马氏链模型416
马氏链模型——精选推荐

1 马氏链模型正则链 从任意的状态出发经过有限次的转移都能达到另外的任意状态,定义如下: 一个有K 个状态的马氏链如果存在正整数N ,使从任意状态i 经过N 次转移都以大于零的概率到达状态j (i ,j=1,2,...k )则称为正则链。
定理1 若马氏链的转移矩阵为P ,则它是正则链的充要条件是:存在正整数N 使p N >0(指p N 的每个元素大于零)定理 2 正则链存在唯一的极限状态概率w=()12k ωωω ,,,使得当n →∞时状态概率()a n w →,w 与初始状态概率无关,w 又称稳定概率,满足11k i i wP ww ===∑从状态i 出发经过n 次转移,第一次到状态j 的概率称为i 到j 的首次概率,记作()ij f n 于是()1i j i j n n f n μ∞==∑为状态i 第一次到达状态j 的平均转移次数,特别地,ij μ是状态i 首次返回的平均转移次数。
ij μ与稳定概率ω有密切地关系,即定理3 对于正则链ij =1/μω吸收链 1ii p =,于是系统一旦进入状态i 就不再离开它,可以把它看作“吸收”其它状态的一个状态,并且从其它的状态可以经过有限次的转移到达状态i 定义如下: 定义2 转移概率1ii p =的状态i 称为吸收状态。
如果马氏链至少包含一个吸收状态,并且从每个非吸收状态出发,能以正的概率经有限次的转移到达某个吸收状态,那么这个马氏链称为吸收链。
吸收链的转移矩阵可以写成简单的标准形式,若有r 个 吸收状态,k-r 个非吸收状态,则转移矩阵P 可表示为r r I O P R Q ⨯⎡⎤=⎢⎥⎣⎦其中k-r 阶子方阵Q 的特征值λ满足1λ<这要求子阵()k r r R -⨯中必含有非零元素,已满足从任意一非吸收状态出发经有限次转移可到达某个吸收状态的条件。
这样Q 就不是随机矩阵, 它至少存在一个小于1的行和,且如下定理成立定理4 对吸收链P 的标准形式,(I-Q )可逆,()10s s M I Q Q ∞-==-=∑记元素全为1的列向量()1,1,,1Te = 则y=Me的第i 个分量是从第i 个非吸收状态出发,被某个吸收状态吸收的平均转移次数。
马氏链方程 markov

马尔可夫链(Markov Chain)是一种数学模型,用来描述一系列事件,其中每个事件的发生只与前一个事件有关,而与之前的事件无关。
这种特性被称为“无后效性”或“马尔可夫性质”。
马尔可夫链常用于统计学、经济学、计算机科学和物理学等领域。
在统计学中,马尔可夫链被用来建模时间序列,如股票价格或天气模式。
在经济学中,马尔可夫链被用于预测经济趋势。
在计算机科学中,马尔可夫链被用于自然语言处理、图像处理和机器学习等领域。
在物理学中,马尔可夫链被用于描述粒子系统的行为。
马尔可夫链的数学表示通常是一个转移概率矩阵,该矩阵描述了从一个状态转移到另一个状态的概率。
对于给定的状态,转移概率矩阵提供了到达所有可能后续状态的概率分布。
马尔可夫链的一个关键特性是它是“齐次的”,这意味着转移概率不随时间变化。
也就是说,无论链在何时处于特定状态,从该状态转移到任何其他状态的概率都是相同的。
马尔可夫链的方程通常表示为:P(X(t+1) = j | X(t) = i) = p_ij其中,X(t)表示在时间t的链的状态,p_ij表示从状态i转移到状态j的概率。
这个方程描述了马尔可夫链的核心特性,即未来的状态只与当前状态有关,而与过去状态无关。
马尔可夫链的一个重要应用是在蒙特卡罗方法中,特别是在马尔可夫链蒙特卡罗(MCMC)方法中。
MCMC 方法通过构造一个满足特定条件的马尔可夫链来生成样本,从而估计难以直接计算的统计量。
这些样本可以用于估计函数的期望值、计算积分或进行模型选择等任务。
总之,马尔可夫链是一种强大的工具,用于建模和预测一系列相互关联的事件。
通过转移概率矩阵和马尔可夫链方程,可以描述和分析这些事件的行为和趋势。
马氏链预测模型

马氏链预测模型:
马氏链分为正则链和吸收链
正则链即任意状态都可通过正概率到达其他状态,吸收链为存在一个状态,当到达此状态时,就不能再向其他状态转移,其他任意状态都可经过一个正概率向此状态转移,且经过足够长时间后,所有状态都将变为这个状态。
基本模型:
状态⎪⎪⎩⎪⎪⎨⎧=4
3
21n X ,分别表示四种水质,状态概率)()(i X P n a n i ==,
状态转移概率..2,1,0;,...,2,1,)),(|)((1=====+n k j i i X j X P P n n ij
经n 次转以后状态概率:
k i P n a n a k j ij j i ...,2,1,*)()1(1
==+∑=
当经过足够长时间达到稳态时,对于正则链,假设w 为稳态概率,则满足:
w P w =*
利用MATLAB 程序实现:
function Markov_Chain=f1(P,n,A0)
%P 为转移概率矩阵,n 为递推时间,A0为初始状态列向量
b=size(A0,1);%确定初始状态矩阵A0行数
A=zeros(b,n);
A(:,1)=A0;
p=P';%按照递推公式,需将转移概率矩阵P 转置
j=1;
while j<=n
A(:,j+1)= p*A(:,j)%第j 列代表递推j 次后的状态向量
j=j+1;
end
A_n=A(:,n) %得到递推n 次后的状态向量
根据数据可分别求出四个地区四种水质的转移概率:
P1=。
马氏链简介

设 w (w1, w2 )
1 a a
w wP (w1, w2 )
b
1 b
((1 a)w1 bw2, aw1 (1 b)w2 )
ww12
(1 aw1
a)w1 bw2 (1 b)w2
w1 w2 1
得 w ( b , a ) w (1, 1)
使得当 n 时状态概率 an w,w 与初始状态 概率 a0 无关。 w 又称为稳态概率。
由 an 1 anP k wP w, wi 1 i 1
由 an a0P n
lim Pn 存在,记作 P
n
P 的每一行都是稳态概率 w
如果记 P { pij } 那么,有 pij wi
pij P X n1 j | X n i
pij 称为状态转移概率。状态及转移情况见图。
0.5
0.5
1
2 0.6
0.4
3 建模
a1n 1 a1np11 a2 np21 a2 n 1 a1np12 a2 np22
a1
n
1,
a2
n
每次传播消息的失真率为 p, 0 p 1,
即 ai 将消息传给 ai1, 时,传错的概率为 p
这样经过长时间传播第n个人得知消息时,消息 的真实程度如何?
第n个人知道消息可能是真,也可能是假, 有两种状态,记为
Xn 1 Xn 2
表示消息假; 表示消息真;
n 0,1,2
用ai n表示第 n 个人处于状态 i 的概率, i 1,2,
用随机变量 X n 表示第 n 个月的经营状况
Xn 1 Xn 2
表示销路好; 表示销路坏;
《马氏链模型》课件

马氏链模型的求解
1
平稳分布
马氏链模型的平稳分布是指随着时间的推移,状态转移概率趋于稳定的情况。
2
极限行为
马氏链模型在假设条件下,其极限行为会收敛到一个稳定的状态。
马氏链模型的改进
1
非齐次马氏链模型
非齐次马氏链模型考虑了不同时间段的状态转移概率的变化。
2
马尔可夫决策过程
马尔可夫决策过程是马氏链模型的扩展,同时考虑了状态转移和决策的影响。
总结
马氏链模型的优点
马氏链模型能够描述状态转移的概率,并用于解决 实际问题。
马氏链模型的应用前景
马氏链模型在各个领域具有广泛的应用前景,可以 帮助解决实际问题。
《马氏链模型》PPT课件
马氏链模型是概率论中的重要工具,它描述了一个系统按照一定的概率从一 个状态转移到另一个状态的过程。
什么是马氏链模型?
马氏链模型是描述系统状态转移的数学模型,它具有马氏性质,即下一个状 态只依赖于当前状态,与之前的状态无关。
马氏链模型的特点
状态转移概率
马氏链模型中的每一个状态都有一定的概率转移到其他的状态。
马链的齐次性
马氏链模型的转移概率在时间上保持不变,不受时间影响。
时间齐次性
时间齐次性指的是马氏链模型的转移概率与时间的长度无关,只与当前状态有关。
马氏链模型的应用
随机游走问题
随机游走问题是马氏链模型的一 个重要应用领域,它可以描述在 随机环境下的随机漫步过程。
网站访问模型
马氏链模型可以用于描述网站访 问行为,帮助优化页面设计和内 容推荐。
马氏链模型

完全 优势 基因 遗传
完全优势基因遗传
3种基因类型:dd~优种D, dr~混种H, rr~劣种R 父母基因类型决定后代各种基因类型的概率
父母基因类型组合 后代各种 基因类型 的概率 R 0 1 0 0 1/4 1/2 D H DD 1 0 RR 0 0 DH 1/2 1/2 DR 0 1 HH 1/4 1/2 HR 0 1/2
该稳定值与初始状态无关。
a1 ( n + 1) p11 a ( n + 1) = p 1 2 12 p21 a1 ( n) p11 a ( n) = p p22 2 12
p21 a1 (0) p22 a2 (0)
n
马氏链模型理论
马氏链的基本方程
随机繁殖
假设
讨论基因类型的演变情况
设群体中雄性、雌性的比例相等,基因类 型的分布相同(记作D:H:R) 每一雄性个体以D:H:R的概率与一雌性个体交配, 其后代随机地继承它们的各一个基因 设初始一代基因类型比例D:H:R =a:2b:c (a+2b+c=1), 记p=a+b, q=b+c, 则群体中优势基因和 劣势基因比例 d:r=p:q (p+q=1)。
父母基因类型组合 后代各种 基因类型 的概率 R 0 1 0 0 1/4 1/2 D H DD 1 0 RR 0 0 DH 1/2 1/2 DR 0 1 HH 1/4 1/2 HR 0 1/2
当父母均为DD时,子女为DD的概率为1,其他为零 当父母均为RR时,子女为RR的概率为1,其他为零
父母基因类型组合 后代各种 基因类型 的概率 R D H
5 2 2 5 y = Me = ( 4 , 6 , 5 , 4 ) 6 3 3 6
第六章 马氏链模型

px (t) exp(t)(1 exp(t)x1), x 1, 2,
马氏链模型
描述一类重要的随机动态系统(过程)的模型
• 系统在每个时期所处的状态是随机的 • 从一时期到下时期的状态按一定概率转移 • 下时期状态只取决于本时期状态和转移概率
p11=0.8, p12=0.18, p13=0.02
0.65
1
2
p21=0.65, p22=0.25, p23=0.1
0.02 3 0.1
p31=0, p32=0, p33=1
1
a1(n 1) a1(n) p11 a2 (n) p21 a3 (n) p31 a2 (n 1) a1(n) p12 a2 (n) p22 a3 (n) p32 a3 (n 1) a1(n) p13 a2 (n) p23 a3 (n) p33
k
a i
(n)
1
i 1
转移概率pij P( X n1 j X n i)
pij
0,
k
pij
1,
i
1,2,, k
j 1
基本方程
k
ai (n 1) a j (n) p ji ,
i 1,2,, k
j 1
a(n) (a1(n), a2 (n),, ak (n)) a(n 1) a(n)P
若某人投保时健康, 问10年后他仍处于健康状态的概率
状态与状态转移
状态X n
1, 2,
第n年健康 第n年疾病
状态概率ai (n) P(X n i), i 1,2, n 0,1,
(完整版)马氏链模型及matlab程序

一、用法,用来干什么,什么时候用 二、步骤,前因后果,算法的步骤,公式 三、程序 四、举例五、前面国赛用到此算法的备注一下马氏链模型用来干什么马尔可夫预测法是应用概率论中马尔可夫链(Markov chain )的理论和方法来研究分析时间序列的变化规律,并由此预测其未来变化趋势的一种预测技术。
什么时候用应用马尔可夫链的计算方法进行马尔可夫分析, 主要目的是根据某些变量现在的情 况及其变动趋向,来预测它在未来某特定区间可能产生的变动,作为提供某种决策的依 据。
马尔可夫链的基本原理我们知道,要描述某种特定时期的随机现象如某种药品在未来某时期的销售情况,比如说第n 季度是畅销还是滞销,用一个随机变量X n 便可以了,但要描述未来所有时期的情况,则需要一系列的随机变量 X 1,X 2,…,X n ,….称{ X t ,t ∈T ,T 是参数集}为随机过程,{ X t }的取值集合称为状态空间.若随机过程{ X n }的参数为非负整数, X n 为离散随机变量,且{ X n }具有无后效性(或称马尔可夫性),则称这一随机过程为马尔可夫链(简称马氏链).所谓无后效性,直观地说,就是如果把{ X n }的参数n 看作时间的话,那么它在将来取什么值只与它现在的取值有关,而与过去取什么值无关.对具有N 个状态的马氏链,描述它的概率性质,最重要的是它在n 时刻处于状态i 下一时刻转移到状态j 的一步转移概率:N j i n p i X j X P j i n n ,,2,1,)()|(1若假定上式与n 无关,即 )()1()0(n p p p j i j i j i ,则可记为j i p (此时,称过程是平稳的),并记N N N N N N p p p p p p p p p P212222111211(1) 称为转移概率矩阵.转移概率矩阵具有下述性质:(1)N j i p j i ,,2,1,,0 .即每个元素非负.(2)N i p Nj j i ,,2,1,11.即矩阵每行的元素和等于1.如果我们考虑状态多次转移的情况,则有过程在n 时刻处于状态i ,n +k 时刻转移到状态j 的k 步转移概率:N j i n p i X j X P k j i n k n ,,2,1,)()|()(同样由平稳性,上式概率与n 无关,可写成)(k j i p .记)()(2)(1)(2)(22)(21)(1)(12)(11)(k N N k N k N k N k k k N k k k p p p p p p p p p P(2)称为k 步转移概率矩阵.其中)(k j i p 具有性质:N j i p k ji ,,2,1,,0)( ; N i p Nj k j i ,,2,1,11)( .一般地有,若P 为一步转移矩阵,则k 步转移矩阵)()(2)(1)(2)(22)(21)(1)(12)(11)(k N N k N k N k N k k k N k k k p p p p p p p p p P(3) (2)状态转移概率的估算在马尔可夫预测方法中,系统状态的转移概率的估算非常重要.估算的方法通常有两种:一是主观概率法,它是根据人们长期积累的经验以及对预测事件的了解,对事件发生的可能性大小的一种主观估计,这种方法一般是在缺乏历史统计资料或资料不全的情况下使用.二是统计估算法,现通过实例介绍如下.例3 记录了某抗病毒药的6年24个季度的销售情况,得到表1.试求其销售状态的转移概率矩阵.表1 某抗病毒药24个季度的销售情况季度销售状态季度销售状态季度销售状态季度销售状态1 1 (畅销) 7 1(畅销) 13 1(畅销) 19 2(滞销)2 1(畅销) 8 1(畅销) 14 1(畅销) 20 1(畅销)3 2(滞销) 9 1(畅销) 15 2(滞销) 21 2(滞销)4 1(畅销) 10 2(滞销) 16 2(滞销) 22 1(畅销)5 2(滞销) 11 1(畅销) 17 1(畅销) 23 1(畅销) 62(滞销)122(滞销)181(畅销)241(畅销)分析表中的数据,其中有15个季度畅销,9个季度滞销,连续出现畅销和由畅销转入滞销以及由滞销转入畅销的次数均为7,连续滞销的次数为2.由此,可得到下面的市场状态转移情况表(表2).表2 市场状态转移情况表现计算转移概率.以频率代替概率,可得连续畅销的概率:1170.5151p连续出现畅销的次数出现畅销的次数分母中的数为15减1是因为第24季度是畅销,无后续记录,需减1.同样得由畅销转入滞销的概率:1270.5151p畅销转入滞销的次数出现畅销的次数滞销转入畅销的概率:2170.789p滞销转入畅销的次数出现滞销的次数连续滞销的概率:2220.229p连续滞销的次数出现滞销的次数综上,得销售状态转移概率矩阵为:22.078.05.05.022211211p pp p P 从上面的计算过程知,所求转移概率矩阵P 的元素其实可以直接通过表2中的数字计算而得到,即将表中数分别除以该数所在行的数字和便可:77711p 77712p 27721p 77222p Matlab 程序:format rat clca=[ 1 1 2 1 2 2 1 1 1 2 1 2,1 1 2 2 1 1 2 1 2 1 1 1]; for i=1:2 for j=1:2f(i,j)=length(findstr([i j],a)); end end fni=(sum(f'))' for i=1:2p(i,:)=f(i,:)/ni(i); end p由此,推广到一般情况,我们得到估计转移概率的方法:假定系统有m 种状态S 1,S 2,…,S m ,根据系统的状态转移的历史记录,得到表3的统计表格,以j i pˆ表示系统从状态i 转移到状态j 的转移概率估计值,则由表3的数据计算估计值的公式如下:表3 系统状态转移情况表(3)带利润的马氏链在马氏链模型中,随着时间的推移,系统的状态可能发生转移,这种转移常常会引起某种经济指标的变化.如抗病毒药的销售状态有畅销和滞销两种,在时间变化过程中,有时呈连续畅销或连续滞销,有时由畅销转为滞销或由滞销转为畅销,每次转移不是盈利就是亏本.假定连续畅销时盈r 11元,连续滞销时亏本r 22元,由畅销转为滞销盈利r 12元,由滞销转为畅销盈利r 21元,这种随着系统的状态转移,赋予一定利润的马氏链,称为有利润的马氏链.对于一般的具有转移矩阵N N N N N N p p p p p p p p p P212222111211的马氏链,当系统由i 转移到j 时,赋予利润r ij (i ,j =1,2,…,N ),则称N N N N N N r r r r r r r r r R212222111211 (5) 为系统的利润矩阵,r ij >0称为盈利,r ij <0称为亏本,r ij = 0称为不亏不盈.随着时间的变化,系统的状态不断地转移,从而可得到一系列利润,由于状态的转移是随机的,因而一系列的利润是随机变量,其概率关系由马氏链的转移概率决定.例如从抗病毒药的销售状态的转移矩阵,得到一步利润随机变量)1(1x 、)1(2x 的概率分布分别为:其中 p 11+ p 12 = 1 ,p 21+ p 22 = 1.如果药品处于畅销阶段,即销售状态为i =1,我们想知道,经过n 个季度以后,期望获得的利润是多少?为此,引入一些计算公式.首先,定义)(n i v 为抗病毒药现在处于)2,1( i i ,经过n 步转移之后的总期望利润,则一步转移的期望利润为:212211)1()1()(j j i j i i i i i i i p r p r p r x E v其中)()1(i x E 是随机变量)1(i x 的数学期望.二步转移的期望利润为:21)1(2)1(221)1(11)2()2(][][][)(j j i j j i i i i i i i p v r p v r p v r x E v其中随机变量)2(ix (称为二步利润随机变量)的分布为:2,1,)()1()2( j p v r x P j i j j i i例如,若6.04.05.05.0P ,7339R则抗病毒药销售的一步利润随机变量:抗病毒药畅销和滞销时的一步转移的期望利润分别为:65.035.09)(12121111)1(1)1(1 p r p r x E v 36.074.03)(22222121)1(2)1(2 p r p r x E v二步利润随机变量为:抗病毒药畅销和滞销时的二步转移的期望利润分别为:12)1(21211)1(111)2(1)2(1][][)(p v r p v r x E v5.75.0)33(5.0)69(22)1(22221)1(121)2(2)2(2][][)(p v r p v r x E v4.26.0)37(4.0)63(一般地定义k 步转移利润随机变量),2,1()(N i x k i的分布为:N j p v r x P ji k j j i k i ,2,1)()1()(则系统处于状态i 经过k 步转移后所得的期望利润)(k iv 的递推计算式为:j i k j Nj j i k i k i p v r x E v )()()1(1)()(Nj j i k j i Nj j i k j Nj j i j i p v v p v p r 1)1()1(1)1(1(6)当k =1时,规定边界条件0)0( iv .称一步转移的期望利润为即时的期望利润,并记N i q v i i ,2,1,)1( .可能的应用题型题型一、市场占有率预测例题1在购买该药的总共1000家对象(购买力相当的医院、药店等)中,买A 、B 、C 三药厂的各有400家、300家、300家,预测A 、B 、C 三个厂家生产的某种抗病毒药在未来的市场占有情况。