马尔科夫链模型简介
马尔可夫链模型简介

马尔可夫链模型简介设考察对象为一系统,若该系统在某一时刻可能出现的事件集合为,}{N N E E E E E E ⋅⋅⋅⋅⋅⋅,2,1,2,1,两两互斥,则陈i E 为状态。
N i ⋅⋅⋅=,2,1。
称该系统从一种状态i E 变化到另一状态j E 的过程称为状态转移,并把整个系统不断实现状态转移的过程称为马尔可夫过程。
定义1 具有下列两个性质的马尔可夫过程称为马尔可夫链: (1)无后效性,即系统的第n 次实验结果出现的状态,只与第1-n 次有关,而与它以前所处的状态无关;(2)具有稳定性,该过程逐渐趋于稳定状态,而与初始状态无关。
定义2 向量),,,(21n u u u u ⋅⋅⋅= 成为概率向量,如果u 满足:⎪⎩⎪⎨⎧=⋅⋅⋅=≥∑=nj jj u nj u 11,,2,10 定义3 如果方阵P 的每行都为概率向量,则称此方阵为概率矩阵。
如果矩阵A 和B 皆为概率矩阵,则AB ,k A ,k B 也都是概率矩阵(k 为正整数)。
定义4 系统由状态i E 经过一次转移到状态j E 的概率记为ij P ,称矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=3212222111211N N N N N P P P P P P P P P P 为一次(或一步)转移矩阵。
转移矩阵必为概率矩阵,且具有以下两个性质: 1、P P P k k )1()(-=; 2、k k P P =)(其中)(k P 为k 次转移矩阵。
定义5 对概率矩阵P ,若幂次方)(m P 的所有元素皆为正数,则矩阵P 称为正规概率矩阵。
(此处2≥m )定理1 正规概率矩阵P 的幂次方序列P ,2P ,3P ,…趋近于某一方阵T ,T 的每一行均为同一概率向量t ,且满足t tP = 。
马尔可夫链模型如下:设系统在0=k 时所处的初始状态 ),,()0()0(2)0(1)0(N S S S S ⋅⋅⋅=为已知,经过k 次转移后的状态向量 ),,()()(2)(1)(k N k k k S S S S ⋅⋅⋅=),2,1(⋅⋅⋅=k ,则⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=NN N N N N k P P P P P P P P P S S 212222111211)0()( 此式即为马尔可夫链预测模型。
马尔可夫链模型讲解

马尔可夫链模型(Markov Chain Model)目录[隐藏]1 马尔可夫链模型概述2 马尔可夫链模型的性质3 离散状态空间中的马尔可夫链模型4 马尔可夫链模型的应用o 4.1 科学中的应用o 4.2 人力资源中的应用5 马尔可夫模型案例分析[1]o 5.1 马尔可夫模型的建立o 5.2 马尔可夫模型的应用6 参考文献[编辑]马尔可夫链模型概述马尔可夫链因安德烈·马尔可夫(Andrey Markov,1856-1922)得名,是数学中具有马尔可夫性质的离散时间随机过程。
该过程中,在给定当前知识或信息的情况下,过去(即当期以前的历史状态)对于预测将来(即当期以后的未来状态)是无关的。
时间和状态都是离散的马尔可夫过程称为马尔可夫链, 简记为。
马尔可夫链是随机变量的一个数列。
这些变量的范围,即他们所有可能取值的集合,被称为“状态空间”,而Xn的值则是在时间n的状态。
如果Xn + 1对于过去状态的条件概率分布仅是Xn的一个函数,则这里x为过程中的某个状态。
上面这个恒等式可以被看作是马尔可夫性质。
马尔可夫在1906年首先做出了这类过程。
而将此一般化到可数无限状态空间是由柯尔莫果洛夫在1936年给出的。
马尔可夫链与布朗运动以及遍历假说这两个二十世纪初期物理学重要课题是相联系的,但马尔可夫寻求的似乎不仅于数学动机,名义上是对于纵属事件大数法则的扩张。
马尔可夫链是满足下面两个假设的一种随机过程:1、t+l时刻系统状态的概率分布只与t时刻的状态有关,与t时刻以前的状态无关;2、从t时刻到t+l时刻的状态转移与t的值无关。
一个马尔可夫链模型可表示为=(S,P,Q),其中各元的含义如下:1)S是系统所有可能的状态所组成的非空的状态集,有时也称之为系统的状态空间,它可以是有限的、可列的集合或任意非空集。
本文中假定S是可数集(即有限或可列)。
用小写字母i,j(或S i,S j)等来表示状态。
2)是系统的状态转移概率矩阵,其中P ij表示系统在时刻t处于状态i,在下一时刻t+l处于状态i的概率,N是系统所有可能的状态的个数。
马尔可夫链▏小白都能看懂的马尔可夫链详解

马尔可夫链▏小白都能看懂的马尔可夫链详解1.什么是马尔可夫链在机器学习算法中,马尔可夫链(Markov chain)是个很重要的概念。
马尔可夫链(Markov chain),又称离散时间马尔可夫链(discrete-time Markov chain),因俄国数学家安德烈·马尔可夫(俄语:Андрей Андреевич Марков)得名,为状态空间中经过从一个状态到另一个状态的转换的随机过程。
该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关。
这种特定类型的“无记忆性”称作马尔可夫性质。
马尔科夫链作为实际过程的统计模型具有许多应用。
在马尔可夫链的每一步,系统根据概率分布,可以从一个状态变到另一个状态,也可以保持当前状态。
状态的改变叫做转移,与不同的状态改变相关的概率叫做转移概率。
随机漫步就是马尔可夫链的例子。
随机漫步中每一步的状态是在图形中的点,每一步可以移动到任何一个相邻的点,在这里移动到每一个点的概率都是相同的(无论之前漫步路径是如何的)。
2.一个经典的马尔科夫链实例用一句话来概括马尔科夫链的话,那就是某一时刻状态转移的概率只依赖于它的前一个状态。
举个简单的例子,假如每天的天气是一个状态的话,那个今天是不是晴天只依赖于昨天的天气,而和前天的天气没有任何关系。
这么说可能有些不严谨,但是这样做可以大大简化模型的复杂度,因此马尔科夫链在很多时间序列模型中得到广泛的应用,比如循环神经网络RNN,隐式马尔科夫模型HMM等。
假设状态序列为由马尔科夫链定义可知,时刻Xt+1 的状态只与Xt 有关,用数学公式来描述就是:既然某一时刻状态转移的概率只依赖前一个状态,那么只要求出系统中任意两个状态之间的转移概率,这个马尔科夫链的模型就定了。
看一个具体的例子。
这个马尔科夫链是表示股市模型的,共有三种状态:牛市(Bull market), 熊市(Bear market)和横盘(Stagnant market)。
马尔可夫链

P (x n 1 k | x 0 i )P (x n j | x n 1 k ) rij (n 1)Pkj
k 1 k 1 m
m
n 步转移概率矩阵: rij (n ) 看成一个二维矩阵第 i 行第 j 列的元素。 讨论 n 时: 例 1 中,每一个 rij (n ) 都收敛于一个极限值,不依赖于初始状态 i。
Wj Wk pkj
k 1 m
1 Wk
k 1
m
3、另外有
Wj 0 ,对于所有的非常返状态 j Wj 0 ,对于所有的常返状态 j
1 Wm ] [0 0 1] ,可用 MATLAB 解决。 pm1 pmm 1 1
P(x 0 i0 , x1 i1, , x n in ) P(x 0 i0 )Pi i Pi i Pi
01 12 n 1 n
i
图形上,一个状态序列能表示为在转移概率图中的一个转移弧线序列。在给定初始状态下, 该路径的概率等于每个弧线上转移概率的乘积。 n 步转移概率 定义: rij (n ) P (x n i | x 0 i ) 计算在当前状态条件下,未来某个时期状态的概率分布。 当前状态 i,n 个时间段后的状态将是 j 的计算公式:C-K 方程
1 0 0 0 0.3 0.4 0.3 0 0 0.3 0.4 0.3 0 0 1 0
转移概率图
例 3:一个教授抽取测试卷子。卷子的难度分成 3 种:困难、中等和容易。如果本次抽到的 困难的卷子,则下次分别有 0.5 的概率抽中中等和容易的卷子。如果本次抽到的是中等的卷 子,则下次仍旧 0.5 的概率为中等难度,另外有 0.25 的概率抽中困难或容易的卷子。如果本 次抽到的是容易的卷子, 则下次仍旧 0.5 的概率为容易难度, 另外有 0.25 的概率抽中困难或 中等的卷子。 转移概率矩阵
马尔可夫链的基本概念

马尔可夫链的基本概念马尔可夫链是一种数学模型,用于描述具有马尔可夫性质的随机过程。
马尔可夫性质指的是在给定当前状态的情况下,未来状态的概率只与当前状态有关,与过去状态无关。
马尔可夫链由一组状态和状态之间的转移概率组成,可以用于模拟和预测各种随机过程,如天气变化、股票价格波动等。
一、马尔可夫链的定义马尔可夫链由状态空间和转移概率矩阵组成。
状态空间是指所有可能的状态的集合,用S表示。
转移概率矩阵是一个n×n的矩阵,其中n 是状态空间的大小。
转移概率矩阵的元素表示从一个状态转移到另一个状态的概率。
二、马尔可夫链的性质1. 马尔可夫性质:在给定当前状态的情况下,未来状态的概率只与当前状态有关,与过去状态无关。
2. 遍历性:从任意一个状态出发,经过有限步骤后可以到达任意一个状态。
3. 周期性:一个状态可以分为周期为k的状态和非周期状态。
周期为k的状态在经过k步后才能返回原状态,非周期状态的周期为1。
4. 不可约性:如果一个马尔可夫链中的任意两个状态都是可达的,那么该马尔可夫链是不可约的。
5. 非周期马尔可夫链的收敛性:如果一个马尔可夫链是非周期的且不可约的,那么它具有收敛性,即在经过足够多的步骤后,状态分布会趋于稳定。
三、马尔可夫链的应用马尔可夫链在许多领域都有广泛的应用,包括自然语言处理、机器学习、金融市场分析等。
1. 自然语言处理:马尔可夫链可以用于语言模型的建立,通过分析文本中的词语之间的转移概率,可以预测下一个词语的出现概率,从而实现自动文本生成、机器翻译等任务。
2. 机器学习:马尔可夫链可以用于序列数据的建模和预测,如音频信号处理、图像处理等。
通过分析序列数据中的状态转移概率,可以预测下一个状态的出现概率,从而实现序列数据的预测和分类。
3. 金融市场分析:马尔可夫链可以用于分析金融市场的波动性和趋势。
通过分析股票价格的状态转移概率,可以预测未来股票价格的走势,从而指导投资决策。
四、马尔可夫链的改进和扩展马尔可夫链的基本概念可以通过改进和扩展来适应更复杂的问题。
马尔科夫链模型

所研究的时间是无限的,是连续变量,其数值是连续不 断的,相邻两个值之间可作无限分割。马尔柯夫过程所 研究的状态也是无效的。而马尔柯夫链的时间参数取离 散数值如日、月、季、年,其状况是有限的只有可到个 状态
马尔柯夫链表明事物的状态由过去转变到现在,
由现在转变到将来,一环接一环,象一根链条。其
3
特点是“无后效应性”
犏 犏 P 11 P 11 P 11 (k ) (0) 犏 S = S 犏 犏 犏 P 犏 11 P 11 P 11 臌
此式即为马尔可夫预测模型。
2、市场占有率预测
例 设有甲乙丙三家企业,生产同一种产品, 共同供应1000家用户,各用户在各企业间自 由选购,但不超出这三家企业,也无新用户。 假定在10月末经过市场调查得知,甲乙丙三 家企业拥有的客户分别是250户,300户, 450户,而11月份用户可能的流动情况如下:
从 甲 到 甲 230 乙 10 丙 10 ∑ 250
乙
丙 ∑
20
30 280
250
10 270
30
410 450
300
450 1000
问题: 假定该产品用户的流动按上述方向继 续变化下去(转移矩阵不变),预测12月 份三家企业市场用户各自的拥有量,并计 算经过一段时间后,三家企业在稳定状态 下该种产品的市场占有率。
2
12月份三个企业市场用户拥有量分别为: 甲: 1000? 0.306 306 户 乙: 1000? 0.246 246 户 丙: 1000? 0.448 448 户
现在假定该产品用户的流动情况按上述 方向继续变化下去,我们来求三个企业的该 种产品市场占有的稳定状态概率。 易证 P 为正规矩阵,设t = ( x, y,1- x - y) 令 tP = t ,则
马尔可夫链模型

用 Matlab 计算如下: s0=[1/4 1/2 1/4]; P=[1/4 3/4 0;1/3 1/3 1/3;0 1/4 3/4]; S2=s0*P.^2=(0.0712 0.2118 0.1962) 稳态分布 T=(t1,t2,t3),TP=T,变换后 (P’-E)T’=0 T=(0.16 0.36 0.48) 附程序: liyiw.m
3 (1) (k ) ( n)
(
)
u j ≥ 0, j = 1, 2,L , n
∑u
i =1
n
i
ห้องสมุดไป่ตู้=1
定义 3:若方阵 P 的每行都为概率向量,则称此方阵为概率矩阵。 可以证明,如果矩阵 A 和 B 皆为概率矩阵,则 AB, Ak , B k 也都是概率矩阵(k 为正整数) 由所有一步转移概率组成的矩阵称为一步转移概率矩阵表示为:
2
马尔可夫链是参数离散、状态离散的最简单的马尔可夫过程。在马尔可夫链 X ( t ) , t ∈ T 中,一般取 参数空间 T = {0,1, 2, L} 。马尔可夫链的状态空间 E 的一般形式是 E = {0,1, 2,L} 。 1、马尔柯夫链定义: 一个随机序列 {X(t), t=1,2,3,…}取值于正整数空间 E={0,1,2,……},或者为 E 的子集, 如果有: P X ( tn ) = xn | X ( t1 ) = x1 , L X ( tn −1 ) = xn −1
( 0)
就可以用上式计算任意时段的状态概率 S
(k )
。
2、 吸收链 在马尔可夫链中,称 pij = 1 的状态 i,j 为吸收状态。如果一个马尔可夫链中至少包含一个吸收状态,并 且从每一个非吸收状态出发,都可以到达某个吸收状态,那么这个马尔可夫链称为吸收链。 含有 m 个吸收状态和(n-m)个非吸收状态的吸收链,其转移矩阵的标准形式为
马尔科夫链模型简介

马 氏 链 模 型 简 介1、随机过程的概念。
定义:设集合{}T t t ∈:ξ是一族随机变量,T 是一个实数集合,如果对于任意T t ∈,t ξ是一个随机变量,则称{}T t t ∈:ξ是一个随机过程。
其中:(1)t 为参数可以认为是时间,T 为参数集合。
(2)随机变量t ξ的每一个可能值,称为随机过程的一个状态。
其全体可能值构成的集合,称为随机过程的状态空间,用E 表示。
(3)当参数集合T 为非负整数集时,随机过程又称为随机序列。
随机序列可用{} ,3,2,1:=n n ξ表示。
当T 为时间时,该随机序列就是一个时间序列。
如:(1)用t ξ表示“t 时刻,某商店的库存量”,则{}),0[:+∞∈t t ξ就是一个随机过程。
(2)用t ξ表示“在一天中t 时刻,某地区的天气状况”,则{}]24,0[:∈t t ξ是一个随机过程。
(3)用t ξ表示“在一天中t 时刻(整数),某城市的出租汽车的分布状况”,则{}24,,2,1,0: =t t ξ是一个随机时间序列。
马氏链,也称为马尔可夫链,就是一个特殊的随机时间序列,也为随机序列。
2、(离散时间)马尔可夫链——马氏链。
定义:设{} ,3,2,1:=n n ξ是一个随机序列,状态空间E 为有限或可列集。
若对于任意正整数m 、n 。
如果E i ∈、E j ∈、E i k ∈ (1,,2,1-=n k )满足)(),,,(1111i j P i i i j P n m n n n n m n =======+--+ξξξξξξ 成立,则称随机序列{} ,3,2,1:=n n ξ为一个马尔可夫链,简称为马氏链。
(时间、状态均为离散的随机转移过程) 从该定义可知:(1)如果将随机变量n ξ的下角标n ,理解为步数。
则随机变量n ξ就是从起始点经过n 步,到达的随机变量。
(2)随机变量)(i n =ξ,是指第n 步时的随机变量n ξ所处的状态i 。
(3)条件概率)(i j P n m n ==+ξξ是指,第n 步时的随机变量n ξ所处的状态i 发生的条件下,第m n +步时的随机变量m n +ξ所处的状态j ,发生的条件概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定理: 对于吸收链P的标准形式,I—Q可逆,
记元素全部为1的列向量为 则: 的第i个分量是从第i个非吸收状态出发,被 某个吸收状态吸收的平均转移次数。
近亲繁殖
1 0 I 1 / 4 P 0 R 1 / 16 0 0 1 0 0 0 0Q1 0 1 / 16 1 / 4 1 / 8 1 / 4 1 / 4 1/ 4 0 0 1 / 4 1 / 2 0 0 1/ 2 0 0 0 0 0 0 0 0 1/ 4 0
第n+1年的状态Xn+1只取决于第n年的状态Xn和转移概 率Pij,而与以前的状态Xn-1,Xn-2,…无关。第n+1年的状态概率 可以由全概率公式给出:
这样一个状态随着时间的进展随机变化的链式过程就是 马尔科夫链。 马尔科夫链是随机过程的一种。
(一)随机过程
系统的特征可以用一组随时间变化的变量来加以描述。 如果系统在任何时点上的特性或状态是随机性的,则系 统的变化过程就对应一组随机变量构成的过程来描述,这个系 统随机变化的过程的描述,就是随机过程。
2. 平稳分布
定义:设 n 为有限s个状态的均匀马尔可夫链,若初 始概率 Pj P(E j ), j 1,2,, s 满足全概率公式:
Pj Pi Pij , j 1,2,, s
s
则称 n 为平稳的, Pj ( j 1,2,, s) 称为 n 的一个平稳分布 Pj ( k ) 表示第k次转移到状态 E j 的绝对概率; 可以证明: Pj Pj (1) Pj (2) 结论: 当马尔可夫链是平稳时,初始概率等于绝对概率; 平稳均匀马尔可夫链在任一时刻处于状态 E j 的概 率 Pj (n) 都相等,说明平稳。
(五)马尔可夫链
定义:设随机过程 (t )只能取可列个值 r1 , r2 ,rn ,, 把 (t ) rn 称为在时刻 t 系统处于状态 En (n 1,2,) 若在已知时刻 t ,系统处于E n 状态的条件下,在时刻 ( t ) 系统所处的状态情况与t时刻以前所处状态 无关,则称 (t ) 为时间连续,状态离散的马尔可夫 过程。而状态的转移只能在 t t n (n 1,2,) 发生的马 尔可夫过程称为马尔可夫链。 从定义中可知,马尔可夫链是状态离散,时间连 续的马尔可夫过程。
(四)马尔可夫预测法
• 定义:对马尔可夫过程的演变趋势和状态加以 分析,用于预测事物未来状态的研究,称为马 尔可夫预测法。 • 特点:
1. 随机性:确切的未来状态是不可预测; 2. 局限性:只适合于马尔可夫过程; 3. 简便性:无需大量的统计资料。
• 适用领域:企业规模、市场占有率、选择服务 点、设备更新等的预测。
称 PT (0) ( p1 , p2 ,) 概率向量。
为马尔可夫链
为马尔可夫链的初始
(七)马尔可夫图
(七)马尔可夫图
马尔可夫矩阵一般式
均匀马尔可夫链
若 P( k ) P ij ij
k 1,2,
则称该马尔可夫链为均匀马尔可夫链。 用下式表示:
P P(E j / Ei ) P A / A ij
0 0 1/ 2
0 0 1 0 1/ 4 1/ 8 1/ 4 1/ 4 0 0 1 / 4 1 / 2 0 0 0 0 0 0 0 1/ 4 0
定义: 转移概率Pii=1的状态称为吸收状态。
如果马氏链至少包含一个吸收状态,并且 从每一个非吸收态出发,能以正常的概率经过 有限次转移到达某个吸收状态,那么这个马氏 链称为吸收链。 此时转移矩阵P表示为:
由 Pij 构成的矩阵称为系统状态转移矩阵。
其中:P(n) Pn ;
定义:
称 p j (n) P{X n j}, ( j I ) 尔可夫链的绝对概率; 称 PT (n) { p1 (n), p2 (n),}, n 0 的绝对概率向量。 为n时刻马
为n时刻
定理
设{Xn,n∈T}为马尔可夫链,则对任意j∈I和 n≥1,绝对概率pj(n)具有下列性质:
( n) 1. p j (n) pi pij iI
2. p j (n) pi
iI
( n 1)
pij
3. PT (n) PT (0)P(n) 4. PT (n) PT (n 1)P
定义:
称 p j (0) P{X 0 j}, ( j I ) 的初始概率;简记为 p j
p22 P( X n1 2(后代为dr ) X n (父为dr) 2 ) 1/ 2 p 1/ 2 q 1/ 2
转移概率矩阵
p P p/2 0 q 1/ 2 p 0 q / 2 q
随机繁殖
马氏链模型 a(n 1) a(n) P, n 0,1,
和劣势隐形基因r 两种。
• 生物的外部表征由内部相应的基因决定。
• 基因分优势显性基因d
• 每种外部表征由两个基因决定,每个基因可以是 d, r 中的任一个。形成3种基因类型:dd ~ 优种D, dr ~ 混种H, rr ~ 劣种R。 • 基因类型为优种和混种, 外部表征呈优势;基因类 型为劣种, 外部表征呈劣势。 •生物繁殖时后代随机地(等概率地)继承父、母的 各一个基因,形成它的两个基因。父母的基因类型 决定后代基因类型的概率
随机过程可以描述为:
xt, t T
,则该过程为
,则该过程为
其中 xt 为在同一状态空间中取值的随机变量, 为参数集。 T
若T 为可数参数集,如 离散参数的随机过程。 若 T 为不可数参数集,如 连续参数的随机过程。
(二)状态与状态转移
• 状态:当系统由一组确定的变量值来描述的时候,就 说系统处于一个状态。 • 状态转移:当系统的变量从一个特定值变化到另一个 特定值时,就表示系统由一个状态转移到另一个状态。
1. 马尔可夫链遍历性
设 n 为均匀马氏链(与第n次转移无 关),对一切状态i及j(或称 Ei , E j ), 存在不 依赖于i的常数,使得
lim n
Pij (n) j
则称均匀马氏链有遍历性 遍历意义: 遍历性说明不论系统自那一个 状态出发,当转移次数n充分大时,转移到 E j 状态的概率近似于某个常数 j 。
i 1
例3
问:应在何处设置修船站最合适?
解答:
• 建立转移矩阵
• 根据马尔可夫链平稳性,前次各租、还船点占 有船只的概率等于本次的占有率。
S甲
S乙
:甲处的占有率; :乙处的占有率;
:丙处的占有率。
S丙
• 根据上述的矩阵,可列出以下方程式。
ห้องสมุดไป่ตู้
• 结论:应该在甲处建修船站。
12.3
基因遗传(P422)
第六小组成员: 秦堉朗 石国平
什么是马尔科夫链?
例子: 用随机变量Xn表示第n年某个人的健康状况, Xn=1表示 健康, Xn=2表示疾病,n=0,1….用ai(n)表示第n年处于状态i的 概率,i=1,2,即ai(n)=P(Xn=i).用Pij表示今年处于状态i,明年 处于状态j的概率,i,j=1,2,即Pij=P(Xn+1=j|Xn=i). ai(n)称为状 态概率,Pij称为状态转移概率。
(三)马尔可夫过程
• 有一类事物在某种因素作用下,它们的状态概 率在转移过程中,第n次结果的概率规律仅取 决于第(n-1)次试验的结果,第(n-1)次试验结 果仅取决于第(n-2)次结果等,而与更早的结 果无关。 • 定义:设随机过程ξ (t),如果在已知时间t系 统处于状态x的条件下,在时刻T(T>t)系统所处 状态和时刻t以前所处的状态无关,则称ξ (t) 为马尔可夫过程。 • 从定义可知马尔可夫过程只与t时刻有关,与t 时刻以前无关。 这种性质叫做:无后效性
随机繁殖
假设
讨论基因类型的演变情况
• 设群体中雄性、雌性的比例相等,基因类型的分布 相同(记作D:H:R)
• 每一雄性个体以D:H:R的概率与一雌性个体交配,其后 代随机地继承它们的各一个基因 • 设初始一代基因类型比例D:H:R =a:2b:c (a+2b+c=1), 记p=a+b, q=b+c, 则群体中优势基因和劣势基因比例 d:r=p:q (p+q=1)。
p a(0) (a,2b, c) P p/2 2 2 a(1) a(0) P ( p ,2 pq, q ) 0
解释“豆科植物的茎,绿色:黄色=3:1” 基因类型为D和H, 显性表征——绿色,
(D+H):R=3:1
基因类型为R, 隐形表征——黄色。
近亲 繁殖
在一对父母的大量后代中, 雄雌随机配对繁殖, 讨论一系列后代的基因类型的演变过程。 状态定义为配对的基因类型组合
马氏链模型
Xn=1,2,3,4,5,6~配对基因组合为 DD,RR,DH,DR,HH,HR 0 1 状态转移概率 0 1 p11 P ( X n 1 ' DD ' 1 / 4 0 X n ' DD ' ) 1 P 0 p31 P ( X n 1 ' DD ' 0 1 / 16 1 / 16 X n ' DH ' ) 1/ 4 0 1 / 2 1 / 2 1 / 4
(k ) j
( k 1) i
预测模型
• 前提:必须是均匀马尔可夫链。
:初始状态; ( k 1) :经(K+1)次转移后的状态; S P :转移概率。
S
(0)
例1
求:预测以后第3个月顾客的购买情况。
解答:
第一步:建立转移矩阵
第二步 应用马尔可夫预测模型
第三步 结论解析