2 图形的旋转_1955126323.ppt
合集下载
《图形的旋转》ppt课件

方向性
图形旋转具有方向性,顺 时针或逆时针方向不同, 会导致旋转后的图形位置 不同。
01
旋转的基本概念
点绕原点的旋转
绕原点旋转的定义
一个点绕原点旋转是指该点在平 面内按照某一角度旋转一定的角
度。
绕原点旋转的公式
假设点P(x, y)绕原点逆时针旋转θ 角度后到达点P'(x', y'),则x' = xcosθ - ysinθ,y' = xsinθ + ycosθ。
02
欧拉角表示法具有直观性和易用 性,但在某些情况下,可能会出 现万向锁现象,即旋转轴与旋转 角度的顺序有关。
绕轴旋转的公式
绕轴旋转的公式是用来描述一个物体 绕着一条固定轴旋转一定角度后的位 置和方向变化的数学表达式。
绕轴旋转的公式包括旋转矩阵和四元 数等,其中旋转矩阵是最常用的表示 方法,可以通过矩阵乘法来实现旋转 。
涡轮机、发电机、泵等旋转机械是工业生产和能源转换中的重要 设备。
旋转结构稳定性分析
在结构设计领域,对旋转结构的稳定性进行精确分析,确保其安 全可靠是至关重要的。
01
旋转的数学表达
欧拉角表示法
01
欧拉角是用来描述一个物体在三 维空间中绕着不同的轴旋转的角 度,通常采用绕着横轴、纵轴和 竖轴的旋转角度来表示。
绘制一个复杂的图形,如组合 图形或图案,并展示如何通过 旋转将其组合成一个完整的图 案。
绘制一个动态的图形旋转过程, 让学生更直观地理解旋转的概 念和过程。
分析旋转在现实生活中的应用源自分析时钟指针的旋转时钟指针的旋转是生活中常见的旋转现象,可以用来解释旋转的 基本概念和性质。
分析电风扇叶片的旋转
电风扇叶片的旋转可以用来解释旋转的速度和方向,以及旋转产生 的力和扭矩。
2图形的旋转PPT课件(人教版)

2.对应点与旋转中心所连线段的夹角等于旋转角. 3.旋转前、后的图形全等. ◆对照平移、轴对称两种图形变换,旋转变换 与它们有哪些共性和区分?
3.巩固新知,应用新知
活动三: 知识应用
随堂练习1
下列现象中属于旋转的有( )个 ①地下水位逐年降落;②传送带的移动; ③方向盘的转动;④水龙头开关的转动; ⑤钟摆的运动;⑥荡秋千运动. A.2 B.3 C.4 D.5
1. 创设情景,激发兴趣
活动一:感受旋转
旋转有什么性质? 哪些图形旋转180°后和它自身重合有什么性质? 如何利用旋转等图形变换设计图案?
1. 创设情景,激发兴趣
活动一:感受旋转
问题 (1)钟表的指针在不停地旋转,从3点到5点,
时针转动了多少度? (2)风车车轮的每个叶片在风吹动下新的位置.
这些现象有哪些共同特点?
△ABC绕点C旋转,在这个过程中,
你有什么发现?
A
C BLeabharlann 想一想 如果旋转中心在△ABC形外,
在这个旋转过程中,你有什么发现?
.O
A
C B
旋转的基本性质
◆对应点到旋转中心的距离相等. ◆对应点与旋转中心所连线段的夹角等于旋转角.
◆旋转前、后的图形全等. ◆图形的旋转是由旋转中心和旋转的角度决定.
3.巩固新知,应用新知
练习 P63
1.举出一些现实生活中旋转的实例,并指出旋转
中心和旋转角. 2.时钟的时针在不停地旋转,从上午6时到上午9时,
时钟旋转的旋转角是多少度?从上午9时到上午
10时呢? 3.如图,杠杆绕支点转动撬起重物,杠杆的旋转中 心在哪里?旋转角是哪个角?
2.自主探索, 归纳新知
活动二: 实验探究图形旋转的特征
3.巩固新知,应用新知
活动三: 知识应用
随堂练习1
下列现象中属于旋转的有( )个 ①地下水位逐年降落;②传送带的移动; ③方向盘的转动;④水龙头开关的转动; ⑤钟摆的运动;⑥荡秋千运动. A.2 B.3 C.4 D.5
1. 创设情景,激发兴趣
活动一:感受旋转
旋转有什么性质? 哪些图形旋转180°后和它自身重合有什么性质? 如何利用旋转等图形变换设计图案?
1. 创设情景,激发兴趣
活动一:感受旋转
问题 (1)钟表的指针在不停地旋转,从3点到5点,
时针转动了多少度? (2)风车车轮的每个叶片在风吹动下新的位置.
这些现象有哪些共同特点?
△ABC绕点C旋转,在这个过程中,
你有什么发现?
A
C BLeabharlann 想一想 如果旋转中心在△ABC形外,
在这个旋转过程中,你有什么发现?
.O
A
C B
旋转的基本性质
◆对应点到旋转中心的距离相等. ◆对应点与旋转中心所连线段的夹角等于旋转角.
◆旋转前、后的图形全等. ◆图形的旋转是由旋转中心和旋转的角度决定.
3.巩固新知,应用新知
练习 P63
1.举出一些现实生活中旋转的实例,并指出旋转
中心和旋转角. 2.时钟的时针在不停地旋转,从上午6时到上午9时,
时钟旋转的旋转角是多少度?从上午9时到上午
10时呢? 3.如图,杠杆绕支点转动撬起重物,杠杆的旋转中 心在哪里?旋转角是哪个角?
2.自主探索, 归纳新知
活动二: 实验探究图形旋转的特征
《图形的旋转》课件

《图形的旋转》ppt 课件
目录
• 旋转的定义与性质 • 旋转的数学表达 • 旋转的实际应用 • 旋转的动画演示 • 练习与思考
01
CATALOGUE
旋转的定义与性质
旋转的定义
旋转
图形绕某一定点按照某 一方向转动一定的角度
。
旋转中心
图形旋转时所围绕的点 ,也称为旋转的固定点
。
旋转方向
图形旋转时所遵循的方 向,可以是顺时针或逆
旋转矩阵的一般形式为
(R = begin{bmatrix} costheta & -sintheta sintheta & costheta end{bmatrix}),其中(theta)为旋转角度。
旋转角度与轴心
旋转角度表示绕轴心旋转的角 度,可以是任意实数,通常用 弧度表示。
旋转轴是旋转中心,可以是任 意直线,通常用坐标轴表示。
在空间几何中,旋转具有一些重要的性质 和定理。例如,旋转不改变物体的形状和 大小,只改变其方向和位置。此外,还有 一些关于旋转的定理,如绕固定点旋转的 性质、旋转变换的矩阵表示等。这些性质 和定理是空间几何中的重要基础,对于理 解几何变换和解决几何问题具有重要意义 。
04
CATALOGUE
旋转的动画演示
在游戏开发中,旋转动画常被用来实 现角色的移动、武器的转动等效果。
动态演示文稿
在商业演示中,使用旋转动画可以增 加视觉效果,使演示文稿更加生动有 趣。
05
CATALOGUE
练习与思考
基础练习题
01
02
03
04
基础题目1
请描述以下图形旋转30度后 的形状
答案
通过旋转图形,我们可以看到 新的形状。
目录
• 旋转的定义与性质 • 旋转的数学表达 • 旋转的实际应用 • 旋转的动画演示 • 练习与思考
01
CATALOGUE
旋转的定义与性质
旋转的定义
旋转
图形绕某一定点按照某 一方向转动一定的角度
。
旋转中心
图形旋转时所围绕的点 ,也称为旋转的固定点
。
旋转方向
图形旋转时所遵循的方 向,可以是顺时针或逆
旋转矩阵的一般形式为
(R = begin{bmatrix} costheta & -sintheta sintheta & costheta end{bmatrix}),其中(theta)为旋转角度。
旋转角度与轴心
旋转角度表示绕轴心旋转的角 度,可以是任意实数,通常用 弧度表示。
旋转轴是旋转中心,可以是任 意直线,通常用坐标轴表示。
在空间几何中,旋转具有一些重要的性质 和定理。例如,旋转不改变物体的形状和 大小,只改变其方向和位置。此外,还有 一些关于旋转的定理,如绕固定点旋转的 性质、旋转变换的矩阵表示等。这些性质 和定理是空间几何中的重要基础,对于理 解几何变换和解决几何问题具有重要意义 。
04
CATALOGUE
旋转的动画演示
在游戏开发中,旋转动画常被用来实 现角色的移动、武器的转动等效果。
动态演示文稿
在商业演示中,使用旋转动画可以增 加视觉效果,使演示文稿更加生动有 趣。
05
CATALOGUE
练习与思考
基础练习题
01
02
03
04
基础题目1
请描述以下图形旋转30度后 的形状
答案
通过旋转图形,我们可以看到 新的形状。
《图形的旋转》旋转PPT课件

新课讲解
例 2 如图(1),E是正方形ABCD中CD边上任意一点,以点A为中 心,把△ADE顺时针旋转90°,画出旋转后的图形.
图(1) 分析:关键是确定△ADE三个顶点的对应点,
即它们旋转后的位置.
新课讲解
解:因为点A是旋转中心,
所以它的知对识应点点是它本身. 正方形ABCD中,AD=AB,∠DAB=90°,
初中阶段研究的平移、轴对称和旋转都是针对平面 内的图形变换,它们是平面图形的全等变换.描述旋转 时不能忽略“平面内”.旋转的角度一般小于360°.
新课讲解
1.旋转中心在知旋识转点的过程中是静止不动的,旋转中心可以在图形 的外部,也可以在图形的内部,还可以在图形上. 2.将一个图形绕一个定点沿某个方向转动一个角度,意味着图形 上每一个点同时按相同方向旋转相同的角度. 3.旋转的三要素:旋转中心,旋转角,旋转方向.
别有何关系? 分别相等 .
②∠AOA′、∠BOB′、∠COC′之间有
O
何关系? ∠AOA′=∠BOB′=∠COC′ .
③△ABC与△A′B′C′有何关系?
△ABC≌△A′B′C′ .
新课讲解
你能知归识纳点出旋转的性质吗? 1.对应点到旋转中心的距离相等. 2.对应点与旋转中心所连线段的夹角等于旋转角. 3.旋转前、后的图形全等.
所以旋转后点D与点B重合.
设点E的对应点为点E′.因为旋转后的图形
图(2)
与旋转前的图形全等,所以∠ABE′=∠ADE
=90°,BE′=DE.
因此,在CB的延长线上取点E′,使BE′=DE,则
△ABE′为旋转后的图形(图(2)).
新课讲解
练一练
如图,将线段AB绕点O顺时针旋转90°得到线段A′B′, 那么A(-2,5)的对应点A′的坐标是( B ) A.(2,5) B.(5,2) C.(2,-5) D.(5,-2)
2图形的旋转PPT课件(人教版)

例1 如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针 方向旋转得到△OEF,在这个旋转过程中:
(1)旋转中心是什么?旋转角是什么? (2)经过旋转,点A,B分别移动到什么位置? 解:(1)旋转中心是O,∠AOE,∠BOF等都是旋转角. (2)经过旋转,点A和点B分别移动到点E和点F的位置.
自主探究:
请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞, 再挖一个点O作为旋转中心,把挖好的硬纸板放在黑板上,先在黑 板上描出这个挖掉的三角形图案(△ABC),然后环绕旋转中心O转 动硬纸板,在黑板上再描出这个挖掉的三角形(△A′B′C′),移去硬 纸板.
(分组讨论)根据图回答下面问题(一组推举一人上台说明)
解:(1)连接CD; (2)以CB为一边作∠BCE,使得∠BCE=∠ACD; (3)在射线CE上截取CB′=CB,则B′即为所求的B的对应点; (4)连接DB′,则△DB′C就是△ABC绕C点旋转后的图形.
三、课堂小结 (学生总结,老师点评) 本节课应掌握: 1.对应点到旋转中心的距离相等; 2.对应点与旋转中心所连线段的夹角等于旋转角; 3.旋转前、后的图形全等及其它们的应用. 四、作业布置 教材第62~63页 习题4,5,6.
23.1 图形的旋转
1.了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的 概念及其应用它们解决一些实际问题.
2.通过复习平移、轴对称的有关概念及性质,从生活中的数学 开始,经历视察,产生概念,应用概念解决一些实际问题.
3.旋转的基本性质.
重点 旋转及对应点的有关概念及其应用. 难点 旋转的基本性质.
2.再看我自制的好像风车风轮的玩具,它可以不停地转动.如何转 到新的位置?(老师点评略)
3.第1,2两题有什么共同特点呢? 共同特点是如果我们把时钟、风车风轮当成一个图形,那么这些图形 都可以绕着某一固定点转动一定的角度. 像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转, 点O叫做旋转中心,转动的角叫做旋转角. 如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的 对应点. 下面我们来运用这些概念来解决一些问题.
图形的旋转(第1课时)课件

学生作品展示与评价
作品展示
挑选部分学生的练习作品进行展示, 让学生互相学习。
评价与建议
对学生的作品进行点评,给出建议和 改进方向,帮助学生提高。
THANKS
感谢观看
动画的应用场景
01
02
03
04
旋转动画可以应用于各种场景 ,如产品展示、广告宣传、教
育演示等。
在产品展示中,旋转动画可以 全方位地展示产品的外观和特 点,增强观众对产品的认知和
兴趣。
在广告宣传中,旋转动画可以 吸引观众的注意力,提高广告
的传播效果和转化率。
在教育演示中,旋转动画可以 直观地展示抽象的概念和过程 ,帮助学生更好地理解和掌握
02
动画制作需要将静态图像按照一 定的时间间隔进行分解,并逐帧 绘制出每个状态,然后通过连续 播放形成动态效果。
旋转动画的实现
使用图形软件(如Adobe After Effects、Flash等)或动画 制作软件(如Toon Boom、Animate等)进行旋转动画的制 作。
在软件中导入需要旋转的图形,设置旋转中心点、旋转角度 、旋转速度等参数,然后逐帧绘制旋转过程,最后导出为视 频或GIF格式。
旋转的分类
等角度旋转
图形绕旋转中心按相等的角度进 行旋转,每次旋转的角度是相同 的。
变角度旋转
图形绕旋转中心按不同的角度进 行旋转,每次旋转的角度是不同 的。
02 旋转的数学表达
旋转矩阵
旋转矩阵是用于描述图形旋转 的数学工具,它由三个元素组 成:旋转角度、旋转轴和旋转 方向。
旋转矩阵的作用是将原始坐标 系中的点映射到新坐标系中, 实现图形的旋转。
知识。
05 课堂互动与练习
课堂互动环节设计
《图形的旋转》旋转PPT优质课件(第1课时)

问题.
1.掌握旋转的有关概念及基本性质.
探究新知
知识点 1
旋转的概念
【观察】观察下列图形的运动,它有什么特点?
O
45°
B
A
探究新知
【思考】怎样
来定义这种图
形变换?
把时针当成一个图形,那么它可以绕着中心
固定点转动一定角度.
钟表的指针在不停地转动,从12时到4时,时
120°
针转动了______度.
探究新知
(3)△BPQ是什么三角形?
解:(1)旋转中心是点B.
(2)因为△ABC为等边三角形,当边AB旋转到边BC的位置
时,正好转过了60°,所以旋转角的度数是60°.
(3)BP=BQ,而旋转角又等于60°,所以∠PBQ=60°,这样
△BPQ就是一个等边三角形.
探究新知
【想一想】图形在旋转时,旋转的方向有几种?
解:(1)由题意可知:CD=CE,∠DCE=90°,
∵∠ACB=90°,
∴∠ACD=∠ACB﹣∠DCB,
∠BCE=∠DCE﹣∠DCB,
∴∠ACD=∠BCE,
AC=BC
在△ACD与△BCED≌△BCE(SAS).
链接中考
(2)当AD=BF时,求∠BEF的度数.
将△ABP旋转后能与△CBQ重合.
(1)旋转中心是哪一点?
(2)旋转角是多少度?
(3)△BPQ是什么三角形?
分析: (1)根据对应点到旋转中心的距离相等来确定旋转中
心的位置.(2)对应点与旋转中心连线的夹角都等于旋转角.(3)
由旋转角和对应边的关系可以得到答案.
探究新知
(1)旋转中心是哪一点?
(2)旋转角是多少度?
∴∠BE′C=∠BE′E+∠EE′C=135°.
1.掌握旋转的有关概念及基本性质.
探究新知
知识点 1
旋转的概念
【观察】观察下列图形的运动,它有什么特点?
O
45°
B
A
探究新知
【思考】怎样
来定义这种图
形变换?
把时针当成一个图形,那么它可以绕着中心
固定点转动一定角度.
钟表的指针在不停地转动,从12时到4时,时
120°
针转动了______度.
探究新知
(3)△BPQ是什么三角形?
解:(1)旋转中心是点B.
(2)因为△ABC为等边三角形,当边AB旋转到边BC的位置
时,正好转过了60°,所以旋转角的度数是60°.
(3)BP=BQ,而旋转角又等于60°,所以∠PBQ=60°,这样
△BPQ就是一个等边三角形.
探究新知
【想一想】图形在旋转时,旋转的方向有几种?
解:(1)由题意可知:CD=CE,∠DCE=90°,
∵∠ACB=90°,
∴∠ACD=∠ACB﹣∠DCB,
∠BCE=∠DCE﹣∠DCB,
∴∠ACD=∠BCE,
AC=BC
在△ACD与△BCED≌△BCE(SAS).
链接中考
(2)当AD=BF时,求∠BEF的度数.
将△ABP旋转后能与△CBQ重合.
(1)旋转中心是哪一点?
(2)旋转角是多少度?
(3)△BPQ是什么三角形?
分析: (1)根据对应点到旋转中心的距离相等来确定旋转中
心的位置.(2)对应点与旋转中心连线的夹角都等于旋转角.(3)
由旋转角和对应边的关系可以得到答案.
探究新知
(1)旋转中心是哪一点?
(2)旋转角是多少度?
∴∠BE′C=∠BE′E+∠EE′C=135°.
《图形的旋转》课件

在平面直角坐标系中旋转点的坐标
1
步骤1
确定旋转中心和旋转角度。
2
步骤2
根据旋转公式计算出旋转后点的坐标。
3
步骤3
绘制旋转后的图形。在极坐标系中旋转来自的坐标1步骤1
确定旋转中心和旋转角度。
步骤2
2
将极坐标转换为直角坐标。
3
步骤3
使用直角坐标系中的旋转公式计算旋
步骤4
4
转后点的坐标。
将旋转后的坐标转换回极坐标。
在三维坐标系中旋转图形
步骤1
确定旋转中心和旋转轴。
步骤2
沿着旋转轴旋转图形。
步骤3
绘制旋转后的图形。
在平面直角坐标系中旋转向量
1 步骤1
确定旋转中心和旋转角度。
3 步骤3
使用旋转公式计算旋转后的向量。
2 步骤2
将向量表示为坐标形式。
在极坐标系中旋转向量
1 步骤1
确定旋转中心和旋转角度。
3 步骤3
综合应用:3 D建模中的旋转
介绍如何在3D建模软件中利用旋转操作创建立体图形和复杂形态。
总结和思考:旋转的意义和应 用
通过总结旋转的定义、公式和应用,深入思考旋转操作在数学、几何和计算 机图形学中的重要性。
参考文献和资料推荐
提供参考文献和书籍推荐,以供读者进一步学习和探索图形的旋转。
《图形的旋转》PPT课件
本课件将深入讲解图形的旋转,包括旋转的概述、角度和方向的定义、基本 旋转公式等内容,帮助您全面理解旋转的意义和应用。
概述图形旋转
定义
图形的旋转是指将原始图形按照一定角度和 方向进行变换的操作。
旋转角度
旋转角度是指图形绕旋转中心进行的旋转的 角度大小。