马尔科夫链模型及其应用PPT

合集下载

5马尔可夫链(精品PPT)

5马尔可夫链(精品PPT)
所以{Xn,n≥0}是马尔可夫链,且
pij P( X n 1 j X n i ) P( f i, Yn 1 j ) P( f i, Y1 j )
二、切普曼-柯尔莫哥洛夫方程
1,随机矩阵 定义:称矩阵A=(aij)S×S为随机矩阵,若aij ≥0,且
i S , 有 aij 1
例5 Polya(波利亚)模型
罐中有b只黑球及r只红球,每次随机地取出一只后 把原球放回,并加入与抽出球同色的球c只,再第二次 随机地取球重复上面步骤进行下去,{Xn=i}表示第n回 摸球放回操作完成后,罐中有i只黑球这一事件,所以
i b r nc , i P X n 1 j X n i 1 , b r nc 0,
x
j i 1
( j i 1)!
dG x ,
j i 1, i 1 其它
Pij 0,
例3 G / M /1排队系统 来到时间间隔分布为G,服务时间分布为指数分布,参 数为 ,且与顾客到达过程独立。 Xn-----第n个顾客来到时见到系统中的顾客数(包括 该顾客),则{Xn,n≥1}是马尔可夫链。记
jS
显然马尔可夫链{Xn,n≥0}的一步转移概率矩阵P为 随机矩阵。 2,n步转移概率 定义:设{Xn,n≥0}是一马尔可夫链,称
n pij P X n m j X m i ,
n 0, i, j 0
为马尔可夫链{Xn,n≥0}的n步转移概率。记
i (n) P X n i ,
j ic j i else
这是一个非齐次的马尔可夫链,在传染病研究中有用。
下面的定理提供了一个非常有用的获得马尔可夫链的方 法,并可用于检验一随机过程是否为马尔可夫链。

10第四章马尔可夫链精品PPT课件

10第四章马尔可夫链精品PPT课件

P(4) 00
0.5749
定义: 称 pj(n )P {X nj}(,j I)为n时刻马尔 可夫链的绝对概率;
称 P T (n ) { p 1 (n ),p 2 (n ), } , n 0为n时刻的 绝对概率向量。
定义: 称 pj(0 )P {X 0j} ,(j I)为马尔可夫链的 初始概率;简记为 p j
j i 1,i-1, i 1
1 0 0 0 0 . .
q
0
p
0
0
.
.
0 q 0 p 0 . .
P
0
0
q
0
p
.
.
0 0 0 q 0 . . . . . . . . .
例题:带2个吸收壁的随机游动
质点在数轴上移动,规律同上例。随机游动的状态 空间I={0,1,2…a}, 其中0和a为吸收态 。求一步转移 概率。
解:
P(2) 00
P{Xm2
0|
Xm
0}
P{Xm2 0, Xm P{Xm 0}
0}
P{Xm2 0, Xm1 0,Xm 0} P{Xm2 0, Xm1 1,Xm 0}
P{Xm 0}
P{Xm 0}
P{Xm2 0, Xm1 0,Xm 0}P{Xm1 0,Xm 0} P{Xm1 0,Xm 0}P{Xm 0}
p(n) 21
p(n) 12
p(n) 22
p(n) 1m
p(n) 2m
为马尔可夫链的n步转移矩阵。规定
p(0) ij
0, 1,
i j i j
例题
设马尔可夫链{Xn,n∈T}有状态空间I={0,1}, 其一步转移概率矩阵为
P
p00 p10

随机过程课件-马尔可夫链

随机过程课件-马尔可夫链
随机过程课件-马尔可夫 链
本课件将介绍随机过程中一种重要的模型——马尔可夫链。探讨马尔可夫链 的定义、特性、应用及改进方法,展望其未来发展。
什么是随机过程?
随机过程是一种数学模型,用于描述随机变量在时间上的演化。根据性质和分类不同,随机过程可分为多种类 型。
马尔可夫链的概念
定义
马尔可夫链是一种随机过程,具有马尔可夫性质,即未来状态仅与当前状态相关。
马尔可夫链的局限性和优缺点
马尔可夫链具有简单、易于实现的优点,但在某些情况下存在局限性。
马尔可夫链的未来发展方向
未来,马尔可夫链有望结合更多机器学习、深度学习技术,在更多领域得到应用和改进。
马尔可夫链的改进
局限性
马尔可夫链模型在某些情况下存 在局限性,如长期依赖性和大状 态空间问题。
改进方法
针对马尔可夫链的局限性,研究 者提出了多种改进方法,如隐马 尔可夫模型和条件随机场。
马尔可夫决策过程
马尔可夫决策过程是对马尔可夫 链进行扩展,引入了决策和奖励 机制,用于解决决策问题。
总结与展望
马尔可夫链的平稳分布
平稳分布是马尔可夫链在长期 运行后,状态分布稳定的概率 分布。
马尔可夫链的应用
1
模拟系统
2
马尔可夫链在模拟系统中用于模拟随机
事件和状态转移,如队列模型和流程模
3
型。
自然语言处理
马尔可夫链在自然语言处理中用于语言 模型、文本生成和机器翻译等。
金融领域
马尔可夫链在金融领域中用于风险评估、 投资组合优化和市场分析等。
特性
马尔可夫链具有无记忆性、状态空间有限、状态转移概率固定等特性。
状态转移图
马尔可夫链可用状态转移图表示,展示各状态之间的转移概率。

《马尔可夫链讲》课件

《马尔可夫链讲》课件

3 机器翻译
马尔可夫链可用于翻译模型,通过对应不同 语言的状态和转移概率进行翻译。
4 股票预测
马尔可夫链可以将历史股票价格转化为状态 转移概率,进而预测未来股票价格。
算法
马尔可夫模型
马尔可夫模型通过状态转移矩 阵和初始状态分布,预测未来 状态的概率分布。
蒙特卡罗方法
蒙特卡罗方法使用马尔可夫链 模拟大量随机样本,用于求解 复杂问题的数值近似解。
《马尔可夫链讲》PPT课件
欢迎大家来到《马尔可夫链讲》PPT课件!本课程将带您深入了解马尔可夫链 的概念、特征、应用、算法以及其优点、缺点和发展前景。让我们一起开始夫过程是一种具有马尔可夫性质的随机过程,其未来状态仅依赖于当前状态,与其历史状态无关。
当马尔可夫链接近无穷大时, 各个状态出现的概率会趋于一 个稳定的分布。
细致平衡方程
细致平衡方程描述了马尔可夫 链中每个状态出现的平衡条件。
应用
1 自然语言处理
2 推荐系统
马尔可夫链可用于语言模型和自动文本生成, 如基于上下文的单词预测。
马尔可夫链可用于个性化推荐算法,根据用 户的历史行为预测其可能感兴趣的项。
隐马尔可夫模型
隐马尔可夫模型是马尔可夫链 的扩展,增加了观测状态与隐 藏状态的关联,常用于序列标 注和语音识别。
总结
优点
马尔可夫链是一种简洁而强大的数学模型,能够捕捉到状态之间的概率转移关系。
缺点
马尔可夫链假设未来状态仅与当前状态相关,无法考虑其他因素的影响。
发展前景
随着大数据和机器学习的发展,马尔可夫链在各个领域的应用将越来越广泛。
马尔可夫链定义
马尔可夫链是一种离散时间马尔可夫过程,其所有可能状态和状态间的转移概率构成了一个有向图。

《马尔可夫链分析法》课件

《马尔可夫链分析法》课件
特点
马尔可夫链分析法具有无后效性 、离散性和随机性,适用于描述 大量随机现象,如股票价格、人 口迁移等。
马尔可夫链分析法的应用领域
金融领域
马尔可夫链分析法用于描述股票价格、汇率等金融市场的随机波 动,以及风险评估和投资组合优化。
自然领域
在生态学、气象学、地质学等领域,马尔可夫链分析法用于描述物 种分布、气候变化、地震等自然现象。
ABCD
云计算应用
利用云计算资源,实现大规模数据的快速处理和 分析。
跨学科合作
加强与其他学科领域的合作,共同推动马尔可夫 链分析法的技术创新和应用拓展。
THANKS FOR WATCHING
感谢您的观看
CHAPTER 03
马尔可夫链分析法的基本步 骤
建立状态转移矩阵
确定系统的状态空间
首先需要确定系统可能的状态,并为其编号。
计算状态转移概率
根据历史数据或实验结果,计算从一个状态转移到另一个状态的 概率。
构建状态转移矩阵
将状态转移概率按照矩阵的形式排列,形成状态转移矩阵。
计算稳态概率
初始化概率向量
系统的长期行为
02
通过分析稳态概率,可以了解系统的长期行为和趋势,例如系
统的最终状态分布、系统的平衡点等。
预测未来状态
03
基于稳态概率,可以对系统未来的状态进行预测,从而为决策
提供依据。
CHAPTER 04
马尔可夫链分析法的应用实 例
人口迁移模型
描述人口迁移的动态过程
马尔可夫链分析法用于描述人口迁移的动态过程,通过分析人口在各个地区之间 的转移概率,预测未来人口分布情况。这种方法可以帮助政府和企业了解人口流 动趋势,制定相应的政策和计划。

《马尔可夫链讲》课件

《马尔可夫链讲》课件
平稳分布的概率分布函数与时间无关,只与系统的状态空间和转移概率矩阵有关。
在平稳分布下,系统的各个状态之间转移的次数趋于平衡,每个状态的平均逗留时 的 马尔可夫链,都存在至少一个平
稳分布。
存在性定理的证明基于遍历理论 ,即如果马尔可夫链是遍历的,
那么它必然存在平稳分布。
根据接受概率判断是否接受样本的技 术,可以提高样本的质量和效率。
接受-拒绝抽样技术
接受概率
根据目标分布和当前状态计算出的概率,用于判断是否接受当前状态 转移为下一个状态。
拒绝概率
根据当前状态和接受概率计算出的概率,用于判断是否拒绝当前状态 转移为下一个状态。
接受-拒绝抽样过程
根据当前状态和接受概率计算出接受该状态的概率,如果该概率大于 随机数,则接受该状态作为下一个状态,否则拒绝并重新抽样。
详细描述
马尔可夫链定义为一个随机过程,其 中每个状态只与前一个状态有关,当 前状态只依赖于前一时刻的状态,不 受到过去状态的影响。
马尔可夫链的应用场景
总结词
马尔可夫链在多个领域有广泛应用。
详细描述
在自然语言处理中,马尔可夫链可以用于生成文本、语言模型等;在金融领域 ,马尔可夫链可以用于股票价格预测、风险评估等;在物理学中,马尔可夫链 可以用于描述粒子运动、化学反应等。
模型训练与预测
模型选择
根据数据特点和业务需求选择合适的马尔可 夫链模型。
模型训练
使用历史数据训练马尔可夫链模型。
参数设置
根据经验和业务理解设置模型参数。
预测与推断
基于训练好的模型对未来或未知数据进行预 测和推断。
结果评估与优化
评估指标
选择合适的评估指标(如准确率、召回率、F1值等)对预测结果进行评估。

《马尔科夫链》课件

《马尔科夫链》课件
通过马尔科夫链模型,生成具 有连贯性的自然语言文本。
六、总结
优点与缺点
马尔科夫链具有简化模型、 易于计算的优点,但忽略了 过去信息和状态空间有限的 缺点。
应用前景
随着人工智能和数据科学的 发展,马尔科夫链在各个领 域的应用将得到更广泛的推 广。
发展趋势
未来马尔科夫链可能进一步 发展和改进,并与其他模型 和技术相结合,实现更强大 的应用。
《马尔科夫链》PPT课件
马尔科夫链是一种概率模型,常用于描述离散时间过程的转移规律。本课件 将详细介绍马尔科夫链的概述、基本概念、应用和常见问题,并通过实际案 例分析展示其重要性和应用前景。
一、概述
定义
马尔科夫链是一种离散时间、离散状态的随机过程,其未来状态仅依赖于当前状态。
特点
马尔科夫链具有无后效性、状态转移 Markov 性、齐次性和有限状态空间等特点。
1 自然语言处理
马尔科夫链可用于模拟语言模型、文本生成和自动翻译等。
2 计算机网络
马尔科夫链可以用来建立网络流量模型、分析网络性能和优化网络传输。
3 金融市场
马尔科夫链在金融市场中的应用包括股票价格预测、投资组合优化和风险管理。四、马尔科ຫໍສະໝຸດ 链的常见问题1收敛性
马尔科夫链是否会收敛到一个稳定状
长期行为
2
态?如何判断?
马尔科夫链在长期运行时会以何种形
式表现?
3
平稳分布
马尔科夫链是否存在一个平稳的状态 分布?如何计算?
五、马尔科夫链的实际案例分析
语音识别
马尔科夫链可用于语音识别系 统中,对语音信号进行建模和 识别。
股票涨跌预测
利用马尔科夫链分析历史股票 价格,预测未来股票价格的涨 跌趋势。

数学建模——马尔科夫链模型ppt课件

数学建模——马尔科夫链模型ppt课件
.
相应的转移矩阵 为:
0.4 0.4 0 0.2
M 0.1 0.3 0.6
0
0.7 0 0.2 0.1
0
0
0
1
且Sj+1=SjM
首先,任一转移矩阵的行向量均为概率向量,即有 (1)
(I , j=01,…P,ing )1
n
马氏链模型的性质完全由其转移矩 阵决定,故研究马氏链的数学工
(2) Pig 1 (i=1,…具,是n)线性代数中有关矩阵的理论。
1 1 0
1a0 2b0 1c0
.
即1ຫໍສະໝຸດ 11n 1
1
n1
x( n)
显然有 a0b0c01
(ii)第n代的分布与 第n-1代的分布之间的关系是通过表
5.2确定的。
(b)建模
根据假设(ii),先考虑第n代中的AA型。由于第n-1代的AA
型与AA型结合。后代全部是AA型;第n-1代的Aa型与AA型
结合,后代是AA型的可能性为 1/2,而 第n-1代的aa型与
AA型结合,后代不可能 是AA型。因此当n=1,2…时
j1
这样的矩阵被称为 随机矩阵。
.
常染色体遗传模型
在常染色体遗传中,后代从每个亲体的基因对中各继承一 个基因,形成自己的基因父时体,—基—因母对体也的称基为因基型因型。如果
我们所考虑的遗传特A征A是由AA两个AA基 因AaA和Aaa控制aa的,(A、
a为表示两类基因的符-号)-那么-就有三-种基-因对-,记为AA,
1 =1, 2 =1/2, 3 =0
.
因此 所以
1 0 0 1 1 1
D0 0
1
2 0
0,e10 0 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1,第n年健康 状态Xn=
2,第n年疾病
状态概 ai(率 n)P : (Xni), i1,2,n0,1,
转移 p i jP ( X 概 n 1 j|X n 率 i), i, : j 1 ,2 ,n 0 ,1 ,
p11=0.8 p21=0.7
p12=1-p11=0.2 p22=1-p21=0.3
定义:一个离散时间随机过程X0,X1,X2,…是马尔可夫链,如果
PX r(t at|Xt1at1,Xt2at2,,X0a0) PX r(t at|Xt1at1) Pat1,at
马尔可夫性 无记忆性
PPT学习交流
4
马尔科夫链:一般性
假定马尔可夫链的离散状态空间为{0,1,2,…,n}(或{0,1,2,…},如果可数
PPT学习交流
11
隐马尔科夫模型
例如:一个隐居的人可能不能直观的观察到天气的情况,但是民间传说告诉我 们海藻的状态在某种概率上是和天气的情况相关的。在这种情况下我们有两个 状态集合,一个可以观察到的状态集合(海藻的状态)和一个隐藏的状态(天 气状况)。我们希望能找到一个算法可以根据海藻的状况和马尔科夫假设来预 测天气的状况。
3
路径:
概率
0-1-0-3
3/32
0-1-3-3
1/96
0-3-1-3
1/16
0-3-3-3
3/64
总概率:41/192
1/4 马尔科夫链
P03,3 41/192
0 1/ 4 0 3/ 4
P 1/ 2 0 1/ 3 1/ 6/ 4
3/16 7/48 29/64 41/192
PPT学习交流
5
马尔科夫链:m步转移概率
➢ 设pi(t)表示过程在t时刻处于状态i的概率
p(t)(p0(t)p ,1(t)p ,2(t) ,)是在t时刻给出链的状态分布的向量
pi(t) pj(t1)Pj,i j0
p(t)p(t1)P
我们将概率分布表示成一个行向量
➢ 在从i出发经1次转移的条件下,我们有 Pim ,j
一个由过程逗留过的状态序列表示为图上的一条有向路径。过程沿着这条路径 的概率是路径表的权的乘积。
0
P0,1
1
P1,2
2
P1,0
P0,3
P3,1 P1,3
P3,2
P2,2
3
P3,3
PPT学习交流
7
马尔科夫链:例子
计算恰好经过三步从状态0到状态3的概率。
1/4
1 1/3
0
1
2
1/2
3/4
1/2 1/6 1/4
马尔可夫模型及其应用
汇报人:吕昌伟 20157167
PPT学习交流
2015年12月1日
1
目录
1 2 3
马尔可夫链 隐马尔可夫模型 马尔可夫随机场
PPT学习交流
2
马尔科夫链:介绍
➢ 马尔可夫链,因安德烈·马尔可夫(A.A.Markov,1856-1922)得名, 是数学领域中具有马尔可夫性质的离散时间随机过程。
10
马尔科夫链:应用 保险公司
Xn=3为第三种状态 死亡
a1(n+1)=a1(n)p11+a2(n)p21+a3(n)p31 a2(n+1)=a1(n)p12+a2(n)p22+a3(n)p32 a3(n+1)=a1(n)p13+a2(n)p23+a3(n)p33
设投保时处于健康状态,预测a(n),n=1,2…
无穷)。转移概率 P ijPX rt (j|X t 1i)是过程i经一步转移到j的概率。
马儿可夫性蕴涵马尔可夫链由一步转移矩阵唯一确定。
P0,0 P0,1 P0, j P1,0 P1,1 P1, j P [ ] Pi,0 Pi,1 Pi, j
归一化:对所有i, Pi,j 1 j0
➢ 马尔可夫在1906年首先做出了这类过程。而将此一般化到可数无限状态 空间是由柯尔莫果洛夫在1936年给出的。
➢ 安德烈·马尔可夫,俄罗斯人,物理-数学博 士,圣彼得堡科学院院士,彼得堡数学学派 的代表人物,以数论和概率论方面的工作著 称,他的主要著作有《概率演算》等。1878 年,荣获金质奖章,1905年被授予功勋教授 称号。
P3 5/48 5/24 79/144 5/36
0 0
1
0
1/16 13/96 107/192 47/192
转移P矩PT阵学习交流
8
马尔科夫链:应用 保险公司
保险公司要对投保人未来的健康状态作出估计,以制订保险金和理赔金的数额
例:人的健康状况分为健康和疾病两种状态,设对特定年龄段的人,今年健康、 明年保持健康状态的概率为0.8,而今年患病、明年转为健康状态的概率为0.7, 若某人投保时健康,问10年后他仍处于健康状态的概率是多少?
PPT学习交流
3
马尔科夫链:定义及表示
随机过程X{X(t)Τ:t}是随机变量的集合,指标t通常表示时间,
此时,过程X是随时间而变化的随机变量X的取值模型。 X(t)是过程在时刻t的状态,用Xt代替X(t)。 这里我们着重于特殊类型的离散时间、离散空间随机过程X0,X1,X2,…,
其中Xt的值依赖于Xt-1的值,但不依赖于导致系统取那个值得状态序列。
P Pm1 i,k k,j
k0
➢ 对任意m≥0,我们将m步转移概率 P im ,j PX rt (mj|X t i)
定义为链从状态i经恰好m步到达状态j的概率。

设P(m)是一个矩阵,其元素为m步转移概率,使得第i行第j列元素为
Pm i,j
由上式可得 P(m )P•P(m 1)
经关于m的归纳 P(m) Pm
隐藏状态的数目和可以观察到的状态的数目可能是不一样的。 在一个有3种状态的天气系统(sunny、cloudy、rainy)中,也许可以观察到4 种潮湿程度的海藻(dry、dryish、damp、soggy)。
Xn+1只取决于Xn和pij,与Xn-1,…无关
PPT学习交流
9
马尔科夫链:应用 保险公司
状态转移具有无后效性 a1(n+1)=a1(n)p11+a2(n)p21 a2(n+1)=a1(n)p12+a2(n)p22 给定a(0),预测a(n), n=1,2…
设投保 时健康
设投保 时疾病
n 时状态概率趋于稳定值,稳PP定T学值习与交初流 始状态无关
PPT学习交流
6
马尔科夫链:加权图表示
马尔可夫链的另一种有用的表示是用一个有向加权图D=(V,E,w). 图的顶点集合是链的状态集 存在一条有向边 (i, j)E,当且仅当Pi,j>0,此时边(i,j)的权w(i,j)由w(i,j)=Pi,j给出 自圈(一条边开始和结束在同一顶点)是允许的。
对每一个i,我们仍要求w(i, j)1 j:(i,j)E
相关文档
最新文档