管网水力计算
热水管网的水力计算

方法:同冷水,但因水温高, 和粘滞系数小 于冷水,且考虑结垢等因素,水力计算采用热 水水力计算表
二、回水管网的计算 (1) 管网循环流量 管段的热损失:
Ws
DLK (1h)(tc
tz 2
tj)
Ws——计算管段热损失,kJ/h; K——无保温时管道的传热系数, kJ/(m2•h•℃) ;
2 采用蒸汽间接加热:
Gmh
1.1
~
1.2 3.6Qh
h
Gmh——蒸汽间接加热热水时的蒸汽耗量,kg/h;
——蒸汽的气化热,可查表决定;
Qh——设计小时耗热量,W。 3 采用热水间接加热
Gms
1.1
~
1.2
C
B
3.6Qh
tmc t
mz
Gms——蒸汽间接加热热水时的蒸汽耗量,W; tmc——热媒热水供应温度,℃; tmz——热媒热水回水温度,℃;
Q、CB同上。
8-3 加热器及贮存设备的选择计算
一、局部加热设备计算 二、集中热水供应加热设备选择计算 1. 传热面积的计算
Fp——水加热器的传热面积,m2; Qz——制备热水所需的热量,可按设计小时耗热量计算,W; ε——传热效率的修正系数, α——热损失附加系数,一般取α=1.1~1.2 ;
具体算法
6)计算配水管网的热损失,求总循环流量。 将∑Ws代入下式求解热水系统的总循环流量Qx :
7)复核各管段终点的水温
8)计算循环管网的总水头损失 H——循环管网的总水头损失,kPa; 损Hp失—,—k循Pa环;流量通过配水计算管路的沿程、局部 H损x—失—,循kP环a;流量通过回水计算管路的沿程、局部
定时供应旅馆、住宅、医院、集体宿 舍、工业企业卫生间、浴室
管网系统水力计算与仿真分析

管网系统水力计算与仿真分析一、管网系统水力计算与仿真分析概述管网系统是城市基础设施的重要组成部分,负责将水资源从源头输送到各个用户,同时收集和处理污水。
随着城市化进程的加快,管网系统的规模和复杂性不断增加,对水力计算和仿真分析的需求也日益突出。
水力计算与仿真分析是确保管网系统高效、安全运行的关键技术手段。
1.1 管网系统水力计算的重要性管网系统的水力计算是评估系统性能、优化设计和运行管理的基础。
通过水力计算,可以预测水流在管网中的分布、速度和压力,从而为管网的设计、扩建和维护提供科学依据。
1.2 管网系统仿真分析的作用仿真分析是利用计算机技术模拟管网系统的实际运行情况,通过模拟可以发现潜在的问题,优化系统设计,提高运行效率,降低能耗和成本。
二、管网系统水力计算与仿真分析的关键技术管网系统的水力计算与仿真分析涉及到多个关键技术,这些技术是确保计算准确性和仿真效果的关键。
2.1 水力模型的建立水力模型是仿真分析的基础,需要根据管网系统的实际情况建立相应的数学模型。
模型的建立包括确定管网的拓扑结构、节点特性和管道参数等。
2.2 计算流体动力学(CFD)的应用计算流体动力学是一种数值模拟技术,用于模拟流体在管网中的流动。
CFD可以提供详细的水流速度、压力和温度分布等信息,对于分析复杂管网系统的水力特性至关重要。
2.3 管网系统的动态模拟管网系统是一个动态变化的系统,需要考虑时间因素对水流的影响。
动态模拟可以预测管网系统在不同工况下的响应,为系统的实时控制和调度提供支持。
2.4 优化算法的应用在管网系统设计和运行中,优化算法可以帮助找到最优的设计方案或运行策略,以达到提高效率、降低成本和满足环境要求等目标。
三、管网系统水力计算与仿真分析的实施途径实施管网系统的水力计算与仿真分析需要遵循一定的步骤和方法,以确保分析的准确性和有效性。
3.1 数据收集与处理在进行水力计算和仿真分析之前,需要收集管网系统的详细数据,包括管道尺寸、材质、坡度、节点类型等。
给排水管网水力计算方法

FL (q10 , q20 , q30 ,, qP0 ) hL
将闭合差项移到方程组的左边,得到关 于流量误差(校正流量)的线性方程组:
F1 q1
q1
F1 q2
q2
F1 qP
水塔 600
水泵
0 300 1
2 450 4
3
650
8
5
6
7
205
1.总用水量 设计最高日生活用水量:
50000×0.15=7500m3/d=86.81L/s 工业用水量:
400÷16=25m3/h=6.94L/s 总水量为:
ΣQ=86.81+6.94=93.75L/s 2.管线总长度:ΣL=2425m,其中水塔 到节点0的管段两侧无用户不计入。 3.比流量:
(m) (m) (m) (m) 力坡度
1~3 26.70 21.00
5.70
400 0.01425
4~7 24.95 21.00
3.95
625 0.00632
管段 流量(L/s) 管径(mm) 水力坡度 水头损失(m)
1~2 11.64 150(100) 0.00617 1.85(16.8)
2~3 4.48
FL (q1, q2 , q3,, qP ) 0
初步分配的流量一般不满足能量方程:
F1(q10 , q20 , q30 ,, qP0 ) 0 F2 (q10 , q20 , q30 ,, qP0 ) 0
FL (q10 , q20 , q30 ,, qP0 ) 0
初步分配流量与实际流量的的差额为 Δq,实际流量应满足能量方程:
管网水力计算(精)

例题:某城市供水区总用水量93.75L/s.节点4接某工 厂,工业用水量为6.94L/s 。节点0-8都是两边供水。 求比流量
水塔
3 2
水泵
600 0 300 1 450 4
650
8
5
6
7
1.管线总长度:ΣL=2425m,其中水塔到
205
节点0的管段两侧无用户不计入。
2.比流量:
(93.75-6.94)÷2425=0.0358L/s
4.5.2 管网图形及简化
1.管网设计图中的元素 (1)节点:有集中流量进出、管道合并或分叉以 及边界条件发生变化的地点 (2)管段:两个相邻节点之间的管道管线:顺序 相连的若干管段 (3)环:起点与终点重合的管线 ①基环:不包含其它环的环 ②大环:包含两个或两个以上基环的环
③虚环:多水源的管网,为了计算方便,有时将两 个或多个水压已定的水源节点(泵站、水塔等) 用虚线和虚节点0连接起来,也形成环,因实际上 并不存在,所以叫做虚环。
管段编号
1-2 2-3 3-4 1-5 3-5 4-6 5-6 6-7
合计
管段计算总长度 (m)
800 0.5×600=300
0.5×600=300 0.5×600=300
800 800 600 500
4400
比流量 (L/s.m) 0.03182
沿线流量 (L/s)
25.45 9.55 9.55 9.55 25.45 25.45 19.09 15.91
(1)消防时:假设在泵房供水区、水塔供水区各又 一着火点,每个消防用水额定(20L/S)
泵房节点流量为 237.5+20=257.5 水塔节点流量为54.2+20=74.2
管网水力计算

1 Q j Q j y qi 2 q j j点大用户用水量( l / s)
例:
57
1
沿线流量60(L/S)
2
24
3
4
13
24
5
9
9
6
30
7
11
10
8
5
8
9
试计算各点的节点流量. 5点的节点流量:1/2(24+13+9+10)=28(L/S)
【例题】某城市最高时总用水量为260L/s,其中
2.配水干管比流量
qcb Qh qi
l
260 120 4400 0.03182 l / s m
3.沿线流量:
qy qcb li
(l / s)
各 管 段 沿 线 流 量 计 算
管段编号 1-2 2-3 3-4 1-5 3-5 4-6 5-6 6-7
合 计
管段计算总长度 ( m) 800 0.5×600=300 0.5×600=300 0.5×600=300 800 800 600 500
(1)管网图形简化可分为分解、合并、省略 ①分解:只由一条管线连接的两管网,都可以把连 接管线断开,分解成为两个独立的管网。由两条 管线连接的分支管网,如它位于管网的末端且连 接管线的流向和流量可以确定,也可进行分解, 管网经分解后即可分别计算。 ②合并:管径较小、相互平行且靠近的管线可考虑 合并。 ③省略:管线省略时,首先是略去水力条件影响较 小的管线,也就是省略管网中管径相对较小的管 线,管线省略后的计算结果是偏于安全的。
4.5 管段流量、管径和水头损失
内 容:求出所有管道的直径、水头损 失、水泵扬程和水塔高度。并对事故时、消 防时、最大转输时的水泵扬程进行较核。
给水管网的水力计算

根据公式(gōngshì)(2-7)先求出平均出流概率U0,查表找 出对应的αc值代入公式(gōngshì)(2-6)求出同时出流概率U,再 代入公式(gōngshì)(2-5)就可求得该管段的设计秒流量qg,重复 上述步骤可求出所有管段的
第十三页,共30页。
回到本章目录 回到总目录
2.4 给水管网的水力计算 2.4.3 水表和特殊附件的局部(júbù)水头损失
水表口径 当用水较均匀时水表口径应以安装水表管段(ɡuǎn
duàn)的设计秒流量不大于水表的常用流量来确定,因为常用 流量是水表允许在相当长的时间内通过的流量。
当用水不均匀,且连续高峰负荷每昼夜不超过2~3h时, 螺翼式水表可按设计秒流量不大于水表的过载(guòzài)流量 确定水表口径,因为过载(guòzài)流量是水表允许在短时间 内通过的流量。
回到本章目录 回到总目录
2.4 给水管网的水力(shuǐlì)计算
2.4.4 求定给水系统(xìtǒng)所需压力
确定给水计算 管路水头损失、 水表和特殊附 件的水头损失 之后,
即可根据公式 (2-1)求得 建筑内部给水 系统所需压力。
公式(gōngshì)(2-1):
第十九页,共30页。
回到本章目录 回到总目录
表2-
14
第十一页,共30页。
回到本章目录 回到总目录
2.4 给水管网的水力计算(jì suàn) 2.4.2 给水管网和水表水头损失的计算(jì suàn)
三通分水与分水器分水的局部(júbù)水头损失估算值 表 2-15
* 此表只适用于配水管,不适(bùshì)用于给水干管.
给水管网水力计算-给水管网水力计算

点击查看
1.7 给水管网的水力计算
1.7.3 水表和特殊附件的局部水头 损失
(一) 水表的分类及比较 1. 水表的分类 (1)按计量元件运动原理分类:
a. 容积式水表 b.速度式水表
速 度 旋翼式 式 水 螺翼式 表
单流束 多流束 水平螺翼式 垂直螺翼式
阀门和螺纹管件的摩阻损失的 当量长度表点击查看
1.7 给水管网的水力计算
1.7.2 给水管网和水表水头损失的计算
按管网沿程水头损失的百分数取值法 不同材质管道、三通分水与分水器分水管内径大小的局
部水头损失占沿程水头损失百分数的经验取值,分别见不同 材质管道的局部水头损失估算值表和三通分水与分水器分水 的局部水头损失估算值表。
qg 0.2 U Ng
[解]
配水最不利点为低水箱坐便器,故计算管路为0、1、 2、……9。该建筑为普通住宅Ⅱ类,
选用公式 qg 0.2 U 计 N算g 各管段设计秒流量。
由住宅最高日生活用水定额及小时变化表查:
用 按
水
定
额
q0=
2
0
0
L/
(
人
·d
)
,小时变
化
系
数
K
h=
2.
5
,
每
户
3.5人计。
1.7 给水管网的水力计算
1.7.4 求给水系统所需压力
确定
给水计算管路水头损之失后 水表和特殊附件的水头损失
根据公式
H H1 H2 H3 H4 H5 求得建筑内部给水系统所需压力 H
1.7 给水管网的水力计算
首 先1根. 据7 .建5 筑 平水面力图 和计初算定的的 给方水法方步式 ,骤绘 给 水 管 道 平
管网水力计算

n
s s
s1 sd 2
2 s 1 p d
0.96s1 sd s s p sd
2010/4/14
16
6.5 应用计算机解管网问题
2010/4/14
10
正常工作时:
Q
正常工作时水头损失为:
3 2 Q h 2 1 sQ 4 2
2
事故时:
Q
损坏段
2010/4/14
11
一段损坏时水头损失为: 2 2 Q Q h s 2 s 2 2 1
s 2 3 2 s Q sQ 2 2
Qa
Hb H0 1 s s p sd ( s1 sd ) n
事故和正常时的流量比例:
Qa Q
s s p sd 1 s s p sd ( s1 sd ) n
按事故用水量为设计用水量的70%,即α=0.7的要求, 所需分段数等于:
2010/4/14 15
2010/4/14
6
73.20 73 1 74.50 4
73.20 2 75.30 5
75.80
76.10 3 76.70 6
72
77.30 8 9 77 76
7
74 75
管网等压水线
2010/4/14 7
1
Ⅰ
2
Ⅱ
3
Ⅲ
4
hI
5
Ⅳ
hII
6 7
hIII
Ⅵ 8
hIV
9 10
hV
Ⅴ
hVI
11
2010/4/14
3
6.2.2 节点方程组解法 节点方程是用节点水压H(或管段水头损失)表示管段 流量q的管网计算方法。在计算之前,先拟定各节点的水压、 此时已经满足能量方程∑hij=0的条件。管网平差时,是使 连接在节点i的各管段流量满足连续性方程,即J-1个
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
节点方程组解法
根据泵站和控制点的水压标高,假定各节点的初始水压,此时所假定的 水压应能满足能量方程∑hij=0,所假定的水压越符合实际情况,则计算 时收敛越快;
❖ 由hij=Hi-Hj和qij=(hij/sij)1/2的关系式求得管段流量; ❖ 假定流向节点管段的流量和水头损失为负,离开节点的流量和水头损失
的相邻基环连成大环。对于环数较多的管网可能会有几 个大环,平差时只须计算在大环上的各管段。 ❖ 对大环进行平差,通过平差后,和大环异号的各邻环, 闭合差会同时相应减小。
大环选择的注意事项
❖ 决不能将闭合差方向不同的几个基环连成大环,否则计 算过程中会出现这种情况,即和大环闭合差相反的基环 其闭合差反而增大,致使计算不能收敛。
多水源管网计算
应用虚环的概念,可将多水源管网转化成为单水 源管网。 ❖ 所谓虚环是将各水源与虚节点,用虚线连接成环。 ❖ 然后运用前面所学过的解环方程组得算法进行求 解。
多水源管网计算
管网计算结果应满足下列条件:
❖ 进出每一节点的流量(包括虚流量)总和等于零, 即满足连续性方程qi+∑qij=0 ;
❖ 核算时节点流量须按最大转输时的用水量求出。最大转输 时节点流量=最大转输时用水量×最高用水时该节点的流 量/最高时用水量
❖ 按初分流量查表7—1得各管段管径。
❖ 根据各管段初分流量和查得的管径,再根据管材
查给排水设计手册1得1000i,从而得各管段水头
损失。 ❖ 计算各环闭合差。
qi 2
h i s ij q ij
❖ 计算各环校正流量。
❖ 由校正后的流量,重复上述计算,直到小环闭合 差小于0.5,大环闭合差小于1.0。
最大闭合差的环校正法和哈代—克罗斯法 的 不同 最大闭合差的环校正法和哈代—克罗斯法 不同的是,平差时只对闭合差最大的一个 环或若干环进行计算,而不是全部环。
最大闭合差的环校正法
最大闭合差的环校正法步骤
❖ 首先按初步分配流量求得各环的闭合差大小和方向; ❖ 然后选择闭合差大的一个环或将闭合差较大且方向相同
0
ij
1),
经
过
二次迭代后,流量可采用以前二次解的q
平均值。
ij
具体解法如下:
第
一
次迭代:全部初始流量q
0
ij
1,则rij0
s
ijq
0
ij
sij , 则h
rij 0 q ij
sijqij ,由J
1个线性
连续性方程,L个线性能量方程得出
第一次迭代结
果q
1;
ij
第二次迭代:rij1
sij
1
1
ij
2
管网的核算条件
消防时的流量和水压要求
❖ 按最高用水时另行增加消防时的流量(见附 表3)进行流量分配,求出消防时的管段流 量和水头损失。计算时只是在控制点另外 增加一个集中的消防流量(除控制点外, 其余各节点流量不变,重新进行流量分 配)。
管网的核算条件
最大转输时的流量和水压要求
❖ 设对置水塔的管网,在最高用水时,由泵站和水塔同时向 管网供水,但在一天内供水量大于用水量的一段时间里, 多余的水经过管网送入水塔内贮存,因此这种管网还应按 最大转输时流量来核算。
❖ 每环(包括虚环)各管段的水头损失代数和为零, 即满足能量方程∑sijqijn=0 ;
❖ 各水源供水至分界线处的水压应相同(Hp-∑hp = Ht-∑ht ),就是说从各水源到分界线上控制 点的沿线水头损失之差( ∑hp-∑ht )应等于水 源的水压差( Hp-Ht ), ∑hp-∑ht = Hp-Ht
管段方程组解法
h
sij
qij0
q n1 ij
rijqij
式中sij — —水管摩阻;qij0 — —管段的初步假设流量;rij — —系数。
L个非线性能量方程
s
ij
q
n ij
0
s
ij
q
n ij
0
s
ij
q
n ij
L
0
L个线性能量方程
rijq ij 0 rijq ij 0
rijq ij L 0
J 1个线性连续性方程 L个线性能量方程 P个线性方程,
可用线性代数法求解,解得P个管段流量。
管段方程组解法
线性理论法不需要初步假设流量,第一次迭代时可设sij rij,就是说全部
初始流量qij0可等于1(因n
2时,rij
sijqij0,若第一次迭代时rij
s
ij,则q
, 则h
rij1qij ,由J
1个线性连续性方程,L个线性能量方程,
得出第二次迭代结果q
2
ij
;
第三次迭代:rij2
sij
q ij1
q
2
ij
2
, 则h
rij2qij ,由J
1个线性连续性方程,L个线性能量方程,
得出第三次迭代结果q
3;
ij
如
此
反复计算,直到q
n
ij
q
n-1
ij
允许误差为止。
最大闭合差的环校正法
树状网计算
树状网计算步骤
❖ 计算各管段流量,任一管段的流量等于该管段以后(顺 水流方向)所有节点流量的总和。
❖ 任一管段的流量决定后,试选管径D,最终满足该管径下 流速满足表5—1,选定公式,并求得水头损失hij。
❖ 计算干线的总水头损失、二级泵站所需扬程或水塔所需 的高度。
❖ 支线计算,干线上各节点包括接出支线处节点的水压标 高已知,因此在计算树状网的支线时,起点的水压标高 已知,而支线终点的水压标高等于终点的地面标高与最 小服务水头之和。从支线起点和终点的水压标高差即为 支线的允许水头损失。按干线的计算方法,确定管径和 支线水头损失,最终所得水头损失要小于支线的允许水 头损失。
环方程组解法
❖ 解环方程的环状网计算过程,就是在按初步分配 流量确定的管径基础上,重新分配各管段的流量, 反复计算,直到同时满足连续性方程组和能量方 程组时为止,这一计算过程称为管网平差。
❖ 平差就是求解J—1个线性连续性方程组,和L个 非线性能量方程组。以得出P个管段的流量。
环方程组解法
❖ 初步分配流量。
为正,验算每一节点的管段流量是否满足连续性方程,即进出该节点的
流量代数和(qi+∑qij)是否等于零。如不等于零,则得出该节点流量闭 合差为△q=qi+∑qij,然后按下式求出校正水压△Hi值;
Hi
2qi 1
2 qi qij 1
sij hij
sij hij
• 除了水压已定的节点外,按△Hi校正每一节点的水压,根据新的水压, 重复上列步骤计算,直到所有节点的进出流量代数和即节点流量闭合差 △q=qi+∑qij达到预定的精确度为止。