马尔可夫链概率论与数理统计

合集下载

概率论与数理统计 第五章

概率论与数理统计 第五章

Xn ⎯ ⎯→ X 2. 依概率收敛与依分布收敛的关系
依概率收敛 ⇒ 依分布收敛
L
3. 定义:中心极限定理 设随机变量 X ~ N(0,1),{Xi },i = 1, 2, … 相互独 立,且数学期望和方差都存在, 若标准化随机变量序列

n
i =1
Xi −
∑ E(X
i =1
n
i
)

n
i =1
D(X i)
所以结论成立。 由此有,若X ~ B( n, p ),对于足够大的n,有 ⎧ m1 − np X − np m2 − np ⎫ ⎪ ⎪ < ≤ P{m1 < X ≤ m2 }= P ⎨ ⎬ np(1 − p) np(1 − p) ⎪ ⎪ np(1 − p) ⎩ ⎭
⎧ Yn − np ⎫ ⎪ ⎪ ≤ x ⎬ = Φ( x ) lim P ⎨ n →∞ ⎪ np(1 − p ) ⎪ ⎩ ⎭
证明:对于任意正整数n,随机变量Yn 可表示为 证明:对于任意正整数n Yn = X1+ X2+…+ Xn X1, X2,…, Xn 相互独立,Xi ~ B( 1, p ),且有 E( Xi ) = p , D( Xi ) = p(1-p) 所以随机变量序列{ Xi }, i =1,2,…满足独立同分布 中心极限定理条件。即有
切比雪夫不等式的应用 1)估计随机变量落在某个区间内的概率 (P125例5.5.2) 2)估计ε的值, 使 P(│X - E(X)│<ε) ≥ a (0<a<1) 3)证明大数定律。
二. 大数定律 定义: 依概率收敛 设{Xn}是一个随机变量序列,X 是一个随机变量 或常数,若对于任意的ε> 0,有 lim P{| X n − X |≥ ε } = 0

马尔可夫链

马尔可夫链

马尔可夫链
马尔可夫链(Markov Chain, MC)是概率论和数理统计中具有马尔可夫性质(Markov property)且存在于离散的指数集(index set)和状态空间(state space)内的随机过程(stochastic process)。

适用于连续指数集的马尔可夫链被称为马尔可夫过程(Markov process),但有时也被视为马尔可夫链的子集,即连续时间马尔可夫链(Continuous-Time MC, CTMC),与离散时间马尔可夫链(Discrete-Time MC, DTMC)相对应,因此马尔可夫链是一个较为宽泛的概念。

马尔可夫链的命名来自俄国数学家安德雷·马尔可夫以纪念其首次定义马尔可夫链和对其收敛性质所做的研究。

精算师的数学和统计知识要求

精算师的数学和统计知识要求

精算师的数学和统计知识要求精算师是一个需要高水平数学和统计知识的职业。

不仅要掌握数学和统计学的基础理论,还要能够将这些理论应用于实际问题中。

本文将重点讨论精算师所需的数学和统计知识要求,并介绍它们在不同领域的应用。

1. 概率论与数理统计精算师需要深入理解概率论与数理统计的基本概念和原理。

概率论与数理统计是精算师分析风险和不确定性的基础工具。

精算师需要掌握概率分布、随机变量、数理期望、方差、协方差等概念,并能够运用正态分布、泊松分布、二项分布等常见分布进行推断和预测。

2. 数理金融精算师需要了解数理金融的基本概念和理论模型。

数理金融是将数学和统计学应用于金融领域的学科,精算师在进行保险风险分析和资产负债管理时需要运用数理金融的方法。

例如,精算师需要熟悉布莱克-斯科尔斯期权定价模型、随机过程和马尔可夫链等概念。

3. 衍生品定价精算师需要了解衍生品的定价模型和风险管理方法。

衍生品是金融市场中的重要工具,精算师需要了解期权、期货、掉期等衍生品的定价原理,并能够运用期权定价方法和风险中性定价原理进行风险管理。

4. 统计回归分析精算师需要掌握统计回归分析的基本原理和方法。

统计回归分析是精算师进行风险评估和赔偿定价的重要工具。

精算师需要运用线性回归模型、广义线性模型和非线性回归模型等方法对数据进行拟合和预测,以评估风险和制定合理的保费。

总之,作为一名精算师,数学和统计知识是其工作的基础和核心。

他们需要深入理解概率论与数理统计、数理金融、衍生品定价和统计回归分析等领域,将这些知识应用于风险分析、资产负债管理和赔付定价等实际问题中。

只有掌握这些知识,精算师才能在保险、金融等领域中胜任其职,并为公司和客户提供准确可靠的数据分析和决策支持。

第六章 6.2 马尔可夫链的概率分布

第六章 6.2 马尔可夫链的概率分布
0 .6 5 P = 0 .1 5 0 .1 2 0 .2 8 0 .6 7 0 .3 6 0 .0 7 0 .1 8 0 .5 2
如果个体当前收入等级为3,试分析经过三代后个体收 入等级转变为2的可能性,进一步分析经过n代后个体 收入等级的概率分布,并具体计算n=10时,个体收入 等级的概率分布。
i
= ∑ P ( X 0 = i, X n = j )
i
= ∑ P( X 0 = i) ⋅ P( X n = j X 0 = i)
i
= ∑ q p (0)
(0) i (n) ij i
n ≥ 0, i, j ∈ S
对于齐次马尔可夫链,上述结论可表示为
q
(n)
=q P , n≥0
(0) n
有限维分布 定理6.2.2 马尔可夫链X的有限维分布由其初始分 布和一步转移概率所完全确定. 证明 对∀n ≥ 1, ∀0 ≤ t1 < t2 < ⋯ < tn , i1 , i2 , ⋯, in , i ∈ S
i
= ∑ P ( X 0 = i, X t1 = i1 , X t2 = i2 ,⋯ , X tn = in )
i
= ∑ P ( X 0 = i ) ⋅ P( X t1 = i1 X 0 = i ) ⋅ P ( X t2 = i2 X 0 = i, X t1 = i1 )
i
⋅⋯ ⋅ P ( X tn = in X 0 = i , X t1 = i1 ,⋯ , X tn−1 = in −1 )
(2) 其中p02 为两步转移概率,是两步转移概率
矩阵中第一行第三列元素.
(2) 而P = P2
= 5 9 3 9 1 6 3 9 7 18 5 12 1 9 5 18 5 12

第十三章 马尔可夫链概率论与数理统计

第十三章 马尔可夫链概率论与数理统计

而与时刻 n 以前所处的状态无关.
所以它是一个马氏链, 且是齐次的.
一步转移概率
pij
P{ Xn1
j|
Xn
i} Βιβλιοθήκη p, j i q, j i,
i, j 0,1
一步转移概率矩阵
01
P 0 1
p q
q p
例2 一维随机游动 一随机游动的质点在如图所示直线的点集 I {1,2,3,4,5}上作随机游动,并且仅仅在1秒、2秒 等时刻发生游动.
结论 马氏链的n步转移概率是一步转移概率的 n 次
方.
例1 设任意相继的两天中, 雨天转晴天的概率为 1 3, 晴天转雨天的概率为1 2, 任一天晴或雨是互 为逆事件. 以 0 表示晴天状态,以1 表示雨天状态, Xn 表示第n天状态 (0或1). 试写出马氏链{ Xn , n 1}的一步转移概率矩阵. 又已知5月1日为晴 天 ,问5月3日为晴天, 5月5日为雨天的概率各等 于多少? 解 由于任一天晴或雨是互为逆事件且雨天转
Pij (n) P{ Xmn a j | Xm ai }.
称为马氏链的n步转移概率
P(n) (Pij(n))为n步转移概率矩阵.
特别的, 当 n=1 时, 一步转移概率 pij Pij (1) P( Xm1 a j | Xm ai }. 一步转移概率矩阵
的 状 态
记为P
三、应用举例
2023最新整理收集 do something
第十三章 马尔可夫链
第一节 马尔可夫过程及其概率分布 第二节 多步转移概率的确定
第三节 遍历性
第一节 马尔可夫过程及其概率分布
一、马尔可夫过程的概念 二、马尔可夫过程的概率分布 三、应用举例 四、小结

2024年高考数学专项复习马尔科夫链(与数列结合的概率递推问题)(解析版)

2024年高考数学专项复习马尔科夫链(与数列结合的概率递推问题)(解析版)

马尔科夫链(与数列结合的概率递推问题)如果要评选出 2023 年各地模拟题中最“成功”的题目,我想非“马尔科夫链”莫属了,尽管2023 年新高考I 卷出乎了很多“命题专家”的意料,但第 21 题考察了马尔科夫链,可谓为广大“专家”“名卷”“押题卷”挽回了一些颜面。

2023年新高考I 卷第21题的投篮问题是马尔可夫链;再往前的热点模考卷中,2023年杭州二模第21题的赌徒输光问题是马尔可夫链,2023年茂名二模的摸球问题是马尔可夫链;再往更前的2019年全国I 卷药物试验也是马尔可夫链,在新人教A 版选择性必修三 P91 页 拓展探索中的第10题是传球问题,是马尔科夫链的典型模型,可以看出自从新教材引入全概率公式(新人教A 版选择性必修三 P49 页),可想而知,未来会有越来越多的递推型概率难题出现模考试题中!因此,在复习备考中全概率等系列内容需要格外关注马尔科夫链作为一种命题模型出现了,马尔科夫链在题中的体现可以简单的概括为全概率公式+数列递推,对于高中生而言,马尔科夫链其实也不难理解。

本文主要介绍了马尔科夫链和一维随机游走模型在高考中的几种具体的应用情形,希望对各位接下来的复习和备考有一些帮助。

基本原理虽然贝叶斯公式不做要求,但是全概率公式已经是新高考考查内容了,利用全概率公式,我们既可以构造某些递推关系求解概率,还可以推导经典的一维随机游走模型,即:设数轴上一个点,它的位置只能位于整点处,在时刻0=t 时,位于点)(+∈=N i i x ,下一个时刻,它将以概率α或者β(1),1,0(=+∈βαα)向左或者向右平移一个单位. 若记状态i t X =表示:在时刻t 该点位于位置)(+∈=N i i x ,那么由全概率公式可得:)|()()|()()(1111111+==++=−==+−==+⋅+⋅=i t i t i t i t i t i t i t X X P X P X X P X P X P另一方面,由于αβ==+==+−==+)|(,)|(1111i t i t i t i t X X P X X P ,代入上式可得:11−+⋅+⋅=i i i P P P βα.进一步,我们假设在0=x 与),0(+∈>=N m m m x 处各有一个吸收壁,当点到达吸收壁时被吸收,不再游走.于是,1,00==m P P .随机游走模型是一个典型的马尔科夫过程.进一步,若点在某个位置后有三种情况:向左平移一个单位,其概率为a ,原地不动,其概率为b ,向右平移一个单位,其概率为c ,那么根据全概率公式可得:2024年高考数学专项复习马尔科夫链(与数列结合的概率递推问题)(解析版)11+−++=i i i i cP bP aP P2023·新高考Ⅰ卷T211.乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投籃,若末命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8.由抽签确定第1次投篮的人选,第1次投篮的人是甲、乙的概率各为0.5.(1)求第2次投篮的人是乙的概率;(2)求第i 次投篮的人是甲的概率;(3)已知:若随机变量i X 服从两点分布,且()()110,1,2,,i i i P X P X q i n ==−===⋅⋅⋅,则11n ni i i i E X q == = ∑∑.记前n 次(即从第1次到第n 次投篮)中甲投篮的次数为Y ,求()E Y .2019·全国Ⅰ卷2.为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1−分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1−分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X .(1)求X 的分布列.(2)若甲药、乙药在试验开始时都赋予4分,)0,1,2,,8(i p i =⋅⋅⋅表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11()127i i i i p ap bp cp i ==++…-+,,,,其中)1(a P X ==-,(0)b P X == (1)c PX ==. 假设0.5α=,0.8β=. ①证明:1)0{,1,2,,}7(i i p p i−=⋅⋅⋅+为等比数列; ②求4p ,并根据4p 的值解释这种试验方案的合理性.课本原题:人教A版数学《选择性必修三》P913.甲、乙、丙三人相互做传球训练,第1次由甲将球传出,每次传球时,传球者都等可能地将球传给另外两个人中的任何一人.求n次传球后球在甲手中的概率.重点题型·归类精讲3.从甲、乙、丙等5人中随机地抽取三个人去做传球训练.训练规则是确定一人第一次将球传出,每次传球时,2023届惠州一模4.为了避免就餐聚集和减少排队时间,某校开学后,食堂从开学第一天起,每餐只推出即点即取的米饭套餐和面食套餐. 已知某同学每天中午会在食堂提供的两种套餐中选择,已知他第一天选择米饭套餐的概率为23,而前一天选择了米饭套餐后一天继续选择米饭套餐的概率为14,前一天选择面食套餐后一天继续选择面食套餐的概率为12,如此往复.(1)求该同学第二天中午选择米饭套餐的概率(2)记该同学第n天选择米饭套餐的概率为n P(Ⅰ)证明:25nP−为等比数列;(Ⅱ)证明:当2n≥时,512nP≤.2023届佛山二模·165.有n 个编号分别为1,2,3,,n ⋅⋅⋅的盒子,第1个盒子中有2个白球1个黑球,其余盒子均为1个白球1个黑球,现从第1个盒中任取一球放入第2个盒子,再从第2个盒子中任取一球放入第3个盒子,以此类推,则从第2个盒子中取到白球的概率是 ,从第n 个盒子中取到白球的概率是 .2023·唐山调研6.甲、乙、丙三人玩传球游戏,第1次由甲传出,每次传球时,传球者都等可能地将球传给另外两人中的任何一人.设第k 次传球后球在甲手中的概率为*N k p k ∈,,则下列结论正确的有( )A. 10p =B. 213p = C. 121k k p p ++= D. 202313p >2024届武汉高三九月调研T167.甲,乙,丙三人进行传球游戏,每次投掷一枚质地均匀的正方体骰子决定传球的方式:当球在甲手中时,若骰子点数大于3,则甲将球传给乙,若点数不大于3,则甲将球保留;当球在乙手中时,若骰子点数大于4,则乙将球传给甲,若点数不大于4,则乙将球传给丙;当球在丙手中时,若骰子点数大于3,则丙将球传给甲,若骰子点数不大于3,则丙将球传给乙.初始时,球在甲手中,投掷n 次骰子后(),记球在甲手中的概率为,则 ; .2024届·湖北荆荆恩高三9月起点联考·218.甲、乙两个盒子中都装有大小、形状、质地相同的2个黑球和1个白球,现从甲、乙两个盒子中各任取一个球交换放入另一个盒子中,重复次这样的操作后,记甲盒子中黑球的个数为,甲盒中恰有2个黑球的概率为,恰有3个黑球的概率为.(1)求;(2)设,证明:;(3)求的数学期望的值. *n ∈N n p 3p =n p =()*n n ∈N n X n p n q 11,p q 2n n n c p q =+11233n n c c +=+n X ()n E X2023·济南开学考10.甲、乙两人进行抛掷骰子游戏,两人轮流地掷一枚质均匀的骰子.规定:先掷出点数6的获胜,游戏结束.(1)记两人抛掷骰子的总次数为X,若每人最多抛掷两次骰子,求比赛结束时,X的分布列和期望;(2)已知甲先掷,求甲恰好抛掷n 次骰子并获得胜利的概率.2023届·杭州二模11.马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,在强化学习、自然语言处理、金融领域、天气预测等方面都有着极其广泛的应用.其数学定义为:假设我们的序列状态是…,2t X −,1t X −,t X ,1t X +,…,那么1t X +时刻的状态的条件概率仅依赖前一状态t X ,即()()t 1t 2t 1t t 1t ,,,X X X X X X P P +−−+= ∣∣. 现实生活中也存在着许多马尔科夫链,例如著名的赌徒模型.假如一名赌徒进入赌场参与一个赌博游戏,每一局赌徒赌赢的概率为50%,且每局赌赢可以赢得1元,每一局赌徒赌输的概率为50%,且赌输就要输掉1元.赌徒会一直玩下去,直到遇到如下两种情况才会结束赌博游戏:一种是手中赌金为0元,即赌徒输光;一种是赌金达到预期的B 元,赌徒停止赌博.记赌徒的本金为*(,)A A N A B ∈<元,赌博过程为如图所示的数轴.当赌徒手中有n 元()0,n B n N ≤≤∈时,最终输光的概率为()P n ,请回答下列问题:(1)请直接写出()0P 与()P B 的数值;(2)证明(){}P n 是一个等差数列,并写出公差d ;(3)当100A =时,分别计算200B =,1000B =时,()P A 的数值,并结合实际,解释当B →+∞时,()P A 的统计含义.12.校足球队中的甲、乙、丙、丁四名球员将进行传球训练,第1次由甲将球传出,每次传球时,传球者都等可能的将球传给另外三个人中的任何一人,如此不停地传下去,且假定每次传球都能被接到。

概率论中的马尔可夫链应用实例

概率论中的马尔可夫链应用实例

概率论中的马尔可夫链应用实例马尔可夫链是概率论的一个重要工具,用于描述一系列随机事件之间的转移概率。

它广泛应用于各个领域,包括经济学、计算机科学、生物学等。

本文将介绍概率论中马尔可夫链的应用实例。

一、经济学领域在经济学中,马尔可夫链常用于描述市场的状态转移。

例如,我们可以利用马尔可夫链来分析企业经营状况和市场竞争态势。

假设有两家企业A和B在某个市场中竞争,它们的市场份额会随着时间发生变化。

我们可以构建一个马尔可夫链来描述这种变化过程,进而预测未来市场占有率的变化趋势。

二、计算机科学领域在计算机科学中,马尔可夫链被广泛应用于自然语言处理、机器学习等领域。

例如,在自然语言处理中,我们可以利用马尔可夫链来建模语言生成过程。

假设我们有一个文本数据集,我们可以通过统计每个单词的出现概率,构建一个马尔可夫链模型。

这样,我们就可以生成具有类似于原始文本的新的语句。

三、生物学领域在生物学中,马尔可夫链被应用于基因组序列分析、蛋白质结构预测等领域。

例如,在基因组序列分析中,我们可以利用马尔可夫链来模拟DNA序列的变异过程。

这样,我们就可以研究基因的进化规律和变异机制。

四、金融领域在金融领域,马尔可夫链被广泛应用于风险管理、股票价格预测等方面。

例如,在股票价格预测中,我们可以利用马尔可夫链来建立一个模型,通过分析历史价格变动的模式,预测未来股票价格的走势。

五、社交网络分析在社交网络分析中,马尔可夫链可以用于描述用户间的转移行为。

例如,在推荐算法中,我们可以利用马尔可夫链模型来预测用户的喜好和行为,从而实现个性化推荐。

六、天气预报在气象学中,马尔可夫链可以用于天气预报。

我们知道,天气是具有一定的变化规律的,例如晴天转阴天、阴天转雨天等。

我们可以利用马尔可夫链来模拟天气转移的过程,进而预测未来的天气情况。

总结起来,概率论中的马尔可夫链广泛应用于各个领域,包括经济学、计算机科学、生物学等,用于描述随机事件的转移概率。

通过建立马尔可夫链模型,我们可以预测未来的趋势,并应用于风险管理、股票价格预测、推荐算法等实际应用中。

概率论与数理统计在金融风险评估中的应用研究

概率论与数理统计在金融风险评估中的应用研究

概率论与数理统计在金融风险评估中的应用研究1. 介绍概率论与数理统计在金融领域的应用金融风险评估是金融领域中至关重要的任务之一,它涉及到金融机构、投资者和其他市场参与者的利益保障。

为了准确评估不同的金融风险,概率论与数理统计成为了金融领域中不可或缺的工具之一。

概率论和数理统计的应用可以帮助金融从业者量化不确定性,并制定相应的风险管理策略。

2. 金融风险评估的基本原理在金融领域,风险是指不确定性对投资回报的潜在影响。

金融风险评估的基本原理是通过分析和量化不同风险因素的概率分布,来预测风险事件发生的可能性和影响程度。

在这方面,概率论和数理统计提供了一套科学的方法,用于评估金融风险,并帮助决策者做出相应的风险管理决策。

3. 概率论在金融风险评估中的应用概率论在金融风险评估中的应用主要体现在两个方面:风险度量和风险定价。

风险度量是指用数学方法来衡量某一风险事件发生的概率,并量化其对投资回报的影响程度。

常用的风险度量包括价值-at-风险(VaR)和条件价值-at-风险(CVaR)。

概率论中的分布函数和统计方法被广泛用于计算VaR和CVaR,从而帮助金融从业者了解风险暴露程度,并采取相应的风险管理措施。

此外,概率论还可以用于分析和建模金融市场的波动性和相关性,从而预测市场的未来走势。

4. 数理统计在金融风险评估中的应用数理统计在金融风险评估中的应用主要体现在数据分析和模型建立两个方面。

金融从业者需要收集和分析大量的金融数据,以便更好地理解金融市场的运行规律和风险特征。

数理统计提供了一系列的统计方法,如假设检验、回归分析和时间序列分析等,用于分析和解释金融数据中的不确定性和规律性。

此外,数学统计还可以用于建立风险模型,例如马尔可夫链模型和GARCH模型,以帮助金融从业者预测金融市场的未来走势,并评估不同投资组合的风险水平。

5. 现有的研究和应用案例许多学者和金融从业者对概率论和数理统计在金融风险评估中的应用进行了广泛的研究。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如果Q现在位于点 i (1< i <5),则下一时刻各以 1/3的概率向左或向右移动一格, 或以1/3的概率留 在原处;
12345 如果Q现在位于1(或5)这点上, 则下一时刻就 以概率1移动到2(或4)这一点上. 1和5这两点称为反射壁. 上面这种游动称为带有两个反射壁的随机游动. 模拟方法:产生均匀分布的随机数序列132322 11122…,其中1表示左移;2表示不动;3表示右移.
12345
理论分析: 以Xn表示时刻n时Q的位置. 则{Xn ,n 0,1,2,}是一随机过程.
状态空间就是I. 且当Xn i,i I为已知时, X n1所处的状态分布只与X n i有关, 而与时刻 n 以前所处的状态无关. 所以它是一个马氏链, 且是齐次的.
一步转移概率 pij P{ Xn1 j | Xn i}
或写成 Ftn|t1tn1 ( xn , tn | x1, x2 ,, xn1;t1, t2 ,, tn1 )
Ftn|tn1 ( xn , tn | xn1, tn1 ), 这时称过程{ X (t), t T }具马尔可夫性或无后效性. 并称此过程为马尔可夫过程.
3. 马尔可夫链的定义
时间和状态都是离散的马尔可夫过程称为马尔 可夫链, 简记为 { X n X (n), n 0,1,2,}.
二、马尔可夫过程的概率分布
研究时间和状态都是离散的随机序列
{ Xn X (n), n 0,1, 2,}, 状态空间为 I (a1,a2 ,}, ai R .
1. 用分布律描述马尔可夫性
对任意的正整数n, r 和 0 t1 t2 tr m; ti , m, n m Ti , 有 P{ Xmn aj | Xt1 ai1 , Xt2 ai2 ,, Xt ai , Xm ai }
Xm 的 状
a1 p11
a2
p21
p12 p1 j
p22 p2 j
P(1)

ai
pi1
pi2
pij
记为P
三、应用举例
例1 只传输数字0和1的串联系统 ( 0 1 传输系统)
如图:
X 0 1 X1 2 X 2 X n1 n X n
X
是第一级的输入
0
Xn是第n级的输出(n 1)
第一节 马尔可夫过程及其概率分布
一、马尔可夫过程的概念 二、马尔可夫过程的概率分布 三、应用举例 四、小结
一、马尔可夫过程的概念
1. 马尔可夫性(无后效性)
过程或(系统)在时刻t0所处的状态为已知的 条件下,过程在时刻t t0所处状态的条件分布与 与过程在时刻t0之前所处的状态无关的特性称为 马尔可夫性或无后效性.
Pij(m,m n) 1,i 1,2,.
j 1
由转移概率组成的矩阵 P(m,m n)(Pij(m, m n))
称为马氏链的转移概率矩阵. 它是随机矩阵.
3. 平稳性
当转移概率 Pij(m, m n) 只与 i, j 及时间间距 n 有关时, 称转移概率具有平稳性. 同时也称此链是齐次的或时齐的. 此时, 记 Pij(m,m n) Pij(n),
即: 过程“将来”的情况与“过去”的情况是无 关的.
2. 马尔可夫过程的定义
具有马尔可夫性的随机过程称为马尔可夫过程.
用分布函数表述马尔可夫过程 设 I : 随机过程 { X (t ), t T }的状态空间,
如果对时间t的任意n个数值, tX1 (tnt2)在 条t件n ,Xn(ti 3) ,tixi下T 的 , 条恰件有分布函数 P{ X (tnX) (tnx)n在| X条(t件1 )X (xt1n,1X)(t2 )xn1x下2 ,的,条X (件tn分1 ) 布x函n1数} P{ X (tn ) xn | X (tn1 ) xn1}, xn R
设一个单位时间传输一级, 设每一级的传真率为 p, 误码率为 q=1-p.
分析: {Xn,n 0,1,2,}是一随机过程, 状态空间 I {0, 1} ,
且当Xn i,i I为已知时, X n1所处的状态分布只与X n i有关,
而与时刻 n 以前所处的状态无关.
所以它是一个马氏链, 且是齐次的.
P{ Xmn a j | Xm ai }, 其中 ai I .
2. 转移概率
称条件概率 Pij(m,m n) P{ Xmn a j | Xm ai }
为马氏链在时刻m处于状态ai条件下,在时刻 m n
转移到状态a j的转移概率.
说明: 转移概率具有特点
此矩阵的每一行元 素之和等于1.
一步转移概率
pij
P{ Xn1
j|
Xn
i}
p, j i q, j i,
i, j 0,1
一步转移概率矩阵
01
P 0 1
p q
q p
例2 一维随机游动 一随机游动的质点在如图所示直线的点集 I {1,2,3,4,5}上作随机游动,并且仅仅在1秒、2秒 等时刻发生游动.
12345 游动的概率规则
1 3
,
j
i
1,
i,
i
1, 1
i
ห้องสมุดไป่ตู้
5
1, i 1, j 2 或 i 5, j 4
0, j 1 2.

12 3 4 5
步 转 移 概 率 矩 阵
1 0 1 0 0 0
2 1/ 3 1/ 3 1/ 3 0
0
P 3 0 1/3 1/3 1/3 0
4
0
0 1/ 3 1/ 3 1/ 3
5 0 0 0 1 0
说明: 改变游动的概率规则, 就可得到不同方式的 随机游动和相应的马氏链. 如果把点 1 改为吸收壁,
相应链的转移概率矩阵只须把P 中第1行改为
(1,0,0,0,0).
例3 某计算机房的一台计算机经常出故障,研究者 每隔15分钟观察一次计算机运行状态,收集了24小 时的数据 (共作97次观察) . 用1表示正常状态, 用0 表示不正常状态, 所得的数据序列如下:
Pij (n) P{ Xmn a j | Xm ai }.
称为马氏链的n步转移概率
P(n) (Pij(n))为n步转移概率矩阵.
特别的, 当 n=1 时,
一步转移概率 pij Pij (1) P( Xm1 a j | Xm ai }.
一步转移概率矩阵 P(1)
X m1的状态
a1 a2 a j
相关文档
最新文档