【土木建筑】第六章 管网水力计算
合集下载
管网水力计算(精)

例题:某城市供水区总用水量93.75L/s.节点4接某工 厂,工业用水量为6.94L/s 。节点0-8都是两边供水。 求比流量
水塔
3 2
水泵
600 0 300 1 450 4
650
8
5
6
7
1.管线总长度:ΣL=2425m,其中水塔到
205
节点0的管段两侧无用户不计入。
2.比流量:
(93.75-6.94)÷2425=0.0358L/s
4.5.2 管网图形及简化
1.管网设计图中的元素 (1)节点:有集中流量进出、管道合并或分叉以 及边界条件发生变化的地点 (2)管段:两个相邻节点之间的管道管线:顺序 相连的若干管段 (3)环:起点与终点重合的管线 ①基环:不包含其它环的环 ②大环:包含两个或两个以上基环的环
③虚环:多水源的管网,为了计算方便,有时将两 个或多个水压已定的水源节点(泵站、水塔等) 用虚线和虚节点0连接起来,也形成环,因实际上 并不存在,所以叫做虚环。
管段编号
1-2 2-3 3-4 1-5 3-5 4-6 5-6 6-7
合计
管段计算总长度 (m)
800 0.5×600=300
0.5×600=300 0.5×600=300
800 800 600 500
4400
比流量 (L/s.m) 0.03182
沿线流量 (L/s)
25.45 9.55 9.55 9.55 25.45 25.45 19.09 15.91
(1)消防时:假设在泵房供水区、水塔供水区各又 一着火点,每个消防用水额定(20L/S)
泵房节点流量为 237.5+20=257.5 水塔节点流量为54.2+20=74.2
第6章给水管网的设计计算

ql
qx
qt
1 ql
q
L
ql
qt
ql
L
dx
ql qt
x
qt
qx
qt
ql
L L
x
ql
L L
x
qt / ql
dh
dx qx2
dx
ql2
L L
x
2
h
L 0
dh
L
ql
2
2
1 3
hij
Hi
H
j
L d
2
2g
8
2D5g
LQ 2
LQ2 SQ2
6.2 管网图形及简化
➢管网计算中,城市管网现状核算、现有管网扩建计 算最为常见。
➢除新设计管网,定线和计算仅限于干管,对改建和 扩建管网往往适当简化,保留主要干管,略去次要、 水力条件影响较小的管线。
➢管网图形简化是在保证计算结果接近实际情况的前 提下对管线进行的简化,这样能减轻计算工作量。
节点:有集中流量进出、管道合并或 环:起点与终点重合的管线 分叉以及边界条件发生变化的地点
忽略:管网中主要起联络作 用的管段,由于正常运行时 流量很小,对水力条件影响 很小,计算时可忽略。
分解
忽略
管段合并:长度近似相等、 彼此几乎平行且相距很近的 两条管段计算时可合并。
节点合并:距离很近的两个节 点计算时可视为一个节点。
管网图形及简化
经分解、合并和省略 等,管网由原来42个
环减少到21环。
使环状网某些管段流量为零,即将环状网改成树状 网,才能得到最经济的流量分配,但树状网并不能 保证可靠供水。
环状网流量分配时,应同时照顾经济性和可靠性。
管网水力计算树状管网计算

树状网计算例题
干管各管段的水力计算
干管各管段水头损失hij=aLijqij2的确定
以表6 — 3中管段0 — 1为例:
3 L 0—1 300m ,q 0—1 0.08838m / s,v 0.70m/ s;
若我们在计算的过程中 采用的是舍维列夫公式 ,则: v 0.70m/ s 1.20m/ s,D 400mm ,查表5 — 2则:a 0.2232 , v 0.70m/ s,查表5 — 3则:a的修正系数K 1.085 ,则有:
第一节 树状网计算
• 多数小型给水和工业企业给水在建设初期 往往采用树状网,以后随着城市和用水量 的发展,可根据需要逐步连接成为环状网。 村状网的计算比较简单,主要原因是树状 网中每一管段的流量容易确定,且可以得 到唯一的管段流量。
树状网计算
树状网计算步骤 • 在每一节点应用节点流量平衡条件qi+∑qij=0,无论从二级泵站起顺 水流方向推算或从控制点起向二级泵站方向推算,只能得出唯一的管 段流量qij ,或者可以说树状网只有唯一的流量分配。 • 任一管段的流量决定后,即可按经济流速ve求出管径D,并求得水头 损失hij。 • 选定一条干线,例如从二级泵站到控制点的任一条干管线,将此干线 上各管段的水头损失相加,求出干线的总水头损失,即可按式Hp= Zc+Hc+hs+hc+hn (m)和式Ht= Hc+hn-(Zt-Zc)计算二级泵站所需扬程 或水塔所需的高度。这里,控制点的选择很重要,如果控制点选择不 当而出现某些地区水压不足时,应重行选定控制点进行计算。 • 干线计算后,得出干线上各节点包括接出支线处节点的水压标高 (等 于节点处地面标高加服务水头)。因此在计算树状网的支线时,起点 的水压标高已知,而支线终点的水压标高等于终点的地面标高与最小 服务水头之和。从支线起点和终点的水压标高差除以支线长度,即得 支线的水力坡度(i=(Hi-Hj)/Lij),再从支线每一管段的流量并 参照此水力坡度选定相近的标准管径。
管网水力计算

1 Q j Q j y qi 2 q j j点大用户用水量( l / s)
例:
57
1
沿线流量60(L/S)
2
24
3
4
13
24
5
9
9
6
30
7
11
10
8
5
8
9
试计算各点的节点流量. 5点的节点流量:1/2(24+13+9+10)=28(L/S)
【例题】某城市最高时总用水量为260L/s,其中
2.配水干管比流量
qcb Qh qi
l
260 120 4400 0.03182 l / s m
3.沿线流量:
qy qcb li
(l / s)
各 管 段 沿 线 流 量 计 算
管段编号 1-2 2-3 3-4 1-5 3-5 4-6 5-6 6-7
合 计
管段计算总长度 ( m) 800 0.5×600=300 0.5×600=300 0.5×600=300 800 800 600 500
(1)管网图形简化可分为分解、合并、省略 ①分解:只由一条管线连接的两管网,都可以把连 接管线断开,分解成为两个独立的管网。由两条 管线连接的分支管网,如它位于管网的末端且连 接管线的流向和流量可以确定,也可进行分解, 管网经分解后即可分别计算。 ②合并:管径较小、相互平行且靠近的管线可考虑 合并。 ③省略:管线省略时,首先是略去水力条件影响较 小的管线,也就是省略管网中管径相对较小的管 线,管线省略后的计算结果是偏于安全的。
4.5 管段流量、管径和水头损失
内 容:求出所有管道的直径、水头损 失、水泵扬程和水塔高度。并对事故时、消 防时、最大转输时的水泵扬程进行较核。
《管网水力计算》课件

《管网水力计算》 PPT课件
目 录
• 管网水力计算概述 • 管网模型建立 • 水力计算原理 • 水力计算实例 • 结果分析与应用
01
CATALOGUE
管网水力计算概述
定义与目的
定义
管网水力计算是对给定管网系统中的 水流运动进行模拟和分析的过程。
目的
确定管网中各管段的流量、水头损失 、节点水压等参数,为管网的规划、 设计、运行和管理提供依据。
详细描述
该实例为一个由多个独立水源分散供应的管网,管道无环状结构,水流从各个水源经由管网分别输送到用户。计 算时需要考虑各个水源的供水能力和管网的阻力损失,以实现水压和流量的合理分配,满足用户需求。
05
CATALOGUE
结果分析与应用
结果分析
计算结果准确性
确保计算结果的准确性,对误差来源进行详细分析,并采取措施 减小误差。
近似法
基于经验公式和简化假设,对管 网水力计算进行简化处理,得到 近似的解。适用于快速估算和初 步设计。
02
CATALOGUE
管网模型建立
模型选择
确定模型类型
根据管网的规模、复杂性和计算精度要求,选择 适合的模型类型,如一维、二维或三维模型。
确定模型范围
根据实际需求,确定模型的计算范围,包括管网 的起止点、分支点和边界条件等。
数据对比分析
将计算结果与实际数据进行对比,分析差异原因,以提高计算精 度。
结果可视化
使用图表、图像等形式展示计算结果,便于理解和分析。
结果应用
工程设计优化
根据计算结果优化管网设计,提高工程的安全 性和经济性。
运行调度优化
根据计算结果优化管网的运行调度,提高供水 效率。
应急预案制定
目 录
• 管网水力计算概述 • 管网模型建立 • 水力计算原理 • 水力计算实例 • 结果分析与应用
01
CATALOGUE
管网水力计算概述
定义与目的
定义
管网水力计算是对给定管网系统中的 水流运动进行模拟和分析的过程。
目的
确定管网中各管段的流量、水头损失 、节点水压等参数,为管网的规划、 设计、运行和管理提供依据。
详细描述
该实例为一个由多个独立水源分散供应的管网,管道无环状结构,水流从各个水源经由管网分别输送到用户。计 算时需要考虑各个水源的供水能力和管网的阻力损失,以实现水压和流量的合理分配,满足用户需求。
05
CATALOGUE
结果分析与应用
结果分析
计算结果准确性
确保计算结果的准确性,对误差来源进行详细分析,并采取措施 减小误差。
近似法
基于经验公式和简化假设,对管 网水力计算进行简化处理,得到 近似的解。适用于快速估算和初 步设计。
02
CATALOGUE
管网模型建立
模型选择
确定模型类型
根据管网的规模、复杂性和计算精度要求,选择 适合的模型类型,如一维、二维或三维模型。
确定模型范围
根据实际需求,确定模型的计算范围,包括管网 的起止点、分支点和边界条件等。
数据对比分析
将计算结果与实际数据进行对比,分析差异原因,以提高计算精 度。
结果可视化
使用图表、图像等形式展示计算结果,便于理解和分析。
结果应用
工程设计优化
根据计算结果优化管网设计,提高工程的安全 性和经济性。
运行调度优化
根据计算结果优化管网的运行调度,提高供水 效率。
应急预案制定
给水管网-第6章(6.1)

4
6.1 树状网水力计算
一、树状网计算的具体步骤 1.求各管段的沿线流量、 求各管段的沿线流量 1. 求各管段的沿线流量、节点流量 2.在注明节点流量的计算草图上 在注明节点流量的计算草图上, 2. 在注明节点流量的计算草图上,按照任一管段中 的流量等于其后面的所有节点流量之和的关系, 的流量等于其后面的所有节点流量之和的关系, 求出每一管段的流量 求出每一管段的流量 3.选定泵房到控制点的管线为干线 选定泵房到控制点的管线为干线, 3. 选定泵房到控制点的管线为干线,按经济流速求 出管径和水头损失 4.将干线上各管段的水头损失相加 求出干线的总 将干线上各管段的水头损失相加, 4. 将干线上各管段的水头损失相加,求出干线的总 水头损失, 水头损失,并按照第三章的公式计算出二泵站所 扬程和水塔所需高度(前面4 需扬程和水塔所需高度(前面4步讲的是干管的 水力计算,下面讲支线) 水力计算,下面讲支线)
94 − 93 94 − 93.75 = 2.12 − 2.07 2.12 − 1000i
2.11 h = il = × 600 = 1.27 1000
1000i=2.1075= 1000i=2.1075=2.11
14
(2)利用公式( h = il 、h = alq 2 ) 利用公式( • 已知:q=93.75 已知: 4q 假定: 假定: v= 2 • D取350mm,根据 πd ,求出v=0.97,不在平均经济流速范围内 350mm, 求出v 0.97, • D取400mm,求出v=0.75,在平均经济流速范围内 400mm,求出v 0.75, • D取450mm,求出v=0.59 ,不在平均经济流速范围内 450mm,求出v • ①∵v<1.2∴将D=400mm,v=0.75代入5-24公式,求出 v<1.2∴ 400mm, 0.75代入 24公式 代入5 公式, h = il = 0.00212 × 600 = 1.27 i=0.00212 • • • • v= ②∵ v=0.75 ∴ a 的值查表5-2 ∵D=400 的值查表5 ∴ a =0.2232 的值查表5 ∵v= K= K的值查表5-3 ∵v=0.75 ∴ K=1.07 代入公式 h = 1.07 × 0.2232 × 600 × 0.09375 2 = 1.26 • 最后,将干管线上各管段的水头损失相加,求出干管总水头损失 最后,将干管线上各管段的水头损失相加,
6.1 树状网水力计算
一、树状网计算的具体步骤 1.求各管段的沿线流量、 求各管段的沿线流量 1. 求各管段的沿线流量、节点流量 2.在注明节点流量的计算草图上 在注明节点流量的计算草图上, 2. 在注明节点流量的计算草图上,按照任一管段中 的流量等于其后面的所有节点流量之和的关系, 的流量等于其后面的所有节点流量之和的关系, 求出每一管段的流量 求出每一管段的流量 3.选定泵房到控制点的管线为干线 选定泵房到控制点的管线为干线, 3. 选定泵房到控制点的管线为干线,按经济流速求 出管径和水头损失 4.将干线上各管段的水头损失相加 求出干线的总 将干线上各管段的水头损失相加, 4. 将干线上各管段的水头损失相加,求出干线的总 水头损失, 水头损失,并按照第三章的公式计算出二泵站所 扬程和水塔所需高度(前面4 需扬程和水塔所需高度(前面4步讲的是干管的 水力计算,下面讲支线) 水力计算,下面讲支线)
94 − 93 94 − 93.75 = 2.12 − 2.07 2.12 − 1000i
2.11 h = il = × 600 = 1.27 1000
1000i=2.1075= 1000i=2.1075=2.11
14
(2)利用公式( h = il 、h = alq 2 ) 利用公式( • 已知:q=93.75 已知: 4q 假定: 假定: v= 2 • D取350mm,根据 πd ,求出v=0.97,不在平均经济流速范围内 350mm, 求出v 0.97, • D取400mm,求出v=0.75,在平均经济流速范围内 400mm,求出v 0.75, • D取450mm,求出v=0.59 ,不在平均经济流速范围内 450mm,求出v • ①∵v<1.2∴将D=400mm,v=0.75代入5-24公式,求出 v<1.2∴ 400mm, 0.75代入 24公式 代入5 公式, h = il = 0.00212 × 600 = 1.27 i=0.00212 • • • • v= ②∵ v=0.75 ∴ a 的值查表5-2 ∵D=400 的值查表5 ∴ a =0.2232 的值查表5 ∵v= K= K的值查表5-3 ∵v=0.75 ∴ K=1.07 代入公式 h = 1.07 × 0.2232 × 600 × 0.09375 2 = 1.26 • 最后,将干管线上各管段的水头损失相加,求出干管总水头损失 最后,将干管线上各管段的水头损失相加,
管网水力计算

1 2
2-5 5-3 3-2 1-2 2-3 3-4 4-1
220 210 90 270 90 80 260
200 200 150 200 150 200 250
解: (1)初拟各管段流量 (1)初拟各管段流量
(2)计算各段水头损失,求闭合差。 (2)计算各段水头损失,求闭合差。
∑ h f 1 = 1.84 − 1.17 − 0.17 = 0.5m
H t = Z 0 + H z + ∑ h f − Zt
取 之和最大的那一条管道为控制点. z0 , H z , ∑ h f 之和最大的那一条管道为控制点.
(2)扩建工程 条件:水塔高度或干管节点压头已知, 条件:水塔高度或干管节点压头已知,即 已经确定,设计管线管径。 Q, H z , Z 0 , ∑ h f 已经确定,设计管线管径。
2. 环状管网水力计算 规律: 规律: 管段数 n ,节点数 nP ,
g
环数 nk 未知量:(管径) 未知量:(管径) ng :(管径
ng = nk + n p − 1
,(各管中流量) ,(各管中流量) ng 各管中流量
共计:2 共计:2 ng 个。 可列方程:依连续性原理, 可列, 可列方程:依连续性原理,对于各节点 ∑ Q = 0 可列, 个有效方程。 (nP − 1) 个有效方程。各环水头损失闭合差
7.6.4 水击压强的计算
●关闭阀门时间
Ts
●水击相长
●水击周期 T = 4l c ●直接水击
2l T= c
Ts < T
(效果与 Ts = 0 相同
)
●间接水击
Ts > T
●间接水击压强计算公式
cv 0 ∆p = ρg g
管网水力计算

• 解环方程有多种方法,现在最常用的解法是哈代—克罗斯 法。
环方程组解法
L个非线性能量方程的求解
F1q1,q2,,qh0
F2 qg,qg1,,qj 0
FL qm,qm1,,qp 0
方程数等于环每 数环 ,一 即个方程,该 它环 包的 括各管段流程 量 组, 组方 包
了管网中的全部量 管。段 函流 F数有相同形式s的 i qi n-1qi项,两环公共管段
,
,
q
0
p
q p
0
环方程组解法
L个非线性能量方程的求解过程
将函数F展开,保留线性项得:
F1
q10
,
q
0
2
,
,
q
0
h
F1 q1
q1
F2 q 2
q 2
Fh q h
q h
0
F2
q 0 , q 0 , , q 0
g
g 1
j
Fg q g
q g
Fg1 q g1
q g1
Fj q j
q j
树状网计算例题
干管各管段的水力计算
✓ 干管各管段管径D和流速v的确定
首先根据流量并参 准照 管标 径选定一个D, 管然 径后v由 4q 确定流v速 ,
D2
查表5—1,看v是否在经济流速范 ,围 如内 果是,则所选 D、 定v合 的理; 如果否,则重新D, 选在 定看一下新计算 的v所 是得 否符合5表 —1内的经济流速, 直至符合为止。这 们里 可我 以看出,对一 个每 管一 段,可能不止 D、 一v组 个合满足 表5—1中队经济流速的要求。 如管段 1—4,表6—3中所选管径 30为 0m, m如我们选择D管3径50m, m则此时 v 40.030630.63,v0.63m/s也符合5表—1对经济流速的要求。
环方程组解法
L个非线性能量方程的求解
F1q1,q2,,qh0
F2 qg,qg1,,qj 0
FL qm,qm1,,qp 0
方程数等于环每 数环 ,一 即个方程,该 它环 包的 括各管段流程 量 组, 组方 包
了管网中的全部量 管。段 函流 F数有相同形式s的 i qi n-1qi项,两环公共管段
,
,
q
0
p
q p
0
环方程组解法
L个非线性能量方程的求解过程
将函数F展开,保留线性项得:
F1
q10
,
q
0
2
,
,
q
0
h
F1 q1
q1
F2 q 2
q 2
Fh q h
q h
0
F2
q 0 , q 0 , , q 0
g
g 1
j
Fg q g
q g
Fg1 q g1
q g1
Fj q j
q j
树状网计算例题
干管各管段的水力计算
✓ 干管各管段管径D和流速v的确定
首先根据流量并参 准照 管标 径选定一个D, 管然 径后v由 4q 确定流v速 ,
D2
查表5—1,看v是否在经济流速范 ,围 如内 果是,则所选 D、 定v合 的理; 如果否,则重新D, 选在 定看一下新计算 的v所 是得 否符合5表 —1内的经济流速, 直至符合为止。这 们里 可我 以看出,对一 个每 管一 段,可能不止 D、 一v组 个合满足 表5—1中队经济流速的要求。 如管段 1—4,表6—3中所选管径 30为 0m, m如我们选择D管3径50m, m则此时 v 40.030630.63,v0.63m/s也符合5表—1对经济流速的要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
允许水头损失: 允许水头损失:h1~3=5.70m,
h4~7=3.95m
也就是说,经过水力计算后, 也就是说,经过水力计算后,支线水头损失不能超 过允许的水头损失
树状网计算例题
支管各管段的水力计算
支管管径D的确定方法 支管管径 的确定方法
支管管径的确定方法与干管相同
支管各管段水力坡度 支管各管段确定出管径 若我们在计算的过程中
总水量: 总水量:
∑Q=86.81+6.94=93.75L/s
树状网计算例题
比流量
管线总长度∑L: 管线总长度 :
∑L =2425m(其中水塔到0节点的管段两侧无用户,不配 =2425m(其中水塔到 节点的管段两侧无用户, 其中水塔到0 因此未计入∑L ) 水,因此未计入
比流量qs: 比流量 =(Q- qs=(Q-∑q)/∑L 其中, 集中流量) 其中, ∑q(集中流量)=6.94L/s, ∑L =2425m =(Q- 则qs=(Q-∑q)/∑L =(93.75=(93.75-6.94)/2425=0.0358L/(ms)
树状网计算例题
水塔高度
• 水塔水柜底高于地面的高度
H H H
t t c
= H
c
+ h n − (Z t − Z c ) = 16 + 7 . 53 − (5 − 5 ) = 23 . 53 m 高度; ,采用 16 . 00m ; 水塔 ~ 8”管路水头损失; 5m 。
— —水塔水柜底到地面的 — —控制点最小流出水头 5m ;
第一节 树状网计算
• 多数小型给水和工业企业给水在建设初期 往往采用树状网, 往往采用树状网,以后随着城市和用水量 的发展,可根据需要逐步连接成为环状网。 的发展,可根据需要逐步连接成为环状网。 村状网的计算比较简单, 村状网的计算比较简单,主要原因是树状 网中每一管段的流量容易确定,且可以得 网中每一管段的流量容易确定, 到唯一的管段流量。 到唯一的管段流量。
2 h 0 —1 = aKL 0 —1q 0 —1 = 0.2232 × 1.085 × 300 × 0.08838 2 = 0.56m
树状网计算例题
支管各管段的水力计算
干管上各支管接出处节点的水压标高 节点8: 节点 :H8=16.00(最小服务水头 (最小服务水头15.7m,这里 , 我们近似采用16.00m)+5.00(地面标高) 我们近似采用 ) (地面标高) =21.00m 节点4: 节点 :H4=H8+h4~8=21.00+3.95=24.95m; 节点1: 节点 :H1=H4+h1~4=24.95+1.75=26.70m; 节点0: 节点 :H0=H1+h0~1=26.70+0.56=27.26m; ; 水塔: 水塔: H水塔=H0+h水塔 =27.26+1.27=28.53m 水塔~0
2 3.14 × (0.35 )
4 × 0.03063
= 0.63, v = 0.63m / s也符合表 5 — 1对经济流速的要求。
树状网计算例题
干管各管段的水力计算
干管各管段水头损失h 干管各管段水头损失 ij=aLijqij2的确定
以表6 — 3中管段0 — 1为例: L 0 —1 = 300m,q 0 —1 = 0.08838m 3 / s,v = 0.70m / s; 若我们在计算的过程中 采用的是舍维列夫公式 ,则: v = 0.70m / s < 1.20m / s,D = 400mm,查表5 — 2则:a = 0.2232, v = 0.70m / s,查表5 — 3则:a的修正系数K = 1.085,则有:
4q 确定流速 v, 2 πD 查表 5 — 1,看 v是否在经济流速范围内 ,如果是,则所选定的 D、 v合理; 首先根据流量并参照标 准管径选定一个管径 D,然后由 v = 如果否,则重新选定 D ,在看一下新计算所得 的 v是否符合表 5 — 1内的经济流速, 直至符合为止。这里我 们可以看出,对一每一 个管段,可能不止一个 D、 v组合满足 表5 — 1中队经济流速的要求。 如管段1 — 4,表 6 — 3中所选管径为 300mm ,如我们选择管径 D = 350mm ,则此时 v=
i 的确定: D 和流速 v 后, 采用的是舍维列夫公式
2
,可知 a 和 K ,则: i = aKq 4q 4 × 11 . 64 以表 6 — 4中管段 1 — 2为例: D = 150mm, v = = = 0 . 66 πD 2 3 . 14 × 0 . 15 2 v = 0 . 66m / s < 1.20m / s , D = 150mm ,查表 5 — 2 则: a = 41.85 , v = 0 . 66m / s ,查表 5 — 3, 采用内插法则:
树状网计算
树状网计算步骤
• 在每一节点应用节点流量平衡条件qi+∑qij=0,无论从二级泵站起顺 在每一节点应用节点流量平衡条件q 水流方向推算或从控制点起向二级泵站方向推算,只能得出唯一的管 水流方向推算或从控制点起向二级泵站方向推算,只能得出唯一的管 段流量q 或者可以说树状网只有唯一的流量分配。 段流量qij ,或者可以说树状网只有唯一的流量分配。 • 任一管段的流量决定后,即可按经济流速ve求出管径D,并求得水头 任一管段的流量决定后,即可按经济流速 求出管径D 按经济流速v 损失h 损失hij。 • 选定一条干线,例如从二级泵站到控制点的任一条干管线,将此干线 选定一条干线,例如从二级泵站到控制点的任一条干管线, 上各管段的水头损失相加,求出干线的总水头损失 即可按式H 干线的总水头损失, 上各管段的水头损失相加,求出干线的总水头损失,即可按式Hp= (m)和式 和式H Zc+Hc+hs+hc+hn (m)和式Ht= Hc+hn-(Zt-Zc)计算二级泵站所需扬程 或水塔所需的高度。这里,控制点的选择很重要, 或水塔所需的高度。这里,控制点的选择很重要,如果控制点选择不 当而出现某些地区水压不足时,应重行选定控制点进行计算。 当而出现某些地区水压不足时,应重行选定控制点进行计算。 • 干线计算后,得出干线上各节点包括接出支线处节点的水压标高(等 干线计算后,得出干线上各节点包括接出支线处节点的水压标高( 节点处地面标高加服务水头) 因此在计算树状网的支线时, 于节点处地面标高加服务水头)。因此在计算树状网的支线时,起点 的水压标高已知, 的水压标高已知,而支线终点的水压标高等于终点的地面标高与最小 服务水头之和。从支线起点和终点的水压标高差除以支线长度, 服务水头之和。从支线起点和终点的水压标高差除以支线长度,即得 支线的水力坡度(i=( ),再从支线每一管段的流量并 支线的水力坡度(i=(Hi-Hj)/Lij),再从支线每一管段的流量并 参照此水力坡度选定相近的标准管径。 参照此水力坡度选定相近的标准管径。
Z t — —水塔地面标高; H 吸 — —泵站吸水井最低水位标高,采用4.70m; H t — —水塔水柜底高于地面的高度; H 0 — —水塔水深,采用 .00m; 3 h c、h s — —水泵吸水管、泵站到水塔输水管水头损失,h c + h s = 3.00m。
树状网计算例题
干管各管段的水力计算
因城市用水区地形平坦, 因城市用水区地形平坦,控制点选在离泵站最 远的干管线上的节点8。 远的干管线上的节点 。
树状网计算例题
干管各管段的水力计算
管段流量的确定 各管段的管段流量等于该管段后所有节点的节点流 量之和
• • • •
q水塔 水塔~0 q0~1 q1~4 q4~8
h n — —水塔到控制点管路“ Z t — —水塔地面标高, Z c — —控制点地面标高,
•水泵扬程 水泵扬程
H p = (Z t − H 吸 ) + H t + H 0 + h c + h s = (5 − 4.70) + 23.53 + 3.00 + 3.00 = 29.83m H p — —水泵扬程;
2 i 1 — 2 = aKq 1 — 2 = 41.85 × 1 . 097 × 0 . 01164 2
a 的修正系数 K = 1 . 097 ,则有: = 0 . 00617
树状网计算例题
支管各管段的水力计算
• 参照水力坡度和流量选定支线各管段的管径时, 参照水力坡度和流量选定支线各管段的管径时, 应注意市售标准管径的规格, 应注意市售标准管径的规格,还应注意支线各管 段水头损失之和不得大于允许的水头损失, 段水头损失之和不得大于允许的水头损失,例如 支线4 5 6 7的总水头损失为3.28m 3.28m, 支线4—5—6—7的总水头损失为3.28m,而允许的 水头损失按支线起点( 和终点( 水头损失按支线起点(H4)和终点(H7)的水压 标高差计算为H =24.95-(16+5)=3.95m, 标高差计算为H4-H7 =24.95-(16+5)=3.95m,符 合要求,否则须调整管径重行计算, 合要求,否则须调整管径重行计算,直到满足要 求为止。由于标准管径的规格不多, 求为止。由于标准管径的规格不多,可供选择的 管径有限,所以调整的次数不多。 管径有限,所以调整的次数不多。
树状网计算例题
沿线流量
沿线流量q1=qsL: 沿线流量 :
树状网计算例题
节点流量
节点流量q 节点流量qi=0.5∑q1: 流量
节点4除包括流量23.80L/s以外, 节点4除包括流量23.80L/s以外,还应 23.80L/s以外 包括工业用水集中流量6.94L/s 6.94L/s。 包括工业用水集中流量6.94L/s。
树状网计算例题
总用水量
设计最高日生活用水量: 设计最高日生活用水量:
50000×0.15=7500m3/d=312.5m3/h=86.81L/s ×