河南省安阳市安阳县乡中心学校2014~2015学年度八年级上学期期末数学模拟试卷(一)
2014 -2015上期末八数学试卷

[键入文字]2014- 2015学年上期期末调研考试八年级数学试卷一、选择题(每空3分,共24分)1、下列各式中最简二次根式为( ) A .3 B.2x C. 0.7 D.132、将一张正方形纸片按如图1,图2所示的方向对折,然后沿图3中的虚线剪裁得到图4,将图4的纸片展开铺平,再得到的图案是( )A.B. C. D.3、化简2244xy yx x --+的结果是( )A .2x x + B .2x x - C .2y x + D .2yx -4、把多项式2322321286c ab c b a c b a-+分解因式时,应提取的公因式是题号 一 二 三总 分16171819202122 23得分得 分 评卷人[键入文字]( )A. 2B. abc 2C. c ab 22 D. 222c ab5、已知m 10x =,n 10y =,则2310x y +等于( )A. n 3m 2+B. 22n m + C. mn 6 D. 32n m6、如图,在△ABC 中,AD ⊥BC 于点D ,DB=DC ,若BC=6,AD=5,则图中阴影部分的面积为( )A .30B .15C .7.5D .66题图 7 题图 8题图7、如图,在四边形ABCD 中,∠A+∠D=α,∠ABC 的平分线与∠BCD 的平分线交于点P ,则∠P=( )A .2αB .90°α21+C .90°α21-D .360°α-8、如图,在边长为a 的正方形中,剪去一个边长为b 的小正方形(a b >),将余下部分拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于a 、b 的恒等式为( )A .222()2a b a ab b -=-+ B .222()2a b a ab b +=++ C .22()()a b a b a b -=+- D .2()a ab a a b +=+二、填空题(每题3分,共21分)9、计算:1150381853-+= . 10、 若分式x xx 值为正,则212- . 11、计算 3436155-b a c b a÷的结果是 .得分评卷人[键入文字]12、已知正方形①、②在直线上,正方形③如图放置,若正方形①、②的面积分别4cm 2和15cm 2,则正方形③的面积为 .13、如图,五边形ABCDE 中,AB ∥CD ,∠1、∠2、∠3分别是∠BAE 、∠AED 、 ∠EDC 的外角,则∠1+∠2+∠3= . 14、观察下列各式:2242==,2(2)42-==,2393==,2(3)93-==;按照这样的规律化简式子:2x (0x <)= . 15、如上图,将的各边都延长一倍至、、,连接这些点,得到一个新的三角形,若的面积为3,则的面积是 .三、解答题( 共75分)16、 因式分解 (每小题4分,共8分)(1) x x 93-(2) )1(4)(2+-+-y x y x17、(每小题5分,共10分)(1)计算:()()—得 分 评卷人得 分 评卷人12+12-223)(-ABC ∆A 'B 'C 'A B C '''ABC ∆A B C '''∆32112题图 13题图 15题图[键入文字](2)化简:18、(10分)求值(1)已知a+b=6,ab=5,求32232121ab b a b a ++的值。
2014-2015学年度第一学期初二数学期末试卷及答案

2014~2015 学年度第一学期期末考试
八年级数学 2015.2
说明:本卷满分 110 分,考试用时 100 分钟,解答结果除特殊要求外均取精确值,可使 用计算器. 一、选择题: (本大题共 10 小题,每题 3 分,共 30 分) 1. 2 的算术平方根是„„„„„„„„„„„„„„„„„„„„„„„„„„ ( ) A. 2 B.2 C.± 2 D.±2 2. 下面有 4 个汽车商标图案, 其中是轴对称图形的是„„„„„„„„„„„„ ( )
A B
y
A
C
O C
D
F
E
E B
O
x
B
D
C A
D
(第 3 题)
(第 4 题)
(第 7 题)
(第 8 题)
5.已知点(-2,y1),(3,y2)都在直线 y=-x+b 上,则 y1 与 y2 的大小关系是„„( ) A.y1<y2 B.y1=y2 C.y1>y2 D.无法确定 6.如图,直线 l 是一条河,P,Q 是两个村庄.计划在 l 上的某处修建一个水泵站 M, 向 P,Q 两地供水.现有如下四种铺设方案(图中实线表示铺设的管道) ,则所需管道最 短的是„„( )
y A
4
D
B
7 - 2
O
图③
M
C 9
x
初二数学期终试卷 2015.2
第 6 页 共 8 页
2014-2015 学年第一学期八年级数学期末试卷答案及评分标准
(考试时间 100 分钟,共 110 分) 一.选择题: (本大题共 10 小题,每题 3 分,共 30 分) 1.A 2.B 3.B 4.A 5.C 6.D 7.B 8.C 9.D 10.D
安阳市2013-2014学年第一学期教学质量抽测八年级数学答案

y
A C
O
B(B1)
x
D1 A1
∴ OBA OAB , OCA OAC , · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·4 分 又∵ OAB OAC BAC 70 , ∴ OBA OCA OAB OAC 70 , ……………5 分 ∴ OBC OCB 180 70 70 40 …………………6 分 ∴ BOC 180 (OBC OCB) 180 40 140 …8 分 (3) 110 ………………………………………………………10 分 B 23. (1)① 3 4 ………………………………………………2 分 ② CDP PFE …………………………………………4 分 (2)如图,证明:△ PCD ≌△ EPF .………………………………5 分 A 理由如下:∵ PC PE ∴ 1 4 又∵Rt△ CDB 中, DCB DBC 45 ∴ DCB 1 DBC 4 即: 2 3 又∵ CD AB , EF AB ∴ CDP PFE 90
300 300 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 3分 2. · x 1.5 x
2
17.解:解:原式= (358 258) (358 258) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·2 分 = 616 100 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·4 分
2014--2015学年八年级上册期末考试数学试题及答案

期末考试参考答案及评分标准八年级数学二.解答题(计75分)16.(6分)解:原式=4(x2+2x+1)-(4x2-25)………………3分=4 x2+8x+4-4x2+25………………5分=8x+29;………………6分17. (6分)解:(1)如图………………3分(2)A′(1,3 ),B′(2,1),C′(-2 ,-2 );………………6分18. (7分)解:原式=[m+3(m-3) (m+3)+m-3(m-3) (m+3)]×(m-3)22m………………3分=2m(m-3) (m+3)×(m-3)22m………………5分= m-3m+3.………………6分当m= 12时,原式=(12-3)÷(12+3)=-52×27= -57.………………7分19.(7分)解:x(x+2)-3=(x-1)(x+2). ………………3分x2+2x-3= x2+x-2. ………………4分x=1. ………………5分检验:当x=1时,(x-1)(x+2)=0,所以x=1不是原分式方程的解. (6)所以,原分式方程无解. ………………7分20.(8分)(1)证明:∵C 是线段AB 的中点, ∴AC =BC ,……………1分 ∵CD 平分∠ACE ,∴∠ACD=∠DCE ,……………2分 ∵CE 平分∠BCD , ∴∠BCE=∠DCE ,∴∠ACD=∠BCE ,……………3分在△ACD 和△BCE 中,AC =BC ,∠ACD =∠BCE , DC =EC ,∴△ACD ≌△BCE (SAS ),……………5分(2)∵∠ACD =∠BCE =∠DCE ,且∠ACD +∠BCE +∠DCE =180°, ∴∠BCE =60°,……………6分 ∵△ACD ≌△BCE ,∴∠E =∠D =50°,……………7分∠E =180°-(∠E +∠BCE )= 180°-(50°+60°)=70°.……………8分 21.(8分)(1)2a -b ;………………2分(2)由图21-2可知,小正方形的面积=大正方形的面积-4个小长方形的面积, ∵大正方形的边长=2a +b =7,∴大正方形的面积=(2a +b )2=49, 又∵4个小长方形的面积之和=大长方形的面积=4a ×2b =8ab =8×3=24, ∴小正方形的面积=(2a -b )2==49-24=25;………………5分 (3)(2a +b )2-(2a -b )2=8ab . ………………8分 22.(10分)(第22题图1) (第22题图2) (第22题图C【方法I】证明(1)如图∵长方形ABCD,∴AB=DC=DE,∠BAD=∠BCD=∠BED=90°,……………1分在△ABF和△DEF中,∠BAD=∠BED=90°∠AFB=∠EFD,AB=DE,∴△ABF≌△EDF(AAS),……………2分∴BF=DF. ……………3分(2)∵△ABF≌△EDF,∴F A=FE,……………4分∴∠F AE=∠FEA,……………5分又∵∠AFE=∠BFD,且2∠AEF+∠AFE =2∠FBD+∠BFD =180°,∴∠AEF=∠FBD,∴AE∥BD,……………6分(3)∵长方形ABCD,∴AD=BC=BE,AB=CD=DE,BD=DB,∴△ABD≌△EDB(SSS),……………7分∴∠ABD=∠EDB,∴GB=GD,……………8分在△AFG和△EFG中,∠GAF=∠GEF=90°,F A=FE,FG=FG,∴△AFG≌△EFG(HL),……………9分∴∠AGF=∠EGF,∴GH垂直平分BD. ……………10分【方法II】证明(1)∵△BCD≌△BED,∴∠DBC=∠EBD……………1分又∵长方形ABCD,∴AD∥BC,∴∠ADB=∠DBC,……………2分∴∠EBD=∠ADB,∴FB=FD. ……………3分(2)∵长方形ABCD,∴AD=BC=BE,……………4分又∵FB=FD,∴F A=FE,∴∠F AE=∠FEA,……………5分又∵∠AFE=∠BFD,且2∠AEF+∠AFE =2∠FBD+∠BFD =180°,∴∠AEF=∠FBD,∴AE∥BD,……………6分(3)∵长方形ABCD ,∴AD =BC =BE ,AB =CD =DE ,BD =DB , ∴△ABD ≌△EDB ,……………8分 ∴∠ABD =∠EDB ,∴GB =GD , ……………9分 又∵FB =FD ,∴GF 是BD 的垂直平分线,即GH 垂直平分BD . ……………10分 23.(11分)证明(1)如图, ∵AB =AC ,∴∠ACB =∠ABC ,……………1分 ∵∠BAC =45°,∴∠ACB =∠ABC = 12 (180°-∠BAC )=12 (180°-45°)=67.5°.……………2分第(2)小题评分建议:本小题共9分,可以按以下两个模块评分(9分=6分+3分):模块1(6分): 通过证明Rt △BDC ≌Rt △ADF ,得到BC =AF ,可评 6分; 模块2(3分): 通过证明等腰直角三角形HEB ,得到HE =12 BC ,可评 3分.(2)连结HB ,∵AB =AC ,AE 平分∠BAC , ∴AE ⊥BC ,BE =CE , ∴∠CAE +∠C =90°, ∵BD ⊥AC ,∴∠CBD +∠C =90°,∴∠CAE =∠CBD ,……………4分∵BD ⊥AC ,D 为垂足, ∴∠DAB +∠DBA =90°, ∵∠DAB =45°, ∴∠DBA =45°,∴∠DBA =∠DAB ,∴DA =DB ,……………6分 在Rt △BDC 和Rt △ADF 中, ∵∠ADF =∠BDC =90°, DA =DB ,∠DAF =∠DBC =67.5°-45°=22.5°, ∴Rt △BDC ≌Rt △ADF (ASA), ∴BC =AF ,……………8分∵DA =DB ,点G 为AB 的中点, ∴DG 垂直平分AB , ∵点H 在DG 上,A∴HA =HB ,……………9分∴∠HAB =∠HBA = 12 ∠BAC=22.5°,∴∠BHE =∠HAB +∠HBA =45°, ∴∠HBE =∠ABC -∠ABH =67.5°-22.5°=45°, ∴∠BHE =∠HBE ,∴HE =BE = 12 BC ,……………10分∵AF =BC ,∴HE = 12 AF . ……………11分24.(12分)解:(1)依题意得,my (1+20%)= m +20 (1-10%)y .……………3分解得, m =250.∴m +20=270……………4分 答:2013年的总产量270吨.(2)依题意得,270 a -30=250a (1+14%);① ……………7分(1-10%)y a -30= y a -12 . ② ……………10分解①得 a=570.检验:当a=570时,a (a -30)≠0,所以a=570是原分式方程的解,且有实际意义. 答:该农场2012年有职工570人; ……………11分将a=570代入②式得,(1-10%)y 540 = y 570 -12.解得,y =5700.答:2012年的种植面积为5700亩. ……………12分。
安阳市2014—2015学年上八年级数学期末试题答案

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2分
B D P E' E C A
∴∠B=∠ECB=∠E’CB=60°. · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 7分
八年级数学答案 第2页 共3页
在△PBD 和△PCE’中,
B E ' CP, BPD CPE ', DB E ' C.
∴△PBD≌△PCE’.· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 9分 ∴PB=PC. · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 10 分 23. 以下答案及评分意见以方法一为例. 证明:如图,在 AN 上截取 AE=AC,连接 CE. ∵AC 平分∠MAN,∠MAN=120° , ∴∠CAB=∠CAD=60° ,………………………2 分 ∴△ACE 是等边三角形. ∴∠AEC=60° ,AC=EC=AE.……………………3 分 又∠ABC+∠ADC=180° ,∠ABC+∠EBC=180° ∴∠ADC=∠EBC · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 4分 在△ADC 和△EBC 中, ∠DAC=∠BEC ∠ADC=∠EBC AC=EC ∴△ADC≌△EBC · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 7分 ∴DA=BE · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 8分 ∴AB+AD=AB+BE=AE, · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 9分 ∴AB+ AD=AC. · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 10 分 (注:以上均为参考答案,若学生使用其他解法,只要正确均可给分)
新人教版2014-2015年八年级上学期期末考试数学试题及答案

新人教版2014—2015年八年级上学期期末考试数学试题考试范围:八年级上册;考试时间:120分钟;满 分:100分 2015、1、24一、选择题(每题3分,共24分)1.在x 1、31、212+x 、πy +5、m a 1+中分式的个数有( )A 、2个B 、3个C 、4个D 、5个2.已知等腰三角形的一个角为75°,则其顶角为( )A .30°B .75°C .105°D .30°或75° 3.若a m =2,a n =3,,则a m+n 等于( ) A.5 B.6 C.8 D.9 4.下列运算正确的是( )A .232a a 3a +=B .()2a a a -÷= C .()326a a a -⋅=- D .()3262a 6a =5 ).(A )0 (B )1 (C )-1 (D )x6.如(x +m )与(x +3)的乘积中不含x 的一次项,则m 的值为( ). A .-3 B .3 C .0 D .1 7.把方程103.02.017.07.0=--xx 中的分母化为整数,正确的是( ) A 、132177=--x x B 、13217710=--xx C 、1032017710=--x x D 、132017710=--xx 8.如图,直线L 是一条河,P ,Q 是两个村庄.欲在L 上的某处修建一个水泵站,向P ,Q 两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是( ).二、填空题(每题3分,共24分)9.等腰三角形的两边长分别为4和8,则第三边的长度是 .10.2211aa a a -∙+= ; 11. 计算(π﹣3)0=_________12.已知一个长方形的面积是x x22-,长为x ,那么它的宽为 .13.如下图,在△ABC 中,DE∥AB,CD :DA=2:3,DE=4,则AB 的长为 •14.已知4x 2+mx +9是完全平方式,则m =_________. 15. 因式分解:x a a x 2222---=.16.如图,有两个长度相同的滑梯(即BC =EF ),左边滑梯的高度AC 与右边滑梯水平方向的长度DF 相等,则∠ABC +∠DFE =___________度.A . C .D .B .FD B A三、解答题(共题,计52分)17.计 算:(本题8分,每小题4分)(1)203(4)(π3)2|5|-+----; (2)2011×2013-2012218.解方程:(本题8分,每小题4分)(1)132+=x x ; (2)114112=---+x x x19.(7分)先化简 (1+ 11x -)÷221xx x -+,然后在0,1,-1中挑选一个合适的数代入求值.20. (7分)画出△ABC 关于原点对称的图形△DEF,并写出D 、E 、F 的坐标。
2014-2015人教版八年级数学上册期末试卷及答案

2014-2015八年级数学上期末试卷(本检测题满分:120分,时间:120分钟)一、选择题(每小题3分,共36分)1.若点A(-3,2)关于原点对称的点是点B,点B关于轴对称的点是点C,则点C的坐标是()A.(3,2)B.(-3,2)C.(3,-2)D.(-2,3)2. 下列标志中,可以看作是轴对称图形的是()3.下列说法中错误的是()A.两个对称的图形对应点连线的垂直平分线就是它们的对称轴B.关于某直线对称的两个图形全等C.面积相等的两个四边形对称D.轴对称指的是图形沿着某一条直线对折后能完全重合4.下列关于两个三角形全等的说法:①三个角对应相等的两个三角形全等;②三条边对应相等的两个三角形全等;③有两角和其中一个角的对边对应相等的两个三角形全等;④有两边和一个角对应相等的两个三角形全等.期中正确的有()A.1个B.2个C.3个D.4个5. 如图,在△中,,平分∠,⊥,⊥,为垂足,则下列四个结论:(1)∠=∠;(2);(3)平分∠;(4)垂直平分.其中正确的有()A.1个B.2个C.3个D.4个6.若=2,=1,则2+2的值是()A.9 B.10 C.2 D.17. 已知等腰三角形的两边长,b满足+(2+3-13)2=0,则此等腰三角形的周长为( )A.7或8B.6或10C.6或7D.7或108.如图所示,直线是的中垂线且交于,其中.甲、乙两人想在上取两点,使得,其作法如下:(甲)作∠、∠的平分线,分别交于则即为所求;(乙)作的中垂线,分别交于,则即为所求.对于甲、乙两人的作法,下列判断正确的是()A.两人都正确B.两人都错误C.甲正确,乙错误D.甲错误,乙正确9. 化简的结果是()A.0 B.1 C.-1 D.(+2)210. 下列计算正确的是()A.(-)•(22+)=-82-4 B.()(2+2)=3+3C.D.11. 如图所示,在△ABC中,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则三个结论:①AS=AR;②QP∥AR;③△BPR≌△QPS中()A.全部正确B.仅①和②正确C.仅①正确D.仅①和③正确12. 如图所示是一个风筝的图案,它是以直线AF为对称轴的轴对称图形,下列结论中不一定成立的是()A.△ABD≌△ACDB.AF垂直平分EGC.直线BG,CE的交点在AF上D.△DEG是等边三角形二、填空题(每小题3分,共24分)13. 多项式分解因式后的一个因式是,则另一个因式是 .14. 若分式方程的解为正数,则的取值范围是 .15. 如图所示,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的是(将你认为正确的结论的序号都填上).16. 如图所示,AD是△ABC的角平分线,DE⊥AB于点E,DF⊥AC于点F,连接EF交AD于点G,则AD与EF的位置关系是 .17. 如图所示,已知△ABC和△BDE均为等边三角形,连接AD、CE,若∠BAD=39°,则∠BCE= 度.18. 如图所示,在边长为2的正三角形ABC中,E、F、G分别为AB、AC、BC的中点,点P为线段EF上一个动点,连接BP、GP,则△BPG的周长的最小值是 .19.方程的解是x= .20. 已知一个等腰三角形两内角的度数之比为1∶4,则这个等腰三角形顶角的度数为.三、解答题(共60分)21.(6分)利用乘法公式计算:(1)1.02×0.98;(2) 992.22.(6分)如图所示,已知BD=CD,BF⊥AC,CE⊥AB,求证:点D在∠BAC的平分线上.23.(8分)如图所示,△ABC是等腰三角形,D,E分别是腰AB及腰AC延长线上的一点,且BD=CE,连接DE交底BC于G.求证:GD=GE.24.(8分)先将代数式化简,再从-1,1两数中选取一个适当的数作为的值代入求值.25.(8分)在△ABC中,AB=AC,点E,F分别在AB,AC上,AE=AF,BF与CE相交于点P,求证:PB=PC,并直接写出图中其他相等的线段.26.(8分)甲、乙两地相距,骑自行车从甲地到乙地,出发3小时20分钟后,骑摩托车也从甲地去乙地.已知的速度是的速度的3倍,结果两人同时到达乙地.求两人的速度.27. (8分)一辆汽车开往距离出发地180千米的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前40分钟到达目的地.求前一小时的行驶速度.28. (8分)如图所示,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.期末检测题参考答案1.A 解析:点A(-3,2)关于原点对称的点B的坐标是(3,-2),点B关于轴对称的点C的坐标是(3,2),故选A.2. D解析:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,只有图形D符合题意.3. C 解析:A、B、D都正确;C.面积相等的两个四边形不一定全等,故不一定对称,错误.故选C.4. B 解析:①不正确,因为判定三角形全等必须有边的参与;②正确,符合判定方法SSS;③正确,符合判定方法AAS;④不正确,此角应该为两边的夹角才能符合判定方法SAS.所以正确的说法有2个.故选B.5. C 解析:∵,平分∠,⊥,⊥,∴△是等腰三角形,⊥,,∠=∠=90°,∴,∴垂直平分,∴(4)错误.又∵所在直线是△的对称轴,∴(1)∠=∠;(2);(3)平分∠都正确.故选C.6. B 解析:()2+2=2+2=(2+1)2+12=10.故选B.7. A 解析:由绝对值和平方的非负性可知,解得分两种情况讨论:①2为底边长时,等腰三角形的三边长分别为2,3,3,2+3>3,满足三角形三边关系,此时三角形的周长为2+3+3=8;②当3为底边长时,等腰三角形的三边长分别为3,2,2,2+2>3,满足三角形三边关系,此时,三角形的周长为3+2+2=7.∴这个等腰三角形的周长为7或8.故选A.8. D 解析:甲错误,乙正确.证明:∵是线段的中垂线,∴△是等腰三角形,即,∠=∠.作的中垂线分别交于,连接CD、CE,∴∠=∠,∠=∠.∵∠=∠,∴∠=∠.∵,∴△≌△,∴ .∵,∴.故选D.9. B 解析:原式=÷(+2)=×=1.故选B.10. C 解析:A.应为,故本选项错误;B.应为,故本选项错误;C.,正确;D.应为,故本选项错误.故选C.11.B 解析:∵PR=PS,PR⊥AB于R,PS⊥AC于S,AP=AP,∴△ARP≌△ASP(HL),∴AS=AR,∠RAP=∠SAP.∵AQ=PQ,∴∠QPA=∠QAP,∴∠RAP=∠QPA,∴QP∥AR.而在△BPR和△QPS中,只满足∠BRP=∠QSP=90°和PR=PS,找不到第3个条件,所以无法得出△BPR≌△QPS.故本题仅①和②正确.故选B.12. D 解析:A.因为此图形是轴对称图形,正确;B.对称轴垂直平分对应点连线,正确;C.由三角形全等可知,BG=CE,且直线BG,CE的交点在AF上,正确;D.题目中没有60°条件,不能判断△DEG是等边三角形,错误.故选D.13. 解析:∵关于的多项式分解因式后的一个因式是,∴当时多项式的值为0,即22+8×2+=0,∴20+=0,∴=-20.∴,即另一个因式是+10.14.<8且≠4解析:解分式方程,得,整理得=8-.∵>0,∴8->0且-4≠0,∴<8且8--4≠0,∴<8且≠4.15.①②③解析:∵∠E=∠F=90°,∠B=∠C,AE=AF,∴△ABE≌△ACF.∴AC=AB,∠BAE=∠CAF,BE=CF,∴②正确.∵∠B=∠C,∠BAM=∠CAN,AB=AC,∴△ACN≌△ABM,∴③正确.∵∠1=∠BAE-∠BAC,∠2=∠CAF -∠BAC,又∵∠BAE=∠CAF,∴∠1=∠2,∴①正确,∴题中正确的结论应该是①②③.16.AD垂直平分EF解析:∵AD是△ABC的角平分线,DE⊥AB于点E,DF⊥AC于点F,∴DE=DF.在Rt△AED和Rt△AFD中,∴△AED≌△AFD(HL),∴AE=AF.又AD是△ABC的角平分线,∴AD垂直平分EF(三线合一).17. 39 解析:∵△ABC和△BDE均为等边三角形,∴AB=BC,∠ABC =∠EBD=60°,BE=BD.∵∠ABD=∠ABC +∠DBC,∠EBC=∠EBD +∠DBC,∴∠ABD=∠EBC,∴△ABD≌△CBE,∴∠BCE=∠BAD =39°.18.3 解析:要使△PBG的周长最小,而BG=1一定,只要使BP+PG最短即可.连接AG交EF于M.∵△ABC是等边三角形,E、F、G分别为AB、AC、BC的中点,∴AG⊥BC.又EF∥BC,∴AG⊥EF,AM=MG,∴A、G关于EF对称,∴当P点与E点重合时,BP+PG最小,即△PBG的周长最小,最小值是PB+PG+BG=AE+BE+BG=AB+BG=2+1=3.19. 6 解析:方程两边同时乘(x-2)得4x-12=3(x-2),解得x=6,经检验得x=6是原方程的根.20.20°或120°解析:设两内角的度数为、4.当等腰三角形的顶角为时,+4+4=180°,=20°;当等腰三角形的顶角为4时,4++=180°,=30°,4=120°.因此等腰三角形的顶角度数为20°或120°.21. 解: (1) 原式=(1+0.02)(1-0.02)=1-0.000 4=0.999 6.(2) 原式=(100-1)2=10 000-200+1=9 801.22.分析:此题根据条件容易证明△BED≌△CFD,然后利用全等三角形的性质和角平分线的性质就可以证明结论.证明:∵BF⊥AC,CE⊥AB,∴∠BED=∠CFD=90°.在△BED和△CFD中,∴△BED≌△CFD,∴DE=DF.又∵DE⊥AB,DF⊥AC,∴点D在∠BAC的平分线上.23. 分析:从图形看,GE,GD分别属于两个显然不全等的三角形:△GEC和△GBD.此时就要利用这两个三角形中已有的等量条件,结合已知添加辅助线,构造全等三角形.方法不止一种,下面证法是其中之一.证明:如图,过E作EF∥AB且交BC的延长线于F.在△GBD 及△GEF中,∠BGD=∠EGF(对顶角相等),①∠B=∠F(两直线平行,内错角相等),②又∠B=∠ACB=∠ECF=∠F,所以△ECF是等腰三角形,从而EC=EF.又因为EC=BD,所以BD=EF.③由①②③知△GBD≌△GFE (AAS),所以GD=GE.24.解:原式=(+1)×=,当=-1时,分母为0,分式无意义,故不满足;当=1时,成立,代数式的值为1.25.分析:先由已知条件根据SAS可证明△ABF≌△ACE,从而可得∠ABF=∠ACE,再由∠ABC=∠ACB可得∠PBC=∠PCB,依据等边对等角可得PB=PC.证明:因为AB=AC,所以∠ABC=∠ACB.又因为AE=AF,∠A=∠A,所以△ABF≌△ACE(SAS),所以∠ABF=∠ACE,所以∠PBC=∠PCB,所以PB=PC.相等的线段还有BF=CE,PF=PE,BE=CF.26.解:设的速度为千米/时,则的速度为千米/时.根据题意,得方程解这个方程,得.经检验是原方程的根.所以.答:两人的速度分别为千米/时千米/时.27.解:设前一小时的速度为千米/时,则一小时后的速度为1.5千米/时,由题意得,解这个方程得 .经检验,=60是所列方程的根,即前一小时的速度为60千米/时.28.分析:(1)根据AD∥BC可知∠ADC=∠ECF,再根据E是CD的中点可证出△ADE≌△FCE,根据全等三角形的性质即可解答.(2)根据线段垂直平分线的性质判断出AB=BF即可.证明:(1)∵AD∥BC(已知),∴∠ADC=∠ECF(两直线平行,内错角相等).∵E是CD的中点(已知),∴DE=EC(中点的定义).在△ADE与△FCE中,∠ADC=∠ECF,DE=EC,∠AED=∠CEF,∴△ADE≌△FCE(ASA),∴FC=AD(全等三角形的性质).(2)∵△ADE≌△FCE,∴AE=EF,AD=CF(全等三角形的对应边相等).又BE⊥AE,∴BE是线段AF的垂直平分线,∴AB=BF=BC+CF.∵AD=CF(已证),∴AB=BC+AD(等量代换).。
2014-2015学年八年级(上)期末数学试卷

2014-2015学年八年级(上)期末数学试卷参考答案与试题解析一、选择题:(本题共10小题,每题3分,共30分)1.(3分)在直角坐标系中,下列各点位于第三象限的是()A.(2,3)B.(﹣2,3)C.(﹣2,﹣3)D.(2,﹣3)考点:点的坐标.分析:根据点在第三象限的条件是:横坐标是负数,纵坐标是负数,可得答案.解答:解:A、点在第一象限,故A错误;B、点在第二象限,故B错误;C、点在第三象限,故C正确;D、点在第四象限,故D错误;故选:C.点评:本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.(3分)下列各个图形中,哪一个图形中AD是△ABC中BC边上的高()A.B.C.D.考点:三角形的角平分线、中线和高.分析:三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段即为该边上的高线.解答:解:过点A作直线BC的垂线段,即画BC边上的高AD,所以画法正确的是D.故选D.点评:考查了三角形的高的概念,能够正确作三角形一边上的高.3.(3分)下图中的轴对称图形有()A.(1),(2)B.(1),(4)C.(2),(3)D.(3),(4)考点:轴对称图形.数学是一种别具匠心的艺术。
——哈尔莫斯分析:根据轴对称图形的概念求解,看图形是不是关于直线对称.解答:解:(1)是轴对称图形;(2)、(3)是中心对称图形;(4)是轴对称图形.故选B.点评:掌握好轴对称的概念.轴对称的关键是寻找对称轴,两边图象折叠后可重合.4.(3分)在△ACB中,如果∠C=∠A﹣∠B,那么此三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.不能确定考点:三角形内角和定理.分析:根据三角形的内角和等于180°列方程求出∠A=90°,然后判断即可.解答:解:由三角形的内角和定理得,∠A+∠B+∠C=180°,∵∠C=∠A﹣∠B,∴∠B+∠C=∠A,∴∠A+∠A=180°,解得∠A=90°,所以,此三角形是直角三角形.故选A.点评:本题考查了三角形的内角和定理,熟记定理并列方程求出∠A=90°是解题的关键.5.(3分)正比例函数y=kx的图象经过点(1,﹣3),那么它一定经过的点是()A.(3,﹣1)B.(,﹣1)C.(﹣3,1)D.(,﹣1)考点:一次函数图象上点的坐标特征.专题:计算题.分析:先把(1,﹣3)代入y=kx求出k得到一次函数解析式为y=﹣3x,在分别计算出自变量为3、、﹣3、﹣所对应的函数值,然后根据一次函数图象上点的坐标特征进行判断.解答:解:把(1,﹣3)代入y=kx得k=﹣3,所以一次函数解析式为y=﹣3x,当x=3时,y=﹣3x=﹣9;当x=时,y=﹣3x=﹣1;当x=﹣3时,y=﹣3x=9;当x=﹣时,y=﹣3x=1,所以点(,﹣1)在一次函数y=﹣3x的图象上.故选B.点评:本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(﹣,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.数学是一种别具匠心的艺术。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河南省安阳市安阳县乡中心学校2014~2015学年度八年级上学期期末数学模拟试卷(一)一、选择题1.如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE2.已知:如图,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A.∠A与∠D互为余角B.∠A=∠2C.△ABC≌△CED D.∠1=∠23.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,其中一个动点到达端点时,另一个动点也随之停止运动,当△APQ是以PQ为底的等腰三角形时,运动的时间是()A.2.5秒B.3秒C.3.5秒D.4秒4.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边三角形ABC和等边三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.则四个结论:①AD=BE;②∠OED=∠EAD;③∠AOB=60°;④DE=DP中错误的是()A.① B.② C.③ D.④5.如图,∠MON内有一点P,P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,GH 分别交OM、ON于A、B点,若∠MON=35°,则∠GOH=()A.60° B.70° C.80° D.90°6.如图,在△ABC中,BD、CD分别平分∠ABC、∠ACB,过点D作直线平行于BC,交AB、AC 于点E、F,当∠A的位置及大小变化时,线段EF和BE+CF的大小关系为()A.EF>BE+CF B.EF=BE+CF C.EF<BE+CF D.不能确定7.在4×4的正方形网格中,已将图中的四个小正方形涂上阴影(如图),若再从其余小正方形中任选一个也涂上阴影,使得整个阴影部分组成的图形成轴对称图形.那么符合条件的小正方形共有()A.1个B.2个C.3个D.4个8.已知:如图,在△ABC中,AB=AC,BC=BD,AD=DE=EB,则∠A的度数是()A.30° B.36° C.45° D.50°9.下列式子成立的是()A.B.C .D .10.如果(x+1)(x 2﹣5ax+a )的乘积中不含x 2项,则a 为( )A .B . ﹣C . ﹣5D . 511.已知(a 3b 6)÷(a 2b 2)=3,则a 2b 8的值等于( )A . 6B . 9C . 12D . 8112.若,则x ﹣y 的值为( )A . 0B . ﹣6C . 6D . 以上都不对13.若y ﹣x=﹣1,xy=2,则代数式﹣x 3y+x 2y 2﹣xy 3的值是( )A . 2B . ﹣2C . 1D . ﹣114.若x 2﹣3x=1,则代数式x 4﹣6x 3+9x 2+2013的值是( )A . 2012B . 2013C . 2014D . 201515.已知a 、b 、c 是△ABC 的三边长,且满足a 3+ab 2+bc 2=b 3+a 2b+ac 2,则△ABC 的形状是()A . 等腰三角形B . 直角三角形C . 等腰三角形或直角三角形D . 等腰直角三角形16.对任意实数x ,多项式﹣x 2+6x ﹣10的值是一个( )A . 正数B . 负数C . 非负数D . 无法确定17.y ﹣2x+1是4xy ﹣4x 2﹣y 2﹣k 的一个因式,则k 的值是( )A . 0B . ﹣1C . 1D . 418.小虎在下面的计算中只做对了一道题,他做对的题目是( )A .B .C . a 3÷a=a 2D .19.分式与下列分式相等的是( )A .B .C .D .20.计算++的结果是( )A.B.C.D.二、填空题21.如图所示,△AOB≌△COD,∠AOB=∠COD,∠A=∠C,则∠D的对应角是,图中相等的线段有.22.将一张长方形纸片按如图所示的方式折叠,BC,BD为折痕,则∠CBD的度数为()A.60° B.75° C.90° D.95°23.如图,△ABC是等腰直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后能与△ACP1重合.若AP=3,则PP1的长是.24.如图,在△ABC中,AC=BC=2,∠ACB=90°,D是BC边的中点,E是AB边上一动点,则EC+ED 的最小值是.25.如图,边长为1的等边△ABC中,一动点P沿AB从A向B移动,动点Q以同样的速度从C 出发沿BC的延长线运动,连PQ交AC边于D,作PE⊥AC于E,则DE的长为.26.如图,在△ABC中,BC=5cm,BP、CP分别是∠ABC和∠ACB的角平分线,且PD∥AB,PE∥AC,则△PDE的周长是cm.27.如图,在△ABC中,AB=AC,∠A=120°,BC=8cm,AB的垂直平分线交BC于点M,交AB 于点D,AC的垂直平分线交BC于点N,交AC于点E,则MN的长为.28.如图,△ABC中,∠A=65°,∠B=75°,将△ABC沿EF对折,使C点与C′点重合.当∠1=45°时,∠2=°.29.在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M 为EF中点,则AM的最小值为.30.分解因式:4x2﹣16=.31.已知a2+3a=7,b2+3b=7,且a≠b,则a+b=.32.已知x2+x﹣1=0,则x3+x2﹣x+3的值为.33.当x=时,分式无意义;当x=时,分式的值为0.34.当x=2013时,分式的值为.35.若解分式方程产生增根,则m=.36.若方程无解,则m=.37.若有关x的分式方程﹣=0无解,则实数a的值是.38.m=时,方程会产生增根.三、简答题39.如图,分别以△ABC的边AB、AC向外作等边△ABE和等边△ACD,直线BD与直线CE相交于点O.(1)求证:CE=BD;如果当点A在直线BC的上方变化位置,且保持∠ABC和∠ACB都是锐角,那么∠BOC的度数是否会发生变化?若变化,请说明理由;若不变化,请求出∠BOC的度数:(3)如果当点A在直线BC的上方变化位置,且保持∠ACB是锐角,那么∠BOC的度数是否会发生变化?若变化,请直接写出变化的结论,不需说明理由;若不变化,请直接写明结论.40.如图,P为正方形ABCD边BC上一点,F在AP上,AF=AD,EF⊥AP于F交CD于点E,G 为CB延长线上一点,且BG=DE.(1)求证:∠BAG=∠DAP;若DE=3,AD=5,求AP的长.河南省安阳市安阳县乡中心学校2014~2015学年度八年级上学期期末数学模拟试卷(一)参考答案与试题解析一、选择题1.如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE考点:全等三角形的性质.分析:根据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断.解答:解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选D.点评:本题主要考查了全等三角形的性质,根据已知的对应角正确确定对应边是解题的关键.2.已知:如图,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A.∠A与∠D互为余角B.∠A=∠2C.△ABC≌△CED D.∠1=∠2考点:全等三角形的判定与性质.分析:先根据角角边证明△ABC与△CED全等,再根据全等三角形对应边相等,全等三角形的对应角相等的性质对各选项判断后,利用排除法求解.解答:解:∵AC⊥CD,∴∠1+∠2=90°,∵∠B=90°,∴∠1+∠A=90°,∴∠A=∠2,在△ABC和△CED中,,∴△ABC≌△CED(AAS),故B、C选项正确;∵∠2+∠D=90°,∴∠A+∠D=90°,故A选项正确;∵AC⊥CD,∴∠ACD=90°,∠1+∠2=90°,故D选项错误.故选D.点评:本题主要考查全等三角形的性质,先证明三角形全等是解决本题的突破口,也是难点所在.做题时,要结合已知条件与全等的判定方法对选项逐一验证.3.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,其中一个动点到达端点时,另一个动点也随之停止运动,当△APQ是以PQ为底的等腰三角形时,运动的时间是()A.2.5秒B.3秒C.3.5秒D.4秒考点:等腰三角形的性质.专题:压轴题;动点型.分析:设运动的时间为x,则AP=20﹣3x,当APQ是等腰三角形时,AP=AQ,则20﹣3x=2x,解得x即可.解答:解:设运动的时间为x,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,当△APQ是等腰三角形时,AP=AQ,AP=20﹣3x,AQ=2x即20﹣3x=2x,解得x=4.故选D.点评:此题主要考查学生对等腰三角形的性质这一知识点的理解和掌握,此题涉及到动点,有一定的拔高难度,属于中档题.4.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边三角形ABC和等边三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.则四个结论:①AD=BE;②∠OED=∠EAD;③∠AOB=60°;④DE=DP中错误的是()A.① B.② C.③ D.④考点:全等三角形的判定与性质;等边三角形的性质.分析:根据等边三角形的性质就可以得出△ACD≌△BCE,∠ACB=∠CED=60°,就有BC∥DE,∠OED=∠CBE,由∠CBE=∠CAD而得出结论,∠DPC=∠PCA+∠PAC=60°+∠CAP>∠DCP=60°而得出DE≠DP从而得出结论.解答:解:∵△ABC和△CDE都是等边三角形,∴AC=BC,EC=DC=DE,∠ACB=∠DCE=∠DEC=60°,∴BC∥DE,∠ACB+BCD=∠DCE+∠BCD,∴∠OED=∠CBE,∠ACD=∠BCE.在△ACD和△BCE在,∴△ACD≌△BCE(SAS),∴∠CAD=∠CBE.AD=BE,故①正确;∴∠OED=∠EAD.故②正确.∵∠AOB=∠EAD+∠AEO,∴∠AOB=∠CBE+∠AEO.∵∠CBE+∠AEO=∠ACB=60°,∴∠AOB=60°.故③正确∵∠ACB+∠DCE+∠BCD=180°,∴∠BCD=60°.∵∠DPC=∠PCA+∠PAC=60°+∠CAP>∠DCP=60°,∴DE≠DP.故④错误.故选D.点评:本题考查了等边三角形的性质的运用,全等三角形的判定及性质的运用,平行线的判定及性质的运用,三角形的外角与内角的关系的运用,解答时证明三角形全等是关键.5.如图,∠MON内有一点P,P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,GH 分别交OM、ON于A、B点,若∠MON=35°,则∠GOH=()A.60° B.70° C.80° D.90°考点:轴对称的性质.分析:连接OP,根据轴对称的性质可得∠GOM=∠MOP,∠PON=∠NOH,然后求出∠GOH=2∠MON,代入数据计算即可得解.解答:解:如图,连接OP,∵P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,∴∠GOM=∠MOP,∠PON=∠NOH,∴∠GOH=∠GOM+∠MOP+∠PON+∠NOH=2∠MON,∵∠MON=35°,∴∠GOH=2×35°=70°.故选B.点评:本题考查了轴对称的性质,熟记性质并确定出相等的角是解题的关键.6.如图,在△ABC中,BD、CD分别平分∠ABC、∠ACB,过点D作直线平行于BC,交AB、AC 于点E、F,当∠A的位置及大小变化时,线段EF和BE+CF的大小关系为()A.EF>BE+CF B.EF=BE+CF C.EF<BE+CF D.不能确定考点:等腰三角形的判定与性质;平行线的性质.分析:由平行线的性质和角平分线的定义可得∠EBD=∠EDB,则ED=BE,同理可得DF=FC,则EF=BE+CF,可得答案.解答:解:∵EF∥BC,∴∠EDB=∠DBC,∵BD平分∠ABC,∴∠EBD=∠DBC,∴∠EDB=∠EBD,∴ED=BE,同理DF=FC,∴ED+DF=BE+FC,即EF=BE+FC,故选B.点评:本题主要考查等腰三角形的判定,利用平行线的性质及角平分线的定义得到ED=BE和DF=FC 是解题的关键7.在4×4的正方形网格中,已将图中的四个小正方形涂上阴影(如图),若再从其余小正方形中任选一个也涂上阴影,使得整个阴影部分组成的图形成轴对称图形.那么符合条件的小正方形共有()A.1个B.2个C.3个D.4个考点:轴对称图形.专题:压轴题;网格型.分析:根据轴对称图形的概念求解.解答:解:如图所示,有3个使之成为轴对称图形.故选C.点评:此题通过利用格点图,考查学生轴对称性的认识.解题的关键是找对称轴,按对称轴的不同位置,可以有3种画法.8.已知:如图,在△ABC中,AB=AC,BC=BD,AD=DE=EB,则∠A的度数是()A.30° B.36° C.45° D.50°考点:等腰三角形的性质;三角形内角和定理;三角形的外角性质.专题:计算题.分析:根据AB=AC,BC=BD,AD=DE=EB可得到几组相等的角,再根据三角形外角的性质可得到∠C,∠A,∠EBD之间的关系,再根据三角形内角和定理即可求解.解答:解:设∠EBD=x°,∵BE=DE,∴∠EDB=∠EBD=x°,∴∠AED=∠EBD+∠EDB=2x°,∵AD=DE,∴∠A=∠AED=2x°,∴∠BDC=∠A+∠ABD=3x°,∵BD=BC,∴∠C=∠BDC=3x°,∵AB=AC,∴∠ABC=∠C=3x°,∵∠A+∠ABC+∠C=180°,∴2x+3x+3x=180,解得:x=22.5,∴∠A=2x°=45°.故选C.点评:此题主要考查等腰三角形的性质,三角形外角的性质及三角形内角和定理的综合运用.9.下列式子成立的是()A.B.C.D.考点:分式的混合运算.分析:利用分式的基本性质,以及分式的乘方法则即可判断.解答:解:A、+=,选项错误;B、当m=1时,=4,故选项错误;C、()2=,故选项错误;D、正确.故选D.点评:本题主要考查分式的混合运算,理解分式的性质以及运算法则是解答的关键.10.如果(x+1)(x2﹣5ax+a)的乘积中不含x2项,则a为()A.B.﹣C.﹣5 D.5考点:多项式乘多项式.分析:先根据多项式乘以多项式的法则展开,再合并同类项,根据已知得出方程﹣5a+1=0,求出即可.解答:解:(x+1)(x2﹣5ax+a)=x3﹣5ax2+ax+x2﹣5ax+a=x3+(﹣5a+1)x2+ax+a,∵(x+1)(x2﹣5ax+a)的乘积中不含x2项,∴﹣5a+1=0,a=,故选A.点评:本题考查了多项式乘以多项式的法则,关键是能根据题意得出关于a的方程.11.已知(a3b6)÷(a2b2)=3,则a2b8的值等于()A.6 B.9 C.12 D.81考点:整式的除法;幂的乘方与积的乘方.分析:单项式相除,把系数和同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式,利用这个法则先算出ab4的值,再平方即可.解答:解:∵(a3b6)÷(a2b2)=3,即ab4=3,∴a2b8=ab4•ab4=32=9.故选B.点评:本题考查单项式除以单项式及积的乘方运算.单项式相除,把系数和同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.12.若,则x﹣y的值为()A.0 B.﹣6 C.6 D.以上都不对考点:配方法的应用;非负数的性质:偶次方;非负数的性质:算术平方根.专题:计算题.分析:利用配方法得到(x+3)2+=0,再根据非负数的性质得x+3=0,=0,然后解出x和y后计算它们的差.解答:解:∵(x+3)2+=0,∴x+3=0,=0,∴x=﹣3,y=3,∴x﹣y=﹣3﹣3=﹣6.故选B.点评:本题考查了配方法的应用:配方法的理论依据是公式a2±2ab+b2=(a±b)2.配方法的关键是:先将一元二次方程的二次项系数化为1,然后在方程两边同时加上一次项系数一半的平方.13.若y﹣x=﹣1,xy=2,则代数式﹣x3y+x2y2﹣xy3的值是()A.2 B.﹣2 C.1 D.﹣1考点:提公因式法与公式法的综合运用.专题:计算题.分析:原式提取公因式,再利用完全平方公式分解,把已知等式代入计算即可求出值.解答:解:∵y﹣x=﹣1,xy=2,∴原式=﹣xy(x2﹣2xy+y2)=﹣xy(x﹣y)2=﹣1,故选D点评:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.若x2﹣3x=1,则代数式x4﹣6x3+9x2+2013的值是()A.2012 B.2013 C.2014 D.2015考点:因式分解的应用.分析:把代数式整理成含x2﹣3x的式子,进一步整体代入求得答案即可.解答:解:∵x2﹣3x=1,∴x4﹣6x3+9x2+2013=x2(x2﹣3x)﹣3x(x2﹣3x)+2013=x2﹣3x+2013=1+2013=2014.故选:C.点评:此题考查因式分解的实际运用,分组分解是关键,渗透整体代入的思想.15.已知a、b、c是△ABC的三边长,且满足a3+ab2+bc2=b3+a2b+ac2,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形考点:因式分解的应用.专题:压轴题;因式分解.分析:把所给的等式a3+ab2+bc2=b3+a2b+ac2能进行因式分解的要因式分解,整理为非负数相加得0的形式,求出三角形三边的关系,进而判断三角形的形状.解答:解:∵a3+ab2+bc2=b3+a2b+ac2,∴a3﹣b3﹣a2b+ab2﹣ac2+bc2=0,(a3﹣a2b)+(ab2﹣b3)﹣(ac2﹣bc2)=0,a2(a﹣b)+b2(a﹣b)﹣c2(a﹣b)=0,(a﹣b)(a2+b2﹣c2)=0,所以a﹣b=0或a2+b2﹣c2=0.所以a=b或a2+b2=c2.故△ABC的形状是等腰三角形或直角三角形或等腰直角三角形.故选C.点评:本题考查了分组分解法分解因式,利用因式分解最后整理成多项式的乘积等于0的形式是解题的关键.16.对任意实数x,多项式﹣x2+6x﹣10的值是一个()A.正数B.负数C.非负数D.无法确定考点:配方法的应用;非负数的性质:偶次方.专题:计算题.分析:利用配方法把﹣x2+6x﹣10变形为﹣(x﹣3)2﹣1,然后根据非负数的性质可判断﹣x2+6x﹣10<0.解答:解:﹣x2+6x﹣10=﹣(x2﹣6x)﹣10=﹣(x2﹣6x+9﹣9)﹣10=﹣(x﹣3)2﹣1,∵﹣(x﹣3)2≤0,∴﹣(x﹣3)2﹣1<0,即多项式﹣x2+6x﹣10的值是一个负数.故选B.点评:本题考查了配方法的应用:配方法的理论依据是公式a2±2ab+b2=(a±b)2.配方法的关键是:先将一元二次方程的二次项系数化为1,然后在方程两边同时加上一次项系数一半的平方.17.y﹣2x+1是4xy﹣4x2﹣y2﹣k的一个因式,则k的值是()A.0 B.﹣1 C.1 D.4考点:因式分解的意义.分析:观察已给的多项式,可变形为可以利用分组分解法,前三项可以用完全平方公式分解,根据式子的特点就可以确定k的值.解答:解:原式=﹣(4x2+y2﹣4xy+k)=﹣[2+k]显然根据平方差公式的特点,两个平方项要异号才能继续分解又由y﹣2x+1是4xy﹣4x2﹣y2﹣k的一个因式,可知第二个数是1则k=﹣1.故选B.点评:要熟练因式分解的公式法,同时注意前后联系.本题主要考查了因式分解与整式的乘法互为逆运算.是2015年中考中的常见题型.18.小虎在下面的计算中只做对了一道题,他做对的题目是()A.B.C.a3÷a=a2 D.考点:分式的混合运算.分析:A、利用乘方的意义计算即可;B、先通分再计算;C、根据同底数幂的除法计算即可;D、对分子提取公因数,再看能否约分.解答:解:A、()2=,此选项错误;B、+=,此选项错误;C、a3÷a=a2,此选项正确;D、==﹣,此选项错误.故选C.点评:本题考查了分式的混合运算,解题的关键是注意通分,以及指数的变化.19.分式与下列分式相等的是()A.B.C.D.考点:分式的基本性质.分析:分式的分子、分母及本身的符号,任意改变其中的两个,分式的值不变.据此作答.解答:解:原分式=﹣=.故选B.点评:要注意本题中分式的负号的位置不同时,其他系数的符号的变化.20.计算++的结果是()A.B.C.D.考点:分式的加减法.专题:计算题.分析:原式通分并利用同分母分式的加减法则计算即可得到结果.解答:解:原式===,故选A点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.二、填空题21.如图所示,△AOB≌△COD,∠AOB=∠COD,∠A=∠C,则∠D的对应角是∠OBA,图中相等的线段有OA=OC、OB=OD、AB=CD.考点:全等三角形的性质.分析:全等三角形的对应边相等,对应角相等,根据以上内容得出即可.解答:解:∵△AOB≌△COD,∠AOB=∠COD,∠A=∠C,∴∠D=∠OBA,OA=OC、OB=OD、AB=CD,故答案为:∠OBA,OA=OC、OB=OD、AB=CD.点评:本题考查了对全等三角形的性质的应用,注意:全等三角形的对应边相等,对应角相等.22.将一张长方形纸片按如图所示的方式折叠,BC,BD为折痕,则∠CBD的度数为()A.60° B.75° C.90° D.95°考点:翻折变换(折叠问题).分析:根据图形,利用折叠的性质,折叠前后形成的图形全等.解答:解:∠ABC+∠DBE+∠DBC=180°,且∠ABC+∠DBE=∠DBC;故∠CBD=90°.故选C.点评:本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.23.如图,△ABC是等腰直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后能与△ACP1重合.若AP=3,则PP1的长是.考点:旋转的性质;等腰直角三角形.专题:计算题.分析:根据题意可得△APP1是等腰直角三角形,AP=AP1=3,根据勾股定理,即可求得.解答:解:∵△ABC是等腰直角三角形,∴AB=AC,∠BAC=90°,又∵△ABP绕点A逆时针旋转后能与△ACP1重合,∴AP=AP1,∠PAP1=90°,∴△PAP1是等腰直角三角形,又AP=3,∴PP1=.故答案为:.点评:本题主要考查了旋转的性质和等腰直角三角形,知道△PAP1是等腰直角三角形是解答的关键.24.如图,在△ABC中,AC=BC=2,∠ACB=90°,D是BC边的中点,E是AB边上一动点,则EC+ED的最小值是.考点:轴对称-最短路线问题.专题:压轴题;动点型.分析:首先确定DC′=DE+EC′=DE+CE的值最小.然后根据勾股定理计算.解答:解:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于E,连接CE,此时DE+CE=DE+EC′=DC′的值最小.连接BC′,由对称性可知∠C′BE=∠CBE=45°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=45°,∴BC=BC′=2,∵D是BC边的中点,∴BD=1,根据勾股定理可得DC′==.故答案为:.点评:此题考查了线路最短的问题,确定动点E何位置时,使EC+ED的值最小是关键.25.如图,边长为1的等边△ABC中,一动点P沿AB从A向B移动,动点Q以同样的速度从C出发沿BC的延长线运动,连PQ交AC边于D,作PE⊥AC于E,则DE的长为.考点:全等三角形的判定与性质;等边三角形的判定与性质.分析:作PF∥BC,易证△APF为等边三角形,可得AE=EF,易证∠Q=∠DPF,即可证明△DPE≌△DQC,可得CD=DF,即可求得DE=AC,即可解题.解答:解:作PF∥BC,∵PF∥BC,∴△APF为等边三角形,∠Q=∠DPF,∴PF=AP,∴PF=CQ,∵PE⊥AD,∴AE=EF,在△DPE和△DQC中,,∴△DPE≌△DQC(AAS)∴CD=DF,∴DE=DF+EF=AE+CD=AC=,故答案为.点评:本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,考查了等边三角形三线合一的性质,本题中求证△DPE≌△DQC是解题的关键.26.如图,在△ABC中,BC=5cm,BP、CP分别是∠ABC和∠ACB的角平分线,且PD∥AB,PE∥AC,则△PDE的周长是5cm.考点:等腰三角形的判定与性质;平行线的性质.分析:分别利用角平分线的性质和平行线的判定,求得△DBP和△ECP为等腰三角形,由等腰三角形的性质得BD=PD,CE=PE,那么△PDE的周长就转化为BC边的长,即为5cm.解答:解:∵BP、CP分别是∠ABC和∠ACB的角平分线,∴∠ABP=∠PBD,∠ACP=∠PCE,∵PD∥AB,PE∥AC,∴∠ABP=∠BPD,∠ACP=∠CPE,∴∠PBD=∠BPD,∠PCE=∠CPE,∴BD=PD,CE=PE,∴△PDE的周长=PD+DE+PE=BD+DE+EC=BC=5cm.故答案为:5.点评:此题主要考查了平行线的判定,角平分线的性质及等腰三角形的性质等知识点.本题的关键是将△PDE的周长就转化为BC边的长.27.如图,在△ABC中,AB=AC,∠A=120°,BC=8cm,AB的垂直平分线交BC于点M,交AB于点D,AC的垂直平分线交BC于点N,交AC于点E,则MN的长为cm.考点:线段垂直平分线的性质;等腰三角形的性质.分析:首先连接AM,AN,由在△ABC中,AB=AC,∠A=120°,可求得∠B=∠C=30°,又由AB 的垂直平分线交BC于点M,交AB于点D,AC的垂直平分线交BC于点N,交AC于点E,易得△AMN是等边三角形,继而求得答案.解答:解:连接AM,AN,∵在△ABC中,AB=AC,∠A=120°,∴∠C=∠B=30°,∵AB的垂直平分线交BC于点M,交AB于点D,AC的垂直平分线交BC于点N,交AC于点E,∴AN=CN,AM=BM,∴∠CAN=∠C=30°,∠BAM=∠B=30°,∴∠ANC=∠AMN=60°,∴△AMN是等边三角形,∴AM=AN=MN,∴BM=MN=CN,∵BC=8cm,∴MN=cm.故答案为:cm.点评:此题考查了线段垂直平分线的性质以及等边三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.28.如图,△ABC中,∠A=65°,∠B=75°,将△ABC沿EF对折,使C点与C′点重合.当∠1=45°时,∠2=35°.考点:三角形内角和定理;翻折变换(折叠问题).分析:由△ABC中,∠A=65°,∠B=75°,可求得∠C的度数,又由三角形内角和定理,求得∠CEF+∠CFE,继而求得∠C′EF+∠C′FE,则可求得∠1+∠2,继而求得答案.解答:解:∵△ABC中,∠A=65°,∠B=75°,∴∠C=180°﹣(∠A+∠B)=40°,∴∠CEF+∠CFE=180°﹣∠C=140°,∵将△ABC沿EF对折,使C点与C′点重合,∴∠C′EF+∠C′FE=∠CEF+∠CFE=140°,∴∠1+∠2=360°﹣(∠C′EF+∠C′FE+∠CEF+∠CFE)=80°,∵∠1=45°,∴∠2=35°.故答案为:35.点评:此题考查了三角形内角和定理与折叠的性质.此题难度适中,注意掌握折叠前后图形的对应关系,注意整体思想在解题中的应用.29.在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M 为EF中点,则AM的最小值为 2.4.考点:勾股定理的逆定理;矩形的性质.专题:几何综合题;压轴题;动点型.分析:根据已知得当AP⊥BC时,AP最短,同样AM也最短,从而不难根据相似比求得其值.解答:解:∵四边形AFPE是矩形∴AM=AP,AP⊥BC时,AP最短,同样AM也最短∴当AP⊥BC时,△ABP∽△CAB∴AP:AC=AB:BC∴AP:8=6:10∴AP最短时,AP=4.8∴当AM最短时,AM=AP÷2=2.4.点评:解决本题的关键是理解直线外一点到直线上任一点的距离,垂线段最短,利用相似求解.30.分解因式:4x2﹣16=4(x+2)(x﹣2).考点:提公因式法与公式法的综合运用.分析:先提取公因式4,再对剩余项x2﹣4利用平方差公式继续进行因式分解.解答:解:4x2﹣16,=4(x2﹣4),=4(x+2)(x﹣2).点评:本题考查了提公因式法,公式法分解因式,关键在于提取公因式后继续利用平方差公式继续进行二次因式分解,分解因式一定要彻底.31.已知a2+3a=7,b2+3b=7,且a≠b,则a+b=﹣3.考点:根与系数的关系;一元二次方程的解.分析:已知a2+3a=7,b2+3b=7,且a≠b,则a,b就是方程x2+3x=7的两根,根据一元二次方程的根与系数的关系即可求解.解答:解:根据题意得:a,b就是方程x2+3x=7的两根则a+b=﹣3故本题的答案为﹣3.点评:本题考查了一元二次方程中根与系数之间的关系,正确理解a,b就是方程x2+3x=7的两根是解决本题的关键.32.已知x2+x﹣1=0,则x3+x2﹣x+3的值为3.考点:因式分解的应用.专题:整体思想.分析:先将所求的代数式前两项提取公因式x,再把已知条件整理后整体代入法求解即可.解答:解:∵x2+x﹣1=0,∴x2+x=1,x3+x2﹣x+3,=x(x2+x)﹣x+3,=x﹣x+3,=3.点评:主要考查整体代入思想的运用,对所求代数式部分项提取公因式后整理成已知条件的形式是解题的关键,也是求解的难点.33.当x=1时,分式无意义;当x=﹣3时,分式的值为0.考点:分式的值为零的条件;分式有意义的条件.分析:依据“分式的分母为零时分式无意义”和“当分式的分子为零且分母不为零时分式的值为0”分别求出x的值即可.解答:解:当x﹣1=0,即x=1时分式无意义;当时,分式的值为0,解得x=﹣3;故填:1;﹣3.点评:本题主要考查分式有意义及分式的值为零的条件,注意分式的值为零需要满足分式有意义.34.当x=2013时,分式的值为2016.考点:分式的值.专题:计算题.分析:所求式子分子利用平方差公式分解因式,约分得到最简结果,将x的值代入计算即可求出值.解答:解:原式==x+3,当x=2013时,原式=2013+3=2016.故答案为:2016点评:此题考查了分式的值,将所求式子进行化简是解本题的关键.35.若解分式方程产生增根,则m=﹣2或1.考点:分式方程的增根.分析:增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x(x+1)=0,得到x=0或﹣1,然后代入化为整式方程的方程算出m的值.解答:解:方程两边都乘x(x+1),得2x2﹣(m+1)=(x+1)2,整理,得x2﹣2x﹣m﹣2=0,∵原方程有增根,∴最简公分母x(x+1)=0,解得x=0或x=﹣1,当x=0时,02﹣2×0﹣m﹣2=0,∴m=﹣2;当x=﹣1时,(﹣1)2﹣2×(﹣1)﹣m﹣2=0,∴m=1,故m=﹣2或m=1.故答案为﹣2或1.点评:本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.36.若方程无解,则m=1.考点:分式方程的解.专题:计算题.分析:分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.解答:解:方程去分母得:(x﹣3)=m(x﹣2)解得:x=3﹣m,∴当x=2时分母为0,方程无解,即3﹣m=2,∴m=1时方程无解.故答案为:1.点评:本题考查了分式方程无解的条件,是需要识记的内容.37.若有关x的分式方程﹣=0无解,则实数a的值是﹣2.考点:分式方程的解.专题:计算题.分析:分式方程去分母转化为整式方程,根据分式方程无解,得到最简公分母x﹣1=0,求出x的值,代入整式方程求出a的值即可.解答:解:去分母得:x﹣a﹣3=0,由分式方程无解,得到x﹣1=0,即x=1,把x=1代入得:1﹣a﹣3=0,解得:a=﹣2,故答案为:﹣2点评:此题考查了分式方程的解,需注意在任何时候都要考虑分母不为0.38.m=3时,方程会产生增根.考点:分式方程的增根.分析:方程去分母化为整式方程,由题意将x=3代入即可求出m的值.解答:解:方程去分母得:x﹣2(x﹣3)=m,将x=3代入得:m=3,故答案为:3.点评:本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.三、简答题39.如图,分别以△ABC的边AB、AC向外作等边△ABE和等边△ACD,直线BD与直线CE相交于点O.(1)求证:CE=BD;如果当点A在直线BC的上方变化位置,且保持∠ABC和∠ACB都是锐角,那么∠BOC的度数是否会发生变化?若变化,请说明理由;若不变化,请求出∠BOC的度数:(3)如果当点A在直线BC的上方变化位置,且保持∠ACB是锐角,那么∠BOC的度数是否会发生变化?若变化,请直接写出变化的结论,不需说明理由;若不变化,请直接写明结论.考点:全等三角形的判定与性质;等边三角形的性质.分析:(1)根据等边三角形的性质可得AB=AE,AC=AD,∠CAD=∠BAE=60°,再求出∠BAD=∠EAC,然后利用“边角边”证明△ABD和△AEC全等,根据全等三角形对应边相等证明即可;。