a+b=0,∵c 是倒数等于本身的数,∴c=±1;∴()()20182018011a b c +-=±=【点睛】本题主要考查了相反数、倒数的定义和性质及有理数的加法运算.注意,数轴上,在原点两侧,并且到原点的位置相等的点表示的两个数一定互为相反数.30.x =5.【解析】【分析】方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【详解】解:去分母得:2(5x ﹣7)﹣6=12+3(x +1),去括号得:10x ﹣14﹣6=12+3x +3,移项合并得:7x =35,解得:x =5.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键. 四、压轴题31.(1)230元;(2) 790元或者810元;(3) 400,55%.【解析】【分析】()1可对照表格计算,500元的商品打折后为250元,再享受20元抵扣金额,即可得出实际付款;()2实际付款375元时,应考虑到20037520400≤+<与40037530600≤+<这两种情况的存在,所以分这两种情况讨论;()3根据优惠率的定义表示出四个范围的数据,进行比较即可得结果.【详解】解:()1由题意可得:顾客的实际付款()500500150%20230⎡⎤=-⨯-+=⎣⎦故购买一件标价为500元的商品,顾客的实际付款是230元.()2设商品标价为x 元.20037520400≤+<与40037530600≤+<两种情况都成立,于是分类讨论①抵扣金额为20元时,1x 203752-=,则x 790= ②抵扣金额为30元时,1x 303752-=,则x 810= 故当实际付款375元,那么它的标价为790元或者810元.()3设商品标价为x 元,抵扣金额为b 元,则 优惠率1x b 1b 2100%x 2x+=⨯=+ 为了得到最高优惠率,则在每一范围内x 均取最小值,可以得到2030405040080012001600>>> ∴当商品标价为400元时,享受到最高的优惠率1155%220=+= 故答案为400,55%【点睛】本题考查的是日常生活中的打折销售问题,运用一元一次方程解决问题时要抓住未知量,明确等量关系列出方程是关键.32.(1)-20,10-5t ;(2)线段MN 的长度不发生变化,都等于15.(3)13秒或17秒【解析】【分析】(1)根据已知可得B 点表示的数为10-30;点P 表示的数为10-5t ;(2)分类讨论:①当点P 在点A 、B 两点之间运动时,②当点P 运动到点B 的左侧时,利用中点的定义和线段的和差易求出MN .(3) 分①点P 、Q 相遇之前,②点P 、Q 相遇之后,根据P 、Q 之间的距离恰好等于2列出方程求解即可;【详解】解:(1))∵点A 表示的数为10,B 在A 点左边,AB=30,∴数轴上点B 表示的数为10-30=-20;∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,∴点P表示的数为10-5t;故答案为-20,10-5t;(2)线段MN的长度不发生变化,都等于15.理由如下:①当点P在点A、B两点之间运动时,∵M为线段AP的中点,N为线段BP的中点,∴MN=MP+NP=AP+BP=(AP+BP)=AB=15;②当点P运动到点B的左侧时:∵M为线段AP的中点,N为线段BP的中点,∴MN=MP-NP=AP-BP=(AP-BP)=AB=15,∴综上所述,线段MN的长度不发生变化,其值为15.(3)若点P、Q同时出发,设点P运动t秒时与点Q距离为4个单位长度.①点P、Q相遇之前,由题意得4+5t=30+3t,解得t=13;②点P、Q相遇之后,由题意得5t-4=30+3t,解得t=17.答:若点P、Q同时出发,13或17秒时P、Q之间的距离恰好等于4;【点睛】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.33.(1)2或10;(2)当t为5秒、10秒或7.5秒时,P、A和B中恰有一个点为其余两点的优点.【解析】【分析】(1)设所求数为x,根据优点的定义分优点在M、N之间和优点在点N右边,列出方程解方程即可;(2)根据优点的定义可知分三种情况:①P为(A,B)的优点;②P为(B,A)的优点;③B为(A,P)的优点.设点P表示的数为x,根据优点的定义列出方程,进而得出t的值.【详解】解:(1)设所求数为x,当优点在M、N之间时,由题意得x﹣(﹣2)=2(4﹣x),解得x=2;当优点在点N右边时,由题意得x﹣(﹣2)=2(x﹣4),解得:x=10;故答案为:2或10;(2)设点P表示的数为x,则PA=x+20,PB=40﹣x,AB=40﹣(﹣20)=60,分三种情况:①P为(A,B)的优点.由题意,得PA=2PB,即x﹣(﹣20)=2(40﹣x),解得x=20,∴t=(40﹣20)÷4=5(秒);②P为(B,A)的优点.由题意,得PB=2PA,即40﹣x=2(x+20),解得x=0,∴t=(40﹣0)÷4=10(秒);③B为(A,P)的优点.由题意,得AB=2PA,即60=2(x+20)解得x=10,此时,点P为AB的中点,即A也为(B,P)的优点,∴t=30÷4=7.5(秒);综上可知,当t为5秒、10秒或7.5秒时,P、A和B中恰有一个点为其余两点的优点.【点睛】本题考查了一元一次方程的应用及数轴,解题关键是要读懂题目的意思,理解优点的定义,找出合适的等量关系列出方程,再求解.。

2020-2021学年济宁市微山县七年级上期末数学试卷及答案解析

2020-2021学年济宁市微山县七年级上期末数学试卷及答案解析

2020-2021学年济宁市微山县七年级上期末数学试卷
一.选择题(共10小题,满分30分,每小题3分)
1.(3分)下列各数中,最大的是()
A.﹣0.5B.﹣0.55C.﹣0.05D.﹣0.555
2.(3分)在数轴上与表示2的点距离等于3的点所表示的数是()A.1B.﹣1或5C.﹣5D.﹣5或1
3.(3分)如果A和B都是二次多项式,则A+B一定是()
A.次数不高于二的整式B.四次多项式
C.二次多项式D.次数不低于二的多项式
4.(3分)若x=1是方程2x+a=0的解,则a=()
A.1B.2C.﹣1D.﹣2
5.(3分)实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()
A.|b|>|a|B.a+c>0C.ac>0D.b﹣c>0
6.(3分)下列变形中,正确的是()
A.x﹣(z﹣y)=x﹣z﹣y B.如果x﹣2=y﹣2,那么x=y
C.x﹣(y+z)=x+y﹣z D.如果|x|=|y|,那么x=y
7.(3分)如图,已知线段AB的长为4,点C为AB的中点,则线段AC的长为()
A.1B.2C.3D.4
8.(3分)如图,若AB,CD相交于点O,过点O作OE⊥CD,则下列结论不正确的是()
A.∠1与∠2互为余角B.∠3与∠2互为余角
C.∠3与∠AOD互为补角D.∠EOD与∠BOC是对顶角
第1 页共14 页。

2020-2021学年济宁市金乡县七年级上学期期末数学试卷(附解析)

2020-2021学年济宁市金乡县七年级上学期期末数学试卷(附解析)

2020-2021学年济宁市金乡县七年级上学期期末数学试卷一、选择题(本大题共10小题,共30.0分)1. 在−0.1,−12,1,12这四个数中,最小的一个数是( ) A. −0.1B. −12C. 1D. 12 2. 如图.在数轴上表示点P 的倒数的点可能是( )A. A 点B. B 点C. C 点D. D 点 3. 若x <0,则|−x|−|−x −x|等于( )A. 0B. xC. −xD. 以上答案都不对 4. 如果关于x 的方程ax −x +6=0的解为正整数,且关于x 的不等式组{2(x +a)≤x +6−ax −1<4x+45的解集为x <9,那么符合条件的所有整数a 的个数是( ) A. 4个B. 3个C. 2个D. 1个 5. 如图,以表示2的点为圆心,以边长为1的正方形的对角线长为半径画弧与数轴交于点A ,则点A 表示的数为( )A. √2B. √2−1C. √2−2D. 2−√2 6. 下列判断错误的是( )A. 0是一个有理数B. 0大于所有负数C. 0小于所有正数D. 0没有绝对值 7. 如图,已知线段AB =10cm ,点C 在线段AB 上,点M 是线段AC 的中点,点N 是线段BC 的中点,那么线段MN 的长为( )A. 6cmB. 5cmC. 4cmD. 不能确定8.下列说法:①若C是AB的中点,则AC=BC;②若AC=BC,则点C是AB的中点;③若OC是∠AOB的平分线,则∠AOC=12∠AOB;④若∠AOC=12∠AOB,则OC是∠AOB的平分线,其中正确的有()A. 1个B. 3个C. 2个D. 4个9.某商店出售两件衣服,每件60元,其中一件赚25%,而另一件赔25%,那么这家商店()A. 赚了B. 赔了C. 不赚也不赔D. 不能确定10.下列立体图形是由若干个棱长为1的小正方体按照一定规律堆叠而成,其中第1个图的俯视图面积为1,第2个图的俯视图面积为3,第3个图的俯视图面积为6,……,按照此规律,第6个图的俯视图面积为()A. 15B. 19C. 21D. 24二、填空题(本大题共5小题,共15.0分)11.若m a−1n3和−2mn2b−5是同类项,那么a=______ ,b=______ .12.某校七年级学生有a人,已知七、八、九年级学生人数比为2:3:3,则该校学生共有______ 人.13.比较有理数的大小:(1)−25______−35;(2)−2.5______−|−2.25|.14.一辆标价为59000元的新能源汽车,按标价打九折后,还能盈利987元,则该新能源汽车的每台进价为______.15.如图,图①是边长为a的正方形中有一个边长是b的小正方形,图②是将图①中的阴影部分剪拼成的一个等腰梯形,比较图①和图②阴影部分的面积,可验证的乘法公式是______公式.三、解答题(本大题共7小题,共55.0分)16.(1)如图所示是由几个小立方块所搭的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,请画出相应几何体的主视图和左视图:(2)分别画下图几何体的主视图、左视图、俯视图.17.先化简,再求值:4(2a2b−ab2)−(−ab2+3a2b),其中a=3,b=−1.18.灯塔在灯塔的北偏东,相距20海里,轮船在灯塔的正东方向,在灯塔的南偏东,试画图确定轮船的位置.(每10海里用1厘米长的线段表示,且标出方位角及轮船的位置)19.春节期间,某超市出售的荔枝和芒果,单价分别为每千克26元和22元,李叔叔购买这两种水果共30千克,共花了708元,请问李叔叔购买这两种水果各多少千克?20.如图,OB是∠AOC的平分线,OD是∠COE的平分线.(1)如果∠AOB=40°,∠DOE=30°,那么∠BOD是多少度?(2)如果∠AOE=140°,∠COD=30°,那么∠AOB是多少度?21. 解方程:2(x+2)−3(x−1)=122. 在数轴上把下列各数表示出来,并用“<”连接各数.2,−|−1|,1,0,−(−3.5)参考答案及解析1.答案:B解析:解:∵正数都大于负数,又∵1和12是正数,−0.1和−12是负数,∴−0.1和−12小,∵|−0.1|=0.1,|−12|=12=0.5>0.1,∴−0.1>−12, 即最小的一个数是−12,故选:B .根据正数都大于负数得出−0.1和−12小,根据两个负数比较大小,其绝对值大的反而小比较即可. 本题考查了有理数的大小比较,注意:正数都大于负数,两个负数比较大小,其绝对值大的反而小. 2.答案:A解析:解:设点P 表示的数为a ,则12<a <1,∴1<1a <2,∴在数轴上表示点P 的倒数的点可能是A 点.故选:A .根据点P 表示的数的范围即可得出点P 的倒数范围,据此判断即可.本题考查了借助数轴考查的倒数的定义,理清数轴上点P 的大小是解题的关键.3.答案:B解析:解:∵x <0,∴原式=−x +2x =x ,故选:B .判断绝对值里边式子的正负,利用绝对值的代数意义计算即可求出值.此题考查了整式的加减−化简求值,熟练掌握运算法则是解本题的关键.4.答案:B解析:解:解关于x 的方程ax −x +6=0得x =−6a−1∵关于x 的方程ax −x +6=0的解为正整数,∴a −1<0,且a −1=−1、−2,−3,−6,于是a =0、,−1、−2、−5;又∵不等式组{2(x +a)≤x +6−a x −1<4x+45整理得{x ≤6−3a x <9, 而不等式组{2(x +a)≤x +6−ax −1<4x+45的解集为x <9, ∴6−3a ≥9,解得a ≤−1于是符合条件的整数a 的值为:−1、−2、−5,故选:B .先将方程和不等式组分别解出,然后求出a 的范围即可求出所有整数a .本题考查的是解一元一次方程与解不等式组,求各种特殊解的前提都是先求出整个解集,再在解集中求特殊解,了解求特殊解的方法是解决本题的关键. 5.答案:D解析:解:由勾股定理得:正方形的对角线为√2,设点A 表示的数为x ,则2−x =√2,解得x =2−√2.故选:D .由于数轴上两点间的距离应让较大的数减去较小的数,所以根据数轴上两点间距离的公式便可解答. 此题主要考查了实数与数轴之间的对应关系,解题时求数轴上两点间的距离应让较大的数减去较小的数即可.6.答案:D解析:解:A 、0是一个有理数,故A 正确,不符合题意;B 、0大于所有负数,故B 正确,不符合题意;C 、0小于所有正数,故C 正确,不符合题意;D 、0的绝对值是0,故D 错误,符合题意;.故选:D .根据有理数的分类,有理数大小比较,绝对值的定义进行判断即可.本题考查了有理数,0与正数,负数的大小比较,绝对值的意义,熟练掌握0这个数的特殊意义是关键.7.答案:B解析:解:∵M是线段AC的中点,N是线段BC的中点,∴MC=12AC,CN=12BC,∴MN=MC+CN=12AC+12BC=12(AC+BC)=12×10=5cm.故选:B.由于点M是线段AC中点,所以MC=12AC,由于点N是线段BC中点,则CN=12BC,而MN=MC+CN=12(AC+BC)=12AB,从而可以求出MN的长度.本题考查了两点间的距离.不管点C在哪个位置,MC始终等于AC的一半,CN始终等于BC的一半,而MN等于MC加上(或减去)CN等于AB的一半,所以不管C点在哪个位置MN始终等于AB的一半.8.答案:C解析:解:①若C是AB的中点,则AC=BC,该说法正确;②若AC=BC,则点C不一定是AB的中点,该说法错误;③若OC是∠AOB的平分线,则∠AOC=12∠AOB,该说法正确;④若∠AOC=12∠AOB,则OC不一定是∠AOB的平分线,该说法错误;故选:C.根据线段的中点的定义及角平分线的定义进行判断,即可找到正确的答案.本题主要考查了中点以及角平分线的定义,从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.9.答案:B解析:本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.设盈利的那件衣服进价是x元,亏损的那件衣服进价是y元,根据每件60元,其中一件赚25%,另一件亏25%,可列出方程求解.解:设盈利的那件衣服进价是x元,则x+25%x=60,x =48.设亏损的那件衣服进价是y 元,则y −25%y =60,y =80.∵60+60−48−80=−8,∴赔了8元.故选B .10.答案:C解析:解:由题意得,第6个图的俯视图面积为1+2+3+4+5+6=21.故选:C .由题意可知,以1个图的俯视图的面积为1,第2个图的俯视图面积为1+2,第3个图的俯视图面积为1+2+3,…,所以第6个图的俯视图面积为1+2+3+4+5+6.本题考查了三视图的知识,俯视图是从物体的上面向下看得到的视图,找出几何体的俯视图的变化规律是解答本题的关键.11.答案:2;4解析:解:由m a−1n 3和−2mn 2b−5是同类项,得{a −1=12b −5=3. 解得{a =2b =4. 故答案为:2,4.根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,根据解方程,可得答案. 本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点12.答案:4a解析:解:设该校共有x 人.22+3+3·x =a x =8a 2x =4a故答案为4a .因为七、八、九年级学生人数比为2:3:3,所以七年级所占的人数比为28,设该校共有x 人,可列方程求解.本题考查理解题意的能力,根据题目给出的条件,找出合适的等量关系列出方程,再求解.13.答案:><解析:解:(1)∵25<35,∴−25>−35;故答案为:>;(2)−|−2.25|=−2.25,∵2.5>2.25,∴−2.5<−2.25,∴−2.5<−|−2.25|;故答案为:<.(1)根据两个负数比较大小,绝对值大的反而小即可得出答案;(2)首先化简有理数,再根据两个负数比较大小,绝对值大的反而小即可得出答案.本题考查了有理数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.14.答案:52113解析:解:设该新能源汽车的每台进价为x元,依题意得:59000×0.9−x=987解得x=52113故答案是:52113.设该新能源汽车的每台进价为x元,根据题意列出关于x的方程,求出方程的解即可得到结果.此题考查了一元一次方程的应用,找出题中的等量关系是解本题的关键.15.答案:平方差解析:解:左阴影的面积s=a2−b2,右平行四边形的面积s=2(a+b)(a−b)÷2=(a+b)(a−b),两面积相等所以等式成立a2−b2=(a+b)(a−b).这是平方差公式.根据图中边的关系,可求出两图的面积,而两图面积相等,从而推导出了平方差的公式.本题主要证明了平方差公式.16.答案:解:(1)主视图从左往右3列正方形的个数依次为4,2,3;左视图从左往右3列正方形的个数依次为2,4,3.;(2)主视图从左往右3列正方形的个数依次为1,3,2;左视图从左往右2列正方形的个数依次为3,1.俯视图从左往右3列正方形的个数依次为1,2,1..解析:(1)画出从正面,左面看得到的图形即可;(2)画出从正面,左面,上面看得到的图形即可.考查画三视图的知识;用到的知识点为:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.17.答案:解:原式=8a2b−4ab2+ab2−3a2b=5a2b−3ab2,当a=3,b=−1时,原式=5×9×(−1)−3×3×1=−45−9=−54.解析:直接利用整式的加减运算法则化简,再把已知数据代入得出答案.此题主要考查了整式的加减,正确合并同类项是解题关键.18.答案:解:如图所示:解析:根据方向角的定义确定出灯塔B的位置,再根据题意确定出点C的位置即可.解:如图所示:19.答案:解:设购买了荔枝x千克,则购买芒果(30−x)千克.根据题意列方程得:26x+22(30−x)=708,解得:x=12,30−x=18.答:购买了荔枝12千克,购买了芒果18千克.解析:设购买了荔枝x千克,则购买芒果(30−x)千克.根据两种水果共花了708元,列出方程并解答即可.本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.20.答案:解:(1)如图,∵OB为∠AOC的平分线,OD是∠COE的平分线,∴∠AOB=∠BOC,∠DOE=∠DOC,∴∠BOD=∠BOC+∠DOC=∠AOB+∠DOE=40°+30°=70°;(2)如图,∵OD是∠COE的平分线,∠COD=30°,∴∠EOC=2∠COD=60°.∵∠AOE=140°,∠AOC=∠AOE−∠EOC=80°.又∵OB为∠AOC的平分线,∠AOC=40°.∴∠AOB=12解析:(1)根据角平分线的定义可以求得∠BOD=∠AOB+∠DOE;(2)根据角平分线的定义易求得∠EOC=2∠COD=60°,所以由图中的角与角间的和差关系可以求得∠AOC=80°,最后由角平分线的定义求解.本题考查了角平分线的定义.从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.21.答案:解:去括号得:2x+4−3x+3=1,移项合并得:−x=−6,解得:x=6.解析:方程去括号,移项合并,把x系数化为1,即可求出解.此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.22.答案:设A=2,B=−|−1|,C=11,D=0,E=−(−3.5)2解析:解:设A=2,B=−|−1|,C=11,D=0,E=−(−3.5),表示在数轴上,根据数在数轴2上的位置用(<)连接即可.。

济宁市七年级上册数学期末试题及答案解答

济宁市七年级上册数学期末试题及答案解答
三、压轴题
31.已知 , 、 、 、 是 内的射线.
(1)如图1,当 ,若 平分 , 平分 ,求 的大小;
(2)如图2,若 平分 , 平分 , , ,求 .
32.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC,∠BOD的平分线OM、ON,然后提出如下问题:求出∠MON的度数.
特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM和ON仍然是∠AOC和∠BOD的角平分线.其中,按图2方式摆放时,可以看成是ON、OD、OB在同一直线上.按图3方式摆放时,∠AOC和∠BOD相等.
(1)请你帮助“兴趣小组”进行计算:图2中∠MON的度数为°.图3中∠MON的度数为°.
济宁市七年级上册数学期末试题及答案解答
一、选择题
1.计算 的结果是()
A.-8B.8C.2D.-2
2.将方程 去分母得()
A. B.
C. D.
3.已知关于x的方程mx+3=2(m﹣x)的解满足(x+3)2=4,则m的值是( )
A. 或﹣1B.1或﹣1C. 或 D.5或
4.如图,已知直线 ,点 分别在直线 上,连结 .点D是直线 之间的一个动点,作 交直线b于点C,连结 .若 ,则下列选项中 不可能取到的度数为()
A.60°B.80°C.150°D.170°
5.一根绳子弯曲成如图①所示的形状.当用剪刀像图②那样沿虚线a把绳子剪断时,绳子被剪为5段;当用剪刀像图③那样沿虚线b(b∥a)把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a、b之间把绳子再剪(n﹣2)次(剪刀的方向与a平行),这样一共剪n次时绳子的段数是( )
类比拓展

2020—2021 学年七年级上期数学期末质量监测试题(含答案解析)

2020—2021 学年七年级上期数学期末质量监测试题(含答案解析)

2020—2021学年七年级上期数学期末质量监测试题注意事项:1.试题卷上各题的答案签字笔书写在答题卡...上,不得在试题卷上直接作答;2.答题前认真阅读答题卡...上的注意事项;3.作图(包括作辅助线)请一律用2B..铅笔..完成;4.考试结束,由监考人员将试题卷和答题卡...一并收回.一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑.-+的结果是()1.21A.3B.1-C.3-D.12.如图,虚线左边的图形绕虚线旋转一周,能形成的几何体是()A. B. C. D.3.下图是由4个大小相同的正方体搭成的几何体,这个几何体的主视图是().A. B. C. D.4.下面几何体的截面图不可能是圆的是()A.圆柱B.圆锥C.球D.棱柱5.下列计算中,结果等于5的是()A.()()94--- B.()()94-+-C.94-+- D.9+4-+6.某班级组织活动,为了解同学们喜爱的体育运动项目,设计了如图尚不完整的调查问卷:准备在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中选取三个作为该调查问卷问题的备选项目,选取合理的是()A.①②③B.①③⑤C.②③④D.②④⑤7.如图,是一个正方体盒子的展开图,如果要把它粘成一个正方体,那么与点A 重合的点是()A.点B ,IB.点C ,EC.点B ,ED.点C ,H8.下列各组数中,相等的是()A.()23-与23- B.()32-与32-C.23与23- D.32-与()32-9.定义a ※2(1)b a b =÷-,例如3※()295351944=÷-=÷=.则()3-※4的结果为()A.3-B.3C.54 D.9410.如图,点A ,B ,C 在数轴上,它们分别对应的有理数是a ,b ,c ,则以下结论正确的是()A.0a b +>B.0a c +<C.0a b c +-> D.0b c a +->11.在桌上的三个空盒子里分别放入了相同数量的围棋子n 枚(n ≥4).小张从甲盒子中取出2枚放入乙盒中,从丙盒中取出3枚放入乙盒中;再从乙盒中取出与甲盒中数量相同的棋子数放入甲盒中.此时乙盒中的围棋子的枚数是()A.5B.n +7C.7D.n +312.在编写数学谜题时,小智编写的一个题为3259⨯+=,“”内要求填写同一个数字,若设“”内数字为x .则列出方程正确的是()A.3259x x ⨯+=B.3205109x x ⨯+=⨯C.320590x x⨯++= D.3(20)5109x x ⨯++=+二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡...中对应的横线上.13.一元一次方程213x -=的解是x =__.14.若5a =,3b =-,且0a b +>,则ab =_______.15.某中学七年级学生的平均体重是44kg ,下表给出了6名学生的体重情况,最重和最轻的同学体重相差_____kg .姓名小润小华小颖小丽小惠小胜体重/kg 4741体重与平均体重的差值/kg+302-+416.如图,∠AOC=∠BOD=α,若∠BOC=β,则∠AOD=____.(用含α,β的代数式表示).17.如图,某小区准备在一个长方形空地上进行造型,图示中的x 满足:1020x ≤<(单位:m ),其中两个扇形表示草坪,两块草坪之间用水池隔开,那么水池(图中空白部分)的面积为___________(单位:2m ).18.如图,是某剧场第一排座位分布图.甲、乙、丙、丁四人购票,所购票数分别为1,3,5,6.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位之和最小.如果按“甲、乙、丙、丁”的先后顺序购票,那么甲购买1号座位的票,乙购买2,4,6号座位的票,丙购买3,5,7,9,11号座位的票,丁无法购买到第一排座位的票.若让丙第一购票,要使其他三人都能购买到第一排座位的票,写出满足条件的丁所选的座位号之和为____________.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上.19.计算:(1)16373311-÷+⨯;(2)()123+153234⎛⎫-⨯- ⎪⎝⎭.20.如图,已知点A ,B ,C ,利用尺规,按要求作图:(1)作线段AB ,AC ,过B ,C 作射线BQ ;在射线CQ 上截取CD=BC ,在射线DQ 上截取DE=BD ;(2)连接AE ,在线段AE 上截取AF=AC ,作直线AD 、线段DF ;(3)比较BC 与DF 的大小,直接写出结果.21.化简下列各式:(1)()()222ab c ab c -+-+;(2)()22233(2)x xy x xy --+-+.22.解方程:(1)()235x x +=-;(2)325123y y ---=.23.小李家准备购买一台台式电脑,小李将收集到的该地区A ,B ,C 三种品牌电脑销售情况的有关数据统计如下:根据上述三个统计图,请解答:(1)直接写出6至11月三种品牌电脑销售总量最多的电脑品牌,以及11月份A 品牌电脑的销售量;(2)11月份,其它品牌的电脑销售总量是多少台?(3)你建议小李购买哪种品牌的电脑?请写出你的理由(写出一条理由即可).24.用一张正方形纸片,在纸片的四个角上剪去四个相同的小正方形,经过折叠,就可成一个无盖的长方体.(1)如图,这是一张边长为a cm的正方形,请在四个角上画出需要剪去的四个小正方形的示意图,剪去部分用阴影表示;(2)如果剪去的四个小正方形的边长为b cm,请用含a,b的代数式表示出无盖长方体的容积(可不化简);a=cm,完成下列表格,并利用你的计算结果,猜想无盖长方体容积取得最(3)若正方形纸片的边长为18大值时,剪去的小正方形的边长可能是多少?(保留整数位)剪去小正方形的边长b的值/cm123456……cm……无盖长方体的容积/325.小明和小亮是同学,同住在一个小区.学校门前是一条东西大道.沿路向东是图书馆,向西是小明和小亮家所在的小区.一天放学后,两人相约到图书馆,他们商议有两种方案到达图书馆.方案1:直接从学校步行到图书馆;方案2:步行回家取自行车,然后骑车到图书馆.已知步行速度是5km/h,骑车速度是步行速度的4倍,从学校到家有2km的路程,通过计算发现,方案1比方案2多用6min.(1)请在下图中表示出图书馆、小明和小亮家所在小区的大致位置;(2)假设学校到图书馆的路程为x km,用含x的代数式表示出方案2需要的时间;(3)求方案1中需要的时间.四、解答题:(本大题1个小题,共8分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上.-和10的位置上,沿数轴做向东、向西移动的游戏.26.如图,甲、乙两人(看成点)分别在数轴10移动游戏规则:用一枚硬币,先由乙抛掷后遮住,甲猜向上一面是正还是反,如果甲猜对了,甲向东移动3个单位,如果甲猜错了,甲向西移动3个单位;然后再由甲抛掷后遮住,乙猜向上一面是正还是反,如果乙猜对了,乙向西移动2个单位,如果乙猜错了,乙向东移动3个单位.两人各抛掷一次硬币并完成相应的移动算一次游戏.10次游戏结束后,甲猜对了m次,乙猜对了n次.(1)请用含m,n的代数式表示当游戏结束时,甲、乙两人在数轴上的位置上的点代表的数;(2)10次游戏结束后,若甲10次都猜对了,且两人在数轴上的位置刚好相距10个单位,求乙猜对的次数.2020—2021学年七年级上期数学期末质量监测试题答案解析注意事项:1.试题卷上各题的答案签字笔书写在答题卡...上,不得在试题卷上直接作答;2.答题前认真阅读答题卡...上的注意事项;3.作图(包括作辅助线)请一律用2B..铅笔..完成;4.考试结束,由监考人员将试题卷和答题卡...一并收回.一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑.-+的结果是()1.21A.3B.1-C.3-D.1【答案】B【解析】【分析】直接利用有理数的加法法则计算即可.-+=-【详解】211故选:B.【点睛】本题主要考查有理数的加法,掌握有理数的加法法则是解题的关键.2.如图,虚线左边的图形绕虚线旋转一周,能形成的几何体是()A. B. C. D.【分析】从运动的观点来看,点动成线,线动成面,面动成体,根据“面动成体”可得答案.【详解】解:根据“面动成体”可得,旋转后的几何体为两个底面重合的圆锥的组合体,因此选项B中的几何体:符合题意,故选:B.【点睛】本题考查“面动成体”,解题的关键是明确点、线、面、体组成几何图形,点、线、面、体的运动组成了多姿多彩的图形世界.3.下图是由4个大小相同的正方体搭成的几何体,这个几何体的主视图是().A. B. C. D.【答案】D【解析】【分析】根据主视图定义,由此观察即可得出答案.【详解】解:从物体正面观察可得,左边第一列有2个小正方体,第二列有1个小正方体.故答案为D【点睛】本题考查三视图的知识,主视图是从物体的正面看得到的视图.4.下面几何体的截面图不可能是圆的是()A.圆柱B.圆锥C.球D.棱柱【详解】解:上述四个几何体中,圆柱、圆锥和球的截面图都有可能是圆;只有棱柱的截面图不可能是圆.故选D .5.下列计算中,结果等于5的是()A.()()94--- B.()()94-+-C.94-+- D.9+4-+【答案】A 【解析】【分析】根据绝对值的性质化简化简求解.【详解】A.()()94---=9455-+=-=,故正确;B.()()94941313-+-=--=-=,故错误;C.949413-+-=+=,故错误;D .9+4-+=9413+=,故错误;故选A .【点睛】此题主要考查绝对值的运算,解题的关键是熟知绝对值的定义.6.某班级组织活动,为了解同学们喜爱的体育运动项目,设计了如图尚不完整的调查问卷:准备在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中选取三个作为该调查问卷问题的备选项目,选取合理的是()A.①②③ B.①③⑤C.②③④D.②④⑤【答案】C 【解析】【分析】根据体育项目的隶属包含关系,以及“户外体育项目”与“其它体育项目”的关系,综合判断即可.【详解】解:根据体育项目的隶属包含关系,选择“篮球”“足球”“游泳”比较合理,故选:C.【点睛】此题主要考查统计调查的应用,解题的关键是熟知体育运动项目的定义.7.如图,是一个正方体盒子的展开图,如果要把它粘成一个正方体,那么与点A重合的点是()A.点B,IB.点C,EC.点B,ED.点C,H【答案】B【解析】【分析】首先能想象出来正方形的展开图,然后作出判断即可.【详解】由正方形的展开图可知A、C、E重合,故选B.【点睛】本题考查了正方形的展开图,比较简单.8.下列各组数中,相等的是()A.()23-与23-B.()32-与32-C.23与23-D.32-与()32-【答案】D【解析】【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【详解】∵(-3)2=9,-32=-9,故选项A不符合题意,-=,故选项B不符合题意,∵(-2)3=-8,328∵32=9,-32=-9,故选项C不符合题意,∵-23=-8,(−2)3=-8,故选项D 符合题意,故选D .【点睛】此题考查有理数的乘法,有理数的乘方,解题关键在于掌握运算法则.9.定义a ※2(1)b a b =÷-,例如3※()295351944=÷-=÷=.则()3-※4的结果为()A.3-B.3C.54 D.94【答案】B 【解析】【分析】根据给出的※的含义,以及有理数的混合运算的运算法则,即可得出答案.【详解】解: a ※2(1)b a b =÷-,∴()3-※4()()2=341933-÷-=÷=,故选B .【点睛】本题考查了新定义的运算以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,后算加减;同级运算,应按从左往右的顺序进行计算,如果有括号,要先计算括号里的.10.如图,点A ,B ,C 在数轴上,它们分别对应的有理数是a ,b ,c ,则以下结论正确的是()A.0a b +>B.0a c +<C.0a b c +->D.0b c a +->【答案】D 【解析】【分析】根据数轴上点的位置确定出a ,b ,c 的正负及绝对值大小,利用有理数的加减法则判断即可.【详解】解:根据数轴上点的位置得:a <0<b <c ,且|b|<|a|<|c|,∴a+b <0,故选项A 错误,不符合题意;0a c +>,故选项B 错误,不符合题意;0a b c +-<,故选项C 错误,不符合题意;0b c a +->,故选项D 正确,符合题意;故选:D .【点睛】此题考查了有理数的减法,数轴,以及绝对值,熟练掌握运算法则是解本题的关键.11.在桌上的三个空盒子里分别放入了相同数量的围棋子n 枚(n ≥4).小张从甲盒子中取出2枚放入乙盒中,从丙盒中取出3枚放入乙盒中;再从乙盒中取出与甲盒中数量相同的棋子数放入甲盒中.此时乙盒中的围棋子的枚数是()A.5B.n +7C.7D.n +3【答案】C 【解析】【分析】先求出从甲盒子中取出2枚后剩下的棋子数,再求出从甲盒子中取出2枚放入乙盒中,从丙盒中取出3枚放入乙盒中乙盒的棋子数,把它们相减即可求解.【详解】解:依题意可知,乙盒中的围棋子的枚数是n +2+3-(n -2)=7.故选:C .【点睛】考查了列代数式,关键是得到从甲盒子中取出2枚后剩下的棋子数,从甲盒子中取出2枚放入乙盒中,从丙盒中取出3枚放入乙盒中乙盒的棋子数.12.在编写数学谜题时,小智编写的一个题为3259⨯+=,“”内要求填写同一个数字,若设“”内数字为x .则列出方程正确的是()A.3259x x ⨯+=B.3205109x x ⨯+=⨯C.320590x x ⨯++=D.3(20)5109x x ⨯++=+【答案】D 【解析】【分析】直接利用表示十位数的方法进而得出等式即可.【详解】解:设“”内数字为x ,根据题意可得:3×(20+x )+5=10x+9.故选:D .【点睛】此题主要考查了由实际问题抽象出一元一次方程,正确表示十位数是解题关键.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡...中对应的横线上.13.一元一次方程213x -=的解是x =__.【答案】2;【解析】【分析】方程移项合并后,将x 的系数化为1,即可求出方程的解.【详解】解:213x -=23+1x =2x=4,解得:x=2.故答案为:2.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项,合并同类项,将x 的系数化为1,求出解.14.若5a =,3b =-,且0a b +>,则ab =_______.【答案】15-;【解析】【分析】根据绝对值的意义及a+b>0,可得a ,b 的值,再根据有理数的乘法,可得答案.【详解】解:由|a|=5,b=-3,且满足a+b >0,得a=5,b=-3.当a=5,b=-3时,ab=-15,故答案为:-15.【点睛】本题考查了绝对值、有理数的加法、有理数的乘法,确定a 、b 的值是解题的关键.15.某中学七年级学生的平均体重是44kg ,下表给出了6名学生的体重情况,最重和最轻的同学体重相差_____kg .姓名小润小华小颖小丽小惠小胜体重/kg4741体重与平均体重+302-+4的差值/kg【答案】7;【解析】【分析】根据题目中的平均体重即可分别求出体重与平均体重的差值及体重,然后填表即可得出最重的和最轻的同学体重,再相减即可得出答案.【详解】解: 某中学七年级学生的平均体重是44kg,∴小润的体重与平均体重的差值为4744=3-kg;+kg;小华的体重为443=47+kg;小颖的体重为440=44-kg;小丽的体重为442=42--kg;小惠的体重与平均体重的差值为4144=3+kg;小胜的体重为444=48填表如下:姓名小润小华小颖小丽小惠小胜体重/kg474744424148体重与平均体重+3+302--3+4的差值/kg可知,最重的同学的体重是48kg,最轻的同学的体重是41kg∴最重和最轻的同学体重相差4841=7-kg.故答案为:7.【点睛】本题考查了有理数加减的应用,熟练掌握有理数的加减运算法则是解题的关键.16.如图,∠AOC=∠BOD=α,若∠BOC=β,则∠AOD=____.(用含α,β的代数式表示).【答案】2αβ-【解析】【分析】由,AOD AOC DOC ∠=∠+∠,DOC BOD BOC ∠=∠-∠可得:,AOD AOC BOD BOC ∠=∠+∠-∠从而可得答案.【详解】解:,AOD AOC DOC ∠=∠+∠ ,DOC BOD BOC ∠=∠-∠,AOD AOC BOD BOC ∴∠=∠+∠-∠,,AOC BOD BOC αβ∠=∠=∠= 2.AOD ααβαβ∴∠=+-=-故答案为:2.αβ-【点睛】本题考查的是角的和差关系,掌握利用角的和差关系进行计算是解题的关键.17.如图,某小区准备在一个长方形空地上进行造型,图示中的x 满足:1020x ≤<(单位:m ),其中两个扇形表示草坪,两块草坪之间用水池隔开,那么水池(图中空白部分)的面积为___________(单位:2m ).【答案】20125400x π-+;【解析】【分析】根据题意和图形可知,水池的面积是长方形的面积减去两个扇形的面积,本题得以解决.【详解】解:由图可得,水池的面积为:20×(x +20)−π×102×14−π×202×14=20125400x π-+(m 2),故答案为:20125400x π-+.【点睛】本题考查列代数式,解答本题的关键是明确题意,利用数形结合的思想解答.18.如图,是某剧场第一排座位分布图.甲、乙、丙、丁四人购票,所购票数分别为1,3,5,6.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位之和最小.如果按“甲、乙、丙、丁”的先后顺序购票,那么甲购买1号座位的票,乙购买2,4,6号座位的票,丙购买3,5,7,9,11号座位的票,丁无法购买到第一排座位的票.若让丙第一购票,要使其他三人都能购买到第一排座位的票,写出满足条件的丁所选的座位号之和为____________.【答案】66.【解析】【分析】根据甲、乙、丙、丁四人购票,所购票数量分别为1,3,5,6可得若丙第一购票,要使其他三人都能购买到第一排座位的票,那么丙选座要尽可能得小,因此丙先选择:1,2,3,4,5.丁所购票数最多,即可得出丁应该为6,8,10,12,14,16,再将所有数相加即可.【详解】解: 甲、乙、丙、丁四人购票,所购票数分别为1,3,5,6.∴丙选座要尽可能得小,选择:1,2,3,4,5.此时左边剩余5个座位,右边剩余6个座位,∴丁选:6,8,10,12,14,16.∴丁所选的座位号之和为681012141666+++++=;故答案为:66.【点睛】本题考查有理数的加法,认真审题,理解题意是解题的关键.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上.19.计算:(1)16373311-÷+⨯;(2)()123+153234⎛⎫-⨯- ⎪⎝⎭.【答案】(1)-6;(2)5【解析】【分析】(1)根据有理数的混合运算法则先算乘除后算加减即可;(2)根据有理数混合运算法则先算括号里面的再算乘除.【详解】解:(1)原式=93-+6=-;(2)原式123+12234⎛⎫=-⨯ ⎪⎝⎭12312+×1212234=⨯-⨯6+89=-5=.【点睛】此题考查了有理数混合运算的运算法则,难度一般,认真计算是关键,注意能简便运算的尽量简便运算.20.如图,已知点A,B,C,利用尺规,按要求作图:(1)作线段AB,AC,过B,C作射线BQ;在射线CQ上截取CD=BC,在射线DQ上截取DE=BD;(2)连接AE,在线段AE上截取AF=AC,作直线AD、线段DF;(3)比较BC与DF的大小,直接写出结果.【答案】(1)见解析;(2)见解析;(3)BC=DF【解析】【分析】(1)利用几何语言画出对应的图形即可;(2)利用几何语言画出对应的图形即可;(3)利用作图特征和等量代换即可得出答案.【详解】解:(1)、(2)如图所示,要求有作图痕迹;(3)BC=DF.证明:由作图知CD=DF ,又 CD=BC ,∴BC=DF .【点睛】本题考查了尺规作图-线段,利用圆规和直尺的特征作图是解题的关键.21.化简下列各式:(1)()()222ab c ab c -+-+;(2)()22233(2)x xy x xy --+-+.【答案】(1)2ab c -;(2)236x xy --+【解析】【分析】(1)原式先去括号,然后合并同类项即可得到答案;(2)原式先去括号,然后合并同类项即可得到答案.【详解】解:(1)()()222ab c ab c -+-+242ab c ab c =--+2ab c =-.(2)()22233(2)x xy x xy --+-+2262+336x xy x xy =-+-+236x xy =--+.【点睛】本题考查整式的加法运算,要先去括号,然后合并同类项.运用去括号法则进行多项式化简.合并同类项时,注意只把系数想加减,字母与字母的指数不变.22.解方程:(1)()235x x +=-;(2)325123y y ---=.【答案】(1)11x =-;(2)5y =-【解析】【分析】(1)按照去括号,移项、合并同类项、将系数化为1的步骤计算即可;(2)按照去分母、去括号、移项、合并同类项、将系数化为1的步骤计算即可.【详解】解:(1)去括号,得265x x +=-移项,得256x x -=--合并同类项,将系数化为1,得11x =-.(2)去分母,得3(3)62(25)y y --=-去括号,得396410y y --=-移项,得341096y y -=-++合并同类项,得5-=y 系数化为1,得5y =-.【点睛】本题考查了解一元一次方程,熟练掌握解方程的一般步骤是解题的关键.23.小李家准备购买一台台式电脑,小李将收集到的该地区A ,B ,C 三种品牌电脑销售情况的有关数据统计如下:根据上述三个统计图,请解答:(1)直接写出6至11月三种品牌电脑销售总量最多的电脑品牌,以及11月份A 品牌电脑的销售量;(2)11月份,其它品牌的电脑销售总量是多少台?(3)你建议小李购买哪种品牌的电脑?请写出你的理由(写出一条理由即可).【答案】(1)6至11月三种品牌电脑销售量总量最多是B 品牌,11月份,A 品牌的销售量为270台;(2)221台;(3)答案不唯一,如,建议买C 品牌电脑;或建议买A 品牌电脑,或建议买B 产品,见解析【解析】【分析】(1)从条形统计图、折线统计图可以得出答案;(2)根据A品牌电脑销售量及A品牌电脑所占百分比即可求出11月份电脑的总的销售量,再减去A、B、C品牌的销售量即可得出答案;(3)从所占的百分比、每月销售量增长比等方面提出建议即可.【详解】解:(1)6至11月三种品牌电脑销售量总量最多是B品牌;11月份,A品牌的销售量为270台;(2)11月,A品牌电脑销售量为270台,A品牌电脑占27%,÷=(台).所以,11月份电脑的总的销售量为27027%1000---=(台).其它品牌的电脑有:1000234270275221(3)答案不唯一.如,建议买C品牌电脑.销售量从6至11月,逐月上升;11月份,销售量在所有品牌中,占的百分比最大.或:建议买A品牌电脑.销售量从6至11月,逐月上升,且每月销售量增长比C品牌每月的增长量要快.或:建议买B产品.因为B产品6至11月的总的销售量最多.【点睛】本题考查了条形图、折线统计图、扇形统计图,熟练掌握和理解统计图中各个数量及数量之间的关系是解题的关键.24.用一张正方形纸片,在纸片的四个角上剪去四个相同的小正方形,经过折叠,就可成一个无盖的长方体.(1)如图,这是一张边长为a cm的正方形,请在四个角上画出需要剪去的四个小正方形的示意图,剪去部分用阴影表示;(2)如果剪去的四个小正方形的边长为b cm,请用含a,b的代数式表示出无盖长方体的容积(可不化简);a=cm,完成下列表格,并利用你的计算结果,猜想无盖长方体容积取得最(3)若正方形纸片的边长为18大值时,剪去的小正方形的边长可能是多少?(保留整数位)剪去小正方形的边长b的值/cm123456……cm……无盖长方体的容积/3【答案】(1)见解析;(2)()22v b a b =-;(3)见解析,剪去的小正方形的边长可能是3cm 【解析】【分析】(1)将正方形的四个角的小正方形大小要一致即可;(2)根据图形中的字母表示的长度即可得出()22v b a b =-;(3)将18a =cm 结合容积公式及表格即可得出答案.【详解】解:(1)如图所示(可以不标出a ,b ,但四个角上的正方形大小要一致).(2)无盖厂长方体盒子的容积v 为()22v b a b =-(3)当18a =,b=1时,()2221(1821)256v b a b =-=⨯-⨯=,当18a =,b=2时,()2222(1822)392v b a b =-=⨯-⨯=,当18a =,b=3时,()2223(1832)432v b a b =-=⨯-⨯=,当18a =,b=4时,()2224(1842)400v b a b =-=⨯-⨯=,当18a =,b=5时,()2225(1825)320v b a b =-=⨯-⨯=,当18a =,b=6时,()2226(1826)216v b a b =-=⨯-⨯=,填表如下:剪去小正方形的边长/cm 123456……无盖长方体的容积/3cm 256392432400320216……有表可知,无盖长方体容积取得最大值时,剪去的小正方形的边长可能是3cm .【点睛】本题考查了代数式求值的实际应用,结合题意得到等量关系是解题的关键.25.小明和小亮是同学,同住在一个小区.学校门前是一条东西大道.沿路向东是图书馆,向西是小明和小亮家所在的小区.一天放学后,两人相约到图书馆,他们商议有两种方案到达图书馆.方案1:直接从学校步行到图书馆;方案2:步行回家取自行车,然后骑车到图书馆.已知步行速度是5km/h ,骑车速度是步行速度的4倍,从学校到家有2km 的路程,通过计算发现,方案1比方案2多用6min .(1)请在下图中表示出图书馆、小明和小亮家所在小区的大致位置;(2)假设学校到图书馆的路程为x km ,用含x 的代数式表示出方案2需要的时间;(3)求方案1中需要的时间.【答案】(1)见解析;(2)2210=52020x x +++,或62156010x x --=;(3)需要的时间为48min 【解析】【分析】(1)根据题意可知小区在学校的左边,标出即可;(2)根据“步行速度是5km/h ,骑车速度是步行速度的4倍,从学校到家有2km 的路程,通过计算发现,方案1比方案2多用6min .”解答即可;(3)设学校到图书馆的路程为x km ,根据题意得出226554560x x +=++⨯,求解后即可得出方案1需要的时间.【详解】解:(1)如图所示;(2)根据题意,得2210=52020x x +++,或62156010x x --=(3)设学校到图书馆的路程为x km ,根据题意,得226554560x x +=++⨯解方程,得4x =.所以,455x =.460=485⨯.答:方案1中,需要的时间为48min .【点睛】本题考查了一元一次方程的应用,解题的关键是明确题意,找到命题中隐含的等量关系式是解题的关键.四、解答题:(本大题1个小题,共8分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上.26.如图,甲、乙两人(看成点)分别在数轴10-和10的位置上,沿数轴做向东、向西移动的游戏.移动游戏规则:用一枚硬币,先由乙抛掷后遮住,甲猜向上一面是正还是反,如果甲猜对了,甲向东移动3个单位,如果甲猜错了,甲向西移动3个单位;然后再由甲抛掷后遮住,乙猜向上一面是正还是反,如果乙猜对了,乙向西移动2个单位,如果乙猜错了,乙向东移动3个单位.两人各抛掷一次硬币并完成相应的移动算一次游戏.10次游戏结束后,甲猜对了m 次,乙猜对了n 次.(1)请用含m ,n 的代数式表示当游戏结束时,甲、乙两人在数轴上的位置上的点代表的数;(2)10次游戏结束后,若甲10次都猜对了,且两人在数轴上的位置刚好相距10个单位,求乙猜对的次数.【答案】(1)甲在数轴上的位置上的点代表的数为:640m -,其中010m ≤≤,且m 为整数;乙在数轴上的位置上的点代表的数为:405n -,其中010n ≤≤,且n 为整数;(2)n 的值2n =或6n =【解析】【分析】(1)甲猜对了m 次,则猜错了()10m -次,根据“如果甲猜对了,甲向东移动3个单位,如果甲猜错了,甲向西移动3个单位”即可表示出甲在数轴上的位置上的点;乙猜对了n 次,则猜错了()10n -次,根据“如果乙猜对了,乙向西移动2个单位,如果乙猜错了,乙向东移动3个单位”即可表示出乙在数轴上的位置上的点;(2)分两种情况:当甲在乙西面,甲乙相距10个单位及当甲在乙东面,甲乙相距10个单位,列关于m 、n 的方程,将10m =求n 的值即可.【详解】解:(1)甲猜对了m 次,则猜错了()10m -次,10次游戏结束后,甲在数轴上的位置上的点,代表的数为:()103310640m m m -+--=-,其中010m ≤≤,且m 为整数;乙猜对了n 次,则猜错了()10n -次,10次游戏结束后,乙在数轴上的位置上的点,代表的数为:()102310405n n n -+-=-,其中010n ≤≤,且n 为整数.(2)当甲在乙西面,甲乙相距10个单位,可得64010405m n -+=-,其中,=10m ,010n ≤≤,即60570n +=,解得2n =.当甲在乙东面,甲乙相距10个单位,可得。

2020-2021学年济宁市任城区七年级上学期期末数学试卷(含解析)

2020-2021学年济宁市任城区七年级上学期期末数学试卷(含解析)

2020-2021学年济宁市任城区七年级上学期期末数学试卷一、选择题(本大题共10小题,共30.0分)1.若a=2016×2018−2016×2017,b=2015×2016−2013×2017,c=√20162+10,则a,b,c的大小关系是()A. a<b<cB. a<c<bC. b<a<cD. b<c<a2.平方根和立方根相同的数是()A. 0B. 1C. 0和1D. 0和±13.已知点A(4,5),则点A关于x轴对称的点A′的坐标是()A. (−5,−4)B. (−4,5)C. (−4,−5)D. (4,−5)4.如图,点P是射线ON上一动点,∠AON=30°,当△AOP为等腰三角形时,∠A的度数一定不可能是()A. 120°B. 75°C. 60°D. 30°5.已知点P(x,|x|),则点P一定()A. 在第一象限B. 在第一或第四象限C. 在x轴上方D. 不在x轴下方6.下面是某同学在一次测验中解答的题目:①若x2=m2,则x=m;②方程(2x−3)2=3(2x−3)的解为x=3;③若直角三角形有两边长分别为3和4,则第三边的长为5.其中答案中完全正确的题目有()A. 0个B. 1个C. 2个D. 3个7.下列函数:①y=2,②y=−2x+8,③y=5x,④y=x2,⑤y=−(x+3)2(x<−3时)中,xy的值随x的值增大而增大的函数共有()A. 1个B. 2个C. 3个D. 4个8. 若二元一次方程组的解为x =a ,y =b ,则a −b 的值是( )A.B.C.D.9.如图,AB 是⊙O 的直径,AB =4,E 是BC ⏜上一点,将BC ⏜沿BC 翻折后E 点的对称点F 落在OA 中点处,则BC 的长为( )A. √10B. 2√3C. √13D. √1410. 如图,在平面真角坐标系中,点A 的坐标为(−4,6),AB ⊥x 轴,AC ⊥y 轴,D 是OB 的中点.E 是OC 上的一点,当△ADE 的周长最小时,点E 的坐标是( )A. (0.1)B. (0,53)C. (0,2)D. (0,103)二、填空题(本大题共5小题,共15.0分)11. 在数3.16,−10,2π,−227,1.3⋅,1.2121121112…(每两个2之间依次多1个1)中有______个无理数.12. 一图,AB 与CD 交于点O ,OA =OC ,OD =OB ,根据 可得△AOD≌△COB .13. 已知Rt △ABC 中,∠C =90°,AC =6,BC =8,直线CD 交AB 于D 且将△ABC 平分为面积相同的两部分,线段CD 长为______ .14. 若√a +2+b 2−2b +1=0,则a = ______ ,b = ______ . 15. 如图,已知直线l :y =√3x(直线l 与x 轴的夹角是60°),过点M(2,0)作x 轴的垂线交直线l 于点N ,过点N 作直线l 的垂线交x 轴于点M 1;过点M 1作x 轴的垂线交直线l 于N 1,过点N 1作直线l 的垂线交x 轴于点M 2,…;按此作法继续下去,则点M n 的坐标为______. 三、解答题(本大题共8小题,共55.0分) 16. 计算(1)|−5|+√16−32(2)(2x −1)2−(x 5−4x 4)÷x 317. 如图,已知在△ABC 中,∠ABC 的平分线与∠ACE 的平分线交于D 点,若∠A =80°,求∠D 的度数.18. 在数轴上表示下列各数,并用“<”连接. −12,0,√3,√−83,(−1)2.19. 如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D ,tan∠B =13,且BC =9 cm ,求AC ,AB 及CD的长.20.如图,A、B分别是x轴上位于原点左右两侧的点,点P(2,p)在第一象限,直线PA交y轴与点C(0,2),直线PB交y轴于点D,△AOP的面积为6.(1)求△COP的面积;(2)求点A的坐标及p的值;(3)若△BOP与△DOP的面积相等,求直线BD的函数解析式.21. 如图,△ABC在直角坐标系中,(1)请写出△ABC各点的坐标.(2)求出△ABC的面积.(3)若把△ABC向上平移3个单位,再向右平移2个单位得△A1B1C1,在图中画出△A1B1C1的位置,并写出点A1、B1、C1的坐标.22. 在如图所示的直角坐标系中,O为原点,直线y=−12x+m与x轴、y轴分别交于A、B两点,且点B的坐标为(0,8).(1)求m的值;(2)设直线OP与线段AB相交于P点,且S△AOPS△BOP =13,试求点P的坐标.23. 某药品生产基地共有5条生产线,每条生产线每月生产药品20万盒,该基地打算从第一个月开始到第五个月结束,对每条生产线进行升级改造.改造时,每个月只升级改造一条生产线,这条生产线当月停产,并于下个月投入生产,其他生产线则正常生产.经调查,每条生产线升级改造后,每月的产量会比原来提高20%.(1)根据题意,完成下面问题:①把下表补充完整(直接写在横线上):月数第1个月第2个月第3个月第4个月第5个月第6个月…产量/万盒______ ______ ______ 92………②从第1个月进行升级改造后,第______个月的产量开始超过未升级改造时的产量;(2)若该基地第x个月(1≤x≤5,且x是整数)的产量为y万盒,求y关于x的函数关系式;(3)已知每条生产线的升级改造费是30万元,每盒药品可获利3元.设从第1个月开始升级改造后,生产药品所获总利润为W1万元;同时期内,不升级改造所获总利润为W2万元设至少到第n个月(n为正整数)时,W1大于W2,求n的值.(利润=获利−改造费)参考答案及解析1.答案:B解析:解:a=2016×2018−2016×2017=2016×(2018−2017)=2016b=2015×2016−2013×2017=2016×(2015−2013)−2013=20192016<c=√20162+10<2019∴a,b,c的大小关系是:a<c<b.故选:B.首先求出a、b、c的值各是多少;然后根据实数大小比较的方法,判断出a,b,c的大小关系即可.此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.答案:A解析:解:A、0的平方根和立方根均相同,为0,符合题意.B、1的平方根为±1、1的立方根为1,不符合题意;C、由B选项知,不符合题意;D、−1没有平方根,不符合题意;故选:A.分别把0,1,−1的平方根和立方根计算后,找到相同的数即可求解.此题主要考查了算术平方根和立方根的运用,要掌握一些特殊的数字的特殊性质,如:±1,0,牢记这些数的特性可以快速解决这类问题.3.答案:D解析:解:点A(4,5),则点A关于x轴对称的点A′的坐标是(4,−5),故选:D.根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.此题主要考查了关于x轴的对称点的坐标,关键是掌握点的坐标的变化规律.4.答案:C解析:解:当点O为等腰三角形顶点时,∠A=75°,当点A为等腰三角形顶点时,∠A=120°,当点P为顶点时,∠A=30°,综上,∠A的度数为30°或75°或120°,一定不可能等于60°,故选:C.分三种情形讨论即可:a、当点O为等腰三角形顶点.b、当点A为等腰三角形顶点.C、当点P为顶点.本题考查等腰三角形的判定和性质,学会分类讨论的思想是解决问题的关键,属于中考常考题型.5.答案:D解析:根据题意,点P(x,|x|)中|x|≥0,根据选项,只有D符合条件.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−);且注意坐标轴上点的特征.解:已知点P(x,|x|),∵|x|≥0,∴当|x|>0时,点P在x轴的上方,当|x|=0时,点P在x轴上,只有D符合条件.故选D.6.答案:A解析:解:∵x2=m2,∴x=±m,∴①错误;∵(2x−3)2=3(2x−3),∴(2x−3)2−3(2x−3)=0,∴(2x−3)(2x−3−3)=0,∴2x−3=0,2x−3−3=0,∴x1=3,x2=3,∴②错误;2∵直角三角形有两边长分别为3和4,∴第三边的长为5或√7,∴③错误,即正确的个数是0个,故选A.求出两方程的解即可判断①②;当4为斜边时求出第三边是√7,当4是直角边时,求出第三边是5.本题考查了解一元二次方程和勾股定理的应用,主要考查学生的理解能力和判断能力.7.答案:B解析:解:①∵k=2>0,当x<0时,y的值随x的值增大而减小,x>0时,y的值随x的值增大而减小,①不正确;②∵k=−2,∴y的值随x的值增大而减小,②错误;③k=5,故y随着x的增大而增大,③正确;④y=x2,x≤0时,y的值随x的值增大而减小,x≥0时,y的值随x的值增大而增大,③不正确;⑤y=−(x+3)2(x<−3时)中,x≤−3时,y的值随x的值增大而增大,⑤正确故选:B.①根据反比例函数的性质判断即可;②③根据一次函数性质判断即可;④⑤根据二次函数的性质进行分析即可.本题考查的是一次函数、反比例函数和二次函数的性质,掌握一次函数、反比例函数和二次函数的增减性是解题的关键.8.答案:B解析:9.答案:D解析:解:连接OC.由翻折不变性可知:EC=CF,∠CBE=∠CBA,∴EC⏜=AC⏜,∴AC=CE=CF,∴∠A =∠AFC , ∵OA =OC =2, ∴∠A =∠ACO ,∴∠AFC =∠ACO ,∵∠A =∠A , ∴△AFC∽△ACO , ∴AC 2=AF ⋅OA , ∵AF =OF =1, ∴AC 2=2, ∵AC >0, ∴AC =√2, ∵AB 是直径, ∴∠ACB =90°,∴BC =√AB 2−AC 2=√42−(√2)2=√14, 故选:D .连接OC.由△AFC∽△ACO ,推出AC 2=AF ⋅OA ,可得AC =√2,再利用勾股定理求出BC 即可解决问题;本题考查翻折变换,相似三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.10.答案:C解析:解:作点A 关于y 轴的对称点A′,连接A′D , 此时△ADE 的周长最小值为AD +DA′的长; ∵A 的坐标为(−4,6),D 是OB 的中点, ∴D(−2,0), 由对称可知A′(4,6),设A′D 的直线解析式为y =kx +b ,则: {4k +b =6−2k +b =0, 解得:{k =1b =2,∴y =x +2, 当x =0时,y =2∴E(0,2).故选:C.作点A关于y轴的对称点A′,连接A′D,此时△ADE的周长最小值为AD+DA′的长;E点坐标即为直线A′D与y轴的交点.本题考查矩形的性质,线段的最短距离.能够利用轴对称求线段的最短距离,将AE+DE的最短距离转化为线段A′D的长是解题的关键.11.答案:2解析:解:在数3.16,−10,2π,−227,1.3⋅,1.2121121112…(每两个2之间依次多1个1)中有2π,1.2121121112…(每两个2之间依次多1个1)是无理数,一共2个无理数.故答案为:2.根据无理数的定义求解即可.此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,√6,1.2121121112…(每两个2之间依次多1个1)等形式.12.答案:SAS解析:试题分析:根据全等三角形的判定定理SAS推出即可.∵在△tOD和△COB中{Ot=OC∠tOD=∠COB OD=OB∴△tOD≌△COB(StS),故答案为:SAS.13.答案:5解析:解:∵AB为Rt△ABC的斜边,△ACD和△BCD的高均为△ABC的高,并设为ℎ,∵S△ACD=S△BCD,∴12AD×ℎ=12BD×ℎ,∴AD=BD,∴D为AB的中点,CD为直角三角形斜边上的中线,∴CD=12AB,∵AB=√AC2+BC2=√62+82=10,∴CD=5,故答案为:5.AB.根据勾股定理求出斜边AB,在根据S△ACD=S△BCD得出D是直角三角形斜边的中点,得出CD=12本题考查勾股定理和斜边上中线的应用,解题的关键是利用三角形的面积相等.14.答案:−2;1解析:解:√a+2+(b−1)2=0,a+2=0,b−1=0,解得:a=−2,b=1,故答案为:−2;1.根据非负数的性质可得a+2=0,b−1=0,再解可得a、b的值.此题主要考查了非负数的性质,关键是掌握算术平方根和偶次方具有非负性.15.答案:(22n+1,0)解析:解:∵直线l:y=√3x,∴∠MON=60°,∵NM⊥x轴,M1N⊥直线l,∴∠MNO=∠OM1N=90°−60°=30°,∴ON=2OM,OM1=2ON=4OM=22⋅OM,同理,OM2=22⋅OM1=(22)2⋅OM,…,OM n=(22)n⋅OM=22n⋅2=22n+1,所以,点M n的坐标为(22n+1,0).故答案为:(22n+1,0).根据直线l的解析式求出∠MON=60°,从而得到∠MNO=∠OM1N=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出OM1=22⋅OM,然后表示出OM n与OM的关系,再根据点M n在x轴上写出坐标即可.本题考查了一次函数图象上点的坐标特征,直角三角形30°角所对的直角边等于斜边的一半的性质,熟记性质并求出变化规律是解题的关键.16.答案:解:(1)原式=5+4−9=0;(2)原式=4x2−4x+1−(x2−4x)=4x2−4x+1−x2+4x=3x 2+1.解析:(1)分别计算绝对值和平方根即可求解;(2)先完全平方公式展开,再由多项式除以单项式运算,最后合并同类项即可.本题考查整式的除法、实数的运算;熟练掌握完全平方公式、掌握整式的除法法则、掌握绝对值和开平方运算是解题的关键.17.答案:解:∵BD ,CD 分别是∠ABC 和∠ACE 的角平分线,∴∠1=∠2,∠3=∠4,∵∠3+∠4=∠1+∠2+∠A ,∠3=∠1+∠D ,∴2∠3=2∠1+∠A ,2∠3=2∠1+2∠D ,∴∠A =2∠D ,∵∠A =45°,∴∠D =×80°=40°.解析:根据角平分线的性质得∠1=∠2,∠3=∠4,再根据三角形外角性质得∠3+∠4=∠1+∠2+∠A ,∠3=∠1+∠D ,变形得到2∠3=2∠1+∠A ,2∠3=2∠1+2∠D ,则∠A =2∠D ,然后把∠A =80°代入计算即可.18.答案:解:√3≈1.73,√−83=−2,(−1)2=1,在数轴上表示如下:∴√−83<−12<0<(−1)2<√3. 解析:根据实数的符号和绝对值,在数轴上表示即可;依据数轴表示数的特征,右边的数总比左边的大,比较大小.本题考查数轴表示数的意义和方法,理解符号和绝对值是确定实数的两个必要条件. 19.答案:解:∵tan∠B =ACBC ,∴AC =tanB ⋅BC =13×9=3cm ,在Rt △ABC 中,根据勾股定理得,AB =√AC 2+BC 2=√32+92=3√10cm ;∵CD ⊥AB ,∴S △ABC =12AB ⋅CD =12BC ⋅AC , 即12×3√10⋅CD =12×9×3,解得CD =9√1010cm .综上:AC =3cm ,AB =3√10cm ,CD =9√1010cm .解析:根据∠B 的正切求解可得AC ,利用勾股定理列式计算即可得到AB ,再利用△ABC 的面积列方程求解即可得到CD .本题考查了解直角三角形,主要是利用锐角三角函数的概念解直角三角形,勾股定理和三角形的面积.20.答案:解:(1)作PE ⊥y 轴于E ,∵P 的横坐标是2,则PE =2,∴S △COP =12OC ⋅PE =12×2×2=2; (2)∴S △AOC =S △AOP −S △COP =6−2=4,∴S △AOC =12OA ⋅OC =4,即12×OA ×2=4,∴OA =4,∴A 的坐标是(−4,0),设直线AP 的解析式是y =kx +b ,则{−4k +b =0b =2, 解得:{k =12b =2, 则直线的解析式是y =12x +2,当x=2时,y=3,即p=3;(3)设直线BD的解析式为y=mx+n(m≠0),∵P(2,3),△BOP与△DOP的面积相等,∴3OB=2OD,∴B(−nm,0),则D(0,n),∴{2m+n=32n=−3nm,解得{m=−32n=6,∴直线BD的解析式为:y=−32x+6.解析:本题考查的是待定系数法求一次函数的解析式,涉及到三角形的面积的相关知识,正确求得A 的坐标是关键.(1)已知P的横坐标,即可知道△OCP的边OC上的高长,利用三角形的面积公式即可求解;(2)求得△AOC的面积,即可求得A的坐标,利用待定系数法即可求得AP的解析式,把x=2代入解析式即可求得p的值;(3)根据△BOP与△DOP的面积相等得出3OB=2OD,则B(−nm,0),则D(0,n),再利用待定系数法求出直线BD的解析式即可.21.答案:解:(1)A(−1,−1),B(4,2),C(1,3);(2)△ABC的面积为:4×5−12×2×4−12×1×3−12×3×5=7;(3)如图所示:△A1B1C1即为所求;点A1(1,2)、B1(6,5)、C1(3,6).解析:(1)直接利用已知点位置得出对应点坐标即可;(2)直接利用△ABC所在矩形面积减去周围三角形面积进而得出答案;(3)直接利用平移的性质得出对应点位置.此题主要考查了平移变换以及三角形面积求法,正确得出对应点位置是解题关键.22.答案:解:(1)∵直线y=−12x+m与y轴交于B点,点B的坐标为(0,8).∴m=8(2)∵S△AOPS△BOP =13,∴APBP =13过点P做PC⊥OA垂足为点C,则ACOC =APBP=13∵直线y=−12x+8与x轴交于A点,∴点A的坐标为(16,0).∴OA=16∴OC=16×34=12∴点P的横坐标为12∵点P在直线y=−12x+8上∴点P的纵坐标为y=−12×12+8=2∴点P的坐标为(12,2).解析:(1)根据B点的坐标即可求出m的值.(2)根据△AOP和△BOP的面积之比求出AP与BP的比值,再过点P做PC⊥OA垂足为点C,求出OC的长即可求出点P的坐标.本题主要考查了一次函数的图象和性质,解题时要注意有关知识的综合应用.23.答案:8084886解析:解:(1)①由题意可得,第1个月的产量是:20×4=80,第2个月的产量是:20×3+20(1+20%)=84,第3个月的产量是:20×2+20(1+20%)×2=88,故答案为:80,84,88;②由题意可得,第5个月的产量是:20(1+20%)×4=96,第6个月的产量是:20(1+20%)×5=120,故答案为:6;(2)由题意可得y=20×(5−1)+20×20%(x−1)=4x+76,即y与x的函数关系式为y=4x+76(1≤x≤5,且x是整数);(3)由(1)②可知,改造后第6个月的产量超过升级改造的月产量,故在前5个月期间W1<W2∵改造后前5个月的总产量是80+84+88+92+96=440(万盒)∴当n≥6时,W1=440×3+(n−5)×20×(1+20%)×5×3−30×5=360n−630,W2=20×5×3×n=300n,当W1>W2时,即360n−630>330n,解得n>10.5,∵n为正整数,∴n为11.(1)①根据题意可与写出前几个月的产量,从而可以解答本题;②根据题意可以写出第5个元和第6个月的产量,从而可以解答本题;(2)根据题意可以写出y关于x的函数关系式;(3)根据题意可以表示出W1大于W2,从而可以得到n的值.本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021学年山东济宁市七年级上期末数学试卷一.选择题(共10小题,满分30分,每小题3分)
1.(3分)数1,0,−2
3,﹣2中最大的是()
A.1B.0C.−2
3D.﹣2
2.(3分)如果一个数到原点的距离等于5,那么这个数是()
A.5B.﹣5C.5或﹣5D.以上都不是3.(3分)已知a>b,a>c,若M=a2﹣ac,N=ab﹣bc,则M与N的大小关系是()A.M<N B.M=N C.M>N D.不能确定
4.(3分)小明在做解方程作业时,不小心将方程中的一个常数污染,被污染的方程是2y+1=
1
2y﹣□,小明想了想后翻看了书后的答案,此方程的解是y=−5
3,然后小明很快补好了
这个常数,这个常数应是()
A.−3
2B.
3
2
C.
5
2
D.2
5.(3分)实数a,b在数轴上的位置如图所示,则下列式子错误的是()
A.ab<0B.a+b>0C.b
a
<−1D.|a|>b
6.(3分)下列运算中,正确的是()
A.﹣22=﹣4B.3﹣|﹣2|=5
C.2a+3b=5ab D.﹣(a﹣b)=﹣a﹣b
7.(3分)已知点A,B,C为平面内三点,给出下列条件:①AC=BC;②AB=2BC;③AC
=BC=1
2AB.选择其中一个条件就能得到“点C是线段AB中点”的是()
A.①B.③C.①或③D.①或②或③8.(3分)如图,直线AB、CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠1=15°31′,则下列结论不正确的是()
第1 页共13 页。

相关文档
最新文档