马尔可夫链模型
马尔可夫链模型讲解

马尔可夫链模型(Markov Chain Model)目录[隐藏]1 马尔可夫链模型概述2 马尔可夫链模型的性质3 离散状态空间中的马尔可夫链模型4 马尔可夫链模型的应用o 4.1 科学中的应用o 4.2 人力资源中的应用5 马尔可夫模型案例分析[1]o 5.1 马尔可夫模型的建立o 5.2 马尔可夫模型的应用6 参考文献[编辑]马尔可夫链模型概述马尔可夫链因安德烈·马尔可夫(Andrey Markov,1856-1922)得名,是数学中具有马尔可夫性质的离散时间随机过程。
该过程中,在给定当前知识或信息的情况下,过去(即当期以前的历史状态)对于预测将来(即当期以后的未来状态)是无关的。
时间和状态都是离散的马尔可夫过程称为马尔可夫链, 简记为。
马尔可夫链是随机变量的一个数列。
这些变量的范围,即他们所有可能取值的集合,被称为“状态空间”,而Xn的值则是在时间n的状态。
如果Xn + 1对于过去状态的条件概率分布仅是Xn的一个函数,则这里x为过程中的某个状态。
上面这个恒等式可以被看作是马尔可夫性质。
马尔可夫在1906年首先做出了这类过程。
而将此一般化到可数无限状态空间是由柯尔莫果洛夫在1936年给出的。
马尔可夫链与布朗运动以及遍历假说这两个二十世纪初期物理学重要课题是相联系的,但马尔可夫寻求的似乎不仅于数学动机,名义上是对于纵属事件大数法则的扩张。
马尔可夫链是满足下面两个假设的一种随机过程:1、t+l时刻系统状态的概率分布只与t时刻的状态有关,与t时刻以前的状态无关;2、从t时刻到t+l时刻的状态转移与t的值无关。
一个马尔可夫链模型可表示为=(S,P,Q),其中各元的含义如下:1)S是系统所有可能的状态所组成的非空的状态集,有时也称之为系统的状态空间,它可以是有限的、可列的集合或任意非空集。
本文中假定S是可数集(即有限或可列)。
用小写字母i,j(或S i,S j)等来表示状态。
2)是系统的状态转移概率矩阵,其中P ij表示系统在时刻t处于状态i,在下一时刻t+l处于状态i的概率,N是系统所有可能的状态的个数。
马尔可夫链模型

马尔可夫链模型一、基因遗传问题豆科植物茎的颜色有绿有黄,生猪的毛有黒有白,人会得一些先天性疾病等,这些都与基因遗传有关。
基因从一代到下一代的转移是随机的,并且具有马氏性。
因此马氏链模型是研究遗传学的重要工具之一。
生物的外部表征如豆科植物茎的颜色,人的皮肤或头发,是由生物体内相应的基因决定。
基因分优势基因与劣势基因,分别用d 和r表示。
每种外部表征由体内的两个基因决定,而每个基因都可以是d或r中的一个,于是可以得到三种基因类型,即dd、dr 和rr,分别称为优种、混种和劣种,用D、H和R表示。
含D、H 基因类型的个体,外部表征呈优势,如豆科植物的茎呈绿色,人的皮肤有色素;含劣种R基因类型的个体外部表征呈劣势,如豆科植物的茎呈黄色,人的皮肤无色素。
生物繁殖时,一个后代随机的继承父与母各自的两个基因中的一个,形成两个基因。
一般两个基因中哪个遗传下去是等概率的,所以父母的基因类型就决定了每一后代基因类型的概率。
下面我们以马氏链为工具讨论两个具体的基因遗传模型。
随机交配这是自然界中生物群体一种常见的、也是最简单的交配方式。
考察一个群体,假设雄性和雌性的比例永远相等,并且有相同的基因类型分布,即雄性和雌性的D 、H 、R 的数量比例相等。
所谓随机交配是指对于每一个不论属于D 、H 或R 的雌性(或雄性)个体交配,都以D :H :R 的数量比例为概率与一个属于D 、H 或R 的雄性(或雌性)个体交配,其后代则按照前面所说的方式等概率地继承其父母亲的各一个基因,来决定它的基因类型。
假定在初始一代的群体中,三种基因类型的数量比是D :H :R =a :2b :c ,满足21a b c ++=。
记,p a b q b c =+=+,则群体中优势基因d 与劣势基因r 的数量比例为:p q ,且1p q +=。
讨论随机交配方式产生的一系列后代群体中的基因类型分布。
用1,2,3n X =分别表示第n 代的一个体属于D 、H 及R 基因类型,即三种状态,0,1,2,.()i n a n = 表示个体属于第i 种状态的概率,1,2,3i =可视为第n 代的群体属于第i 种基因类型的比例。
马尔可夫链

P (x n 1 k | x 0 i )P (x n j | x n 1 k ) rij (n 1)Pkj
k 1 k 1 m
m
n 步转移概率矩阵: rij (n ) 看成一个二维矩阵第 i 行第 j 列的元素。 讨论 n 时: 例 1 中,每一个 rij (n ) 都收敛于一个极限值,不依赖于初始状态 i。
Wj Wk pkj
k 1 m
1 Wk
k 1
m
3、另外有
Wj 0 ,对于所有的非常返状态 j Wj 0 ,对于所有的常返状态 j
1 Wm ] [0 0 1] ,可用 MATLAB 解决。 pm1 pmm 1 1
P(x 0 i0 , x1 i1, , x n in ) P(x 0 i0 )Pi i Pi i Pi
01 12 n 1 n
i
图形上,一个状态序列能表示为在转移概率图中的一个转移弧线序列。在给定初始状态下, 该路径的概率等于每个弧线上转移概率的乘积。 n 步转移概率 定义: rij (n ) P (x n i | x 0 i ) 计算在当前状态条件下,未来某个时期状态的概率分布。 当前状态 i,n 个时间段后的状态将是 j 的计算公式:C-K 方程
1 0 0 0 0.3 0.4 0.3 0 0 0.3 0.4 0.3 0 0 1 0
转移概率图
例 3:一个教授抽取测试卷子。卷子的难度分成 3 种:困难、中等和容易。如果本次抽到的 困难的卷子,则下次分别有 0.5 的概率抽中中等和容易的卷子。如果本次抽到的是中等的卷 子,则下次仍旧 0.5 的概率为中等难度,另外有 0.25 的概率抽中困难或容易的卷子。如果本 次抽到的是容易的卷子, 则下次仍旧 0.5 的概率为容易难度, 另外有 0.25 的概率抽中困难或 中等的卷子。 转移概率矩阵
马尔可夫链模型

用 Matlab 计算如下: s0=[1/4 1/2 1/4]; P=[1/4 3/4 0;1/3 1/3 1/3;0 1/4 3/4]; S2=s0*P.^2=(0.0712 0.2118 0.1962) 稳态分布 T=(t1,t2,t3),TP=T,变换后 (P’-E)T’=0 T=(0.16 0.36 0.48) 附程序: liyiw.m
3 (1) (k ) ( n)
(
)
u j ≥ 0, j = 1, 2,L , n
∑u
i =1
n
i
ห้องสมุดไป่ตู้=1
定义 3:若方阵 P 的每行都为概率向量,则称此方阵为概率矩阵。 可以证明,如果矩阵 A 和 B 皆为概率矩阵,则 AB, Ak , B k 也都是概率矩阵(k 为正整数) 由所有一步转移概率组成的矩阵称为一步转移概率矩阵表示为:
2
马尔可夫链是参数离散、状态离散的最简单的马尔可夫过程。在马尔可夫链 X ( t ) , t ∈ T 中,一般取 参数空间 T = {0,1, 2, L} 。马尔可夫链的状态空间 E 的一般形式是 E = {0,1, 2,L} 。 1、马尔柯夫链定义: 一个随机序列 {X(t), t=1,2,3,…}取值于正整数空间 E={0,1,2,……},或者为 E 的子集, 如果有: P X ( tn ) = xn | X ( t1 ) = x1 , L X ( tn −1 ) = xn −1
( 0)
就可以用上式计算任意时段的状态概率 S
(k )
。
2、 吸收链 在马尔可夫链中,称 pij = 1 的状态 i,j 为吸收状态。如果一个马尔可夫链中至少包含一个吸收状态,并 且从每一个非吸收状态出发,都可以到达某个吸收状态,那么这个马尔可夫链称为吸收链。 含有 m 个吸收状态和(n-m)个非吸收状态的吸收链,其转移矩阵的标准形式为
马尔可夫链模型python实现

马尔可夫链模型python实现全文共四篇示例,供读者参考第一篇示例:马尔可夫链是一种随机过程,它基于马尔可夫性质,即未来的状态只取决于当前的状态,而不受过去的影响。
马尔可夫链模型广泛应用于自然语言处理、机器学习、统计建模等领域,可以用来模拟具有随机性的现象。
在本文中,我们将介绍如何使用Python实现马尔可夫链模型。
我们需要了解马尔可夫链的基本概念。
马尔可夫链由状态空间、初始状态和状态转移概率矩阵组成。
状态空间是所有可能状态的集合,初始状态指定了链条起始状态,状态转移概率矩阵描述了从一个状态到另一个状态的转移概率。
接下来,我们将通过一个简单的例子来说明如何使用Python实现马尔可夫链模型。
假设我们有一个天气预测的问题,天气状态包括“晴天”和“雨天”,我们希望根据过去的天气情况预测未来的天气。
我们需要定义状态空间和状态转移概率矩阵。
状态空间定义如下:接着,我们可以定义状态转移概率矩阵,假设转移概率如下:以上代码中的transition_matrix表示在晴天时,下一天为晴天的概率为0.8,为雨天的概率为0.2;在雨天时,下一天为晴天的概率为0.4,为雨天的概率为0.6。
接着,我们可以编写Python代码来实现马尔可夫链模型。
我们需要定义一个函数来根据当前状态和转移概率矩阵来确定下一个状态:```pythonimport randomdef next_state(current_state, transition_matrix):next_states = transition_matrix[current_state]probabilities = list(next_states.values())next_state = random.choices(list(next_states.keys()), weights=probabilities)[0]return next_state```以上代码定义了一个next_state函数,接受当前状态和转移概率矩阵作为参数,返回根据转移概率确定的下一个状态。
马尔可夫链模型及其应用领域

马尔可夫链模型及其应用领域马尔可夫链模型是一种描述随机过程的数学工具,它以马尔可夫性质为基础,描述了一个系统在不同状态之间转移的概率。
马尔可夫链模型在各个领域都有广泛的应用,包括自然科学、金融、计算机科学等。
本文将介绍马尔可夫链模型的基本原理,并探讨其在不同应用领域中的具体应用。
马尔可夫链模型的基本原理是基于马尔可夫性质。
马尔可夫性质指的是一个系统在给定当前状态下,其下一个状态只依赖于当前状态,而与过去的状态无关。
这种性质使得马尔可夫链模型成为处理许多问题的理想模型。
首先,我们来了解一下马尔可夫链模型的基本概念。
一个马尔可夫链由一组状态和状态转移矩阵组成。
状态表示系统可能处于的情况,状态转移矩阵描述了状态之间的转移概率。
状态转移矩阵是一个方阵,其元素表示从一个状态到另一个状态的转移概率。
在实际应用中,马尔可夫链模型可以用于解决许多问题。
其中一个常见的应用是预测未来状态。
根据当前的状态和状态转移矩阵,我们可以计算下一步系统处于不同状态的概率。
通过不断迭代计算,我们可以预测未来系统状态的分布。
另一个常见的应用是基于马尔可夫链模型的推荐系统。
推荐系统通过分析用户的历史行为,预测用户未来的喜好,并向其推荐相关的内容。
马尔可夫链模型可以用于建模用户的行为转移过程,推断用户下一步的行为。
在金融领域,马尔可夫链模型被广泛应用于股票市场的预测和风险评估。
通过分析历史股票价格的变化,我们可以建立一个马尔可夫链模型,来预测股票未来的涨跌趋势。
此外,马尔可夫链模型还被用于计算资产组合的风险价值,帮助投资者制定合理的投资策略。
在自然科学领域,马尔可夫链模型可以用于模拟复杂系统的行为。
例如,生态学家可以使用马尔可夫链模型来模拟生物群落的动态变化,预测不同物种的数量和分布。
此外,马尔可夫链模型还可以用于研究气象系统、生物化学反应等的动态特性。
另一个马尔可夫链模型的应用领域是自然语言处理。
马尔可夫链模型可以用于根据已有的语料库生成新的文本。
马尔科夫链模型简介

马 氏 链 模 型 简 介1、随机过程的概念。
定义:设集合{}T t t ∈:ξ是一族随机变量,T 是一个实数集合,如果对于任意T t ∈,t ξ是一个随机变量,则称{}T t t ∈:ξ是一个随机过程。
其中:(1)t 为参数可以认为是时间,T 为参数集合。
(2)随机变量t ξ的每一个可能值,称为随机过程的一个状态。
其全体可能值构成的集合,称为随机过程的状态空间,用E 表示。
(3)当参数集合T 为非负整数集时,随机过程又称为随机序列。
随机序列可用{} ,3,2,1:=n n ξ表示。
当T 为时间时,该随机序列就是一个时间序列。
如:(1)用t ξ表示“t 时刻,某商店的库存量”,则{}),0[:+∞∈t t ξ就是一个随机过程。
(2)用t ξ表示“在一天中t 时刻,某地区的天气状况”,则{}]24,0[:∈t t ξ是一个随机过程。
(3)用t ξ表示“在一天中t 时刻(整数),某城市的出租汽车的分布状况”,则{}24,,2,1,0: =t t ξ是一个随机时间序列。
马氏链,也称为马尔可夫链,就是一个特殊的随机时间序列,也为随机序列。
2、(离散时间)马尔可夫链——马氏链。
定义:设{} ,3,2,1:=n n ξ是一个随机序列,状态空间E 为有限或可列集。
若对于任意正整数m 、n 。
如果E i ∈、E j ∈、E i k ∈ (1,,2,1-=n k )满足)(),,,(1111i j P i i i j P n m n n n n m n =======+--+ξξξξξξ 成立,则称随机序列{} ,3,2,1:=n n ξ为一个马尔可夫链,简称为马氏链。
(时间、状态均为离散的随机转移过程) 从该定义可知:(1)如果将随机变量n ξ的下角标n ,理解为步数。
则随机变量n ξ就是从起始点经过n 步,到达的随机变量。
(2)随机变量)(i n =ξ,是指第n 步时的随机变量n ξ所处的状态i 。
(3)条件概率)(i j P n m n ==+ξξ是指,第n 步时的随机变量n ξ所处的状态i 发生的条件下,第m n +步时的随机变量m n +ξ所处的状态j ,发生的条件概率。
马尔可夫链模型

状态与 状态与状态转移
1, 第n年健康 状态X n = 2, 第n年疾病
状态概率ai (n) = P( X n = i ), i = 1,2, n = 0,1,L
0.8 0.2 0.3
转移概率 pij = P ( X n +1 = j X n = i ), i, j = 1,2, n = 0,1, L
正则链 ⇔ ∃N , P > 0
P >0
2
正则链
稳态概率分布 w 满足 wP=w
w = ( w1 , w2 , w3 ) = ( 0.285 ,0.263,0.452 )
n→∞, 状态概率 a ( n ) = ( 0.285 ,0.263 ,0.452 ) →
模型求解
1. 估计在这种策略下失去销售机会的可能性 第n周失去销售机会的概率 周失去销售机会的概率 充分大时 = ∑ P( Dn > i Sn = i)P(Sn = i) n充分大时 P(Dn > Sn)
基本方程
a i ( n + 1) =
∑ a ( n ) p , i = 1, 2 , L , k
j =1 j ji
k
a(n) = (a1 (n), a2 (n),L, ak (n)) a ( n + 1) = a ( n ) P ~ 状态概率向量 P = { pij }k ×k ~ 转移概率矩阵 a ( n ) = a ( 0 ) P n
模型假设
钢琴每周需求量服从波松分布,均值为每周 架 钢琴每周需求量服从波松分布,均值为每周1架 存贮策略:当周末库存量为零时,订购 架 存贮策略:当周末库存量为零时,订购3架,周 初到货;否则,不订购。 初到货;否则,不订购。 以每周初的库存量作为状态变量, 以每周初的库存量作为状态变量,状态转移具有 无后效性。 无后效性。 在稳态情况下计算该存贮策略失去销售机会的概 和每周的平均销售量。 率,和每周的平均销售量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
马尔可夫链模型马尔可夫链模型(Markov Chain Model)目录[隐藏]∙ 1 马尔可夫链模型概述∙ 2 马尔可夫链模型的性质∙ 3 离散状态空间中的马尔可夫链模型∙ 4 马尔可夫链模型的应用o 4.1 科学中的应用o 4.2 人力资源中的应用∙ 5 马尔可夫模型案例分析[1]o 5.1 马尔可夫模型的建立o 5.2 马尔可夫模型的应用∙ 6 参考文献[编辑]马尔可夫链模型概述马尔可夫链因安德烈·马尔可夫(Andrey Markov,1856-1922)得名,是数学中具有马尔可夫性质的离散时间随机过程。
该过程中,在给定当前知识或信息的情况下,过去(即当期以前的历史状态)对于预测将来(即当期以后的未来状态)是无关的。
时间和状态都是离散的马尔可夫过程称为马尔可夫链, 简记为。
马尔可夫链是随机变量的一个数列。
这些变量的范围,即他们所有可能取值的集合,被称为“状态空间”,而Xn的值则是在时间n的状态。
如果Xn + 1对于过去状态的条件概率分布仅是Xn的一个函数,则这里x为过程中的某个状态。
上面这个恒等式可以被看作是马尔可夫性质。
马尔可夫在1906年首先做出了这类过程。
而将此一般化到可数无限状态空间是由柯尔莫果洛夫在1936年给出的。
马尔可夫链与布朗运动以及遍历假说这两个二十世纪初期物理学重要课题是相联系的,但马尔可夫寻求的似乎不仅于数学动机,名义上是对于纵属事件大数法则的扩张。
马尔可夫链是满足下面两个假设的一种随机过程:1、t+l时刻系统状态的概率分布只与t时刻的状态有关,与t时刻以前的状态无关;2、从t时刻到t+l时刻的状态转移与t的值无关。
一个马尔可夫链模型可表示为=(S,P,Q),其中各元的含义如下:1)S是系统所有可能的状态所组成的非空的状态集,有时也称之为系统的状态空间,它可以是有限的、可列的集合或任意非空集。
本文中假定S是可数集(即有限或可列)。
用小写字母i,j(或S i,S j)等来表示状态。
2)是系统的状态转移概率矩阵,其中Pij表示系统在时刻t处于状态i,在下一时刻t+l处于状态i的概率,N是系统所有可能的状态的个数。
对于任意i∈s,有。
3)是系统的初始概率分布,qi是系统在初始时刻处于状态i的概率,满足。
[编辑]马尔可夫链模型的性质马尔可夫链是由一个条件分布来表示的P(Xn + 1 | X n)这被称为是随机过程中的“转移概率”。
这有时也被称作是“一步转移概率”。
二、三,以及更多步的转移概率可以导自一步转移概率和马尔可夫性质:同样:这些式子可以通过乘以转移概率并求k−1次积分来一般化到任意的将来时间n+k。
边际分布P(Xn)是在时间为n时的状态的分布。
初始分布为P(X0)。
该过程的变化可以用以下的一个时间步幅来描述:这是Frobenius-Perron equation的一个版本。
这时可能存在一个或多个状态分布π满足:其中Y只是为了便于对变量积分的一个名义。
这样的分布π被称作是“平稳分布”(Stationary Distribution)或者“稳态分布”(Steady-state Distribution)。
一个平稳分布是一个对应于特征根为1的条件分布函数的特征方程。
平稳分布是否存在,以及如果存在是否唯一,这是由过程的特定性质决定的。
“不可约”是指每一个状态都可来自任意的其它状态。
当存在至少一个状态经过一个固定的时间段后连续返回,则这个过程被称为是“周期的”。
[编辑]离散状态空间中的马尔可夫链模型如果状态空间是有限的,则转移概率分布可以表示为一个具有(i,j)元素的矩阵,称之为“转移矩阵”:Pij = P(X n + 1 = i | X n = j)对于一个离散状态空间,k步转移概率的积分即为求和,可以对转移矩阵求k次幂来求得。
就是说,如果是一步转移矩阵,就是k步转移后的转移矩阵。
平稳分布是一个满足以下方程的向量:在此情况下,稳态分布π * 是一个对应于特征根为1的、该转移矩阵的特征向量。
如果转移矩阵不可约,并且是非周期的,则收敛到一个每一列都是不同的平稳分布π* ,并且,独立于初始分布π。
这是由Perron-Frobenius theorem所指出的。
正的转移矩阵(即矩阵的每一个元素都是正的)是不可约和非周期的。
矩阵被称为是一个随机矩阵,当且仅当这是某个马尔可夫链中转移概率的矩阵。
注意:在上面的定式化中,元素(i,j)是由j转移到i的概率。
有时候一个由元素(i,j)给出的等价的定式化等于由i转移到j的概率。
在此情况下,转移矩阵仅是这里所给出的转移矩阵的转置。
另外,一个系统的平稳分布是由该转移矩阵的左特征向量给出的,而不是右特征向量。
转移概率独立于过去的特殊况为熟知的Bernoulli scheme。
仅有两个可能状态的Bernoulli scheme被熟知为贝努利过程[编辑]马尔可夫链模型的应用[编辑]科学中的应用马尔可夫链通常用来建模排队理论和统计学中的建模,还可作为信号模型用于熵编码技术,如算法编码。
马尔可夫链也有众多的生物学应用,特别是人口过程,可以帮助模拟生物人口过程的建模。
隐蔽马尔可夫模型还被用于生物信息学,用以编码区域或基因预测。
马尔可夫链最近的应用是在地理统计学(geostatistics)中。
其中,马尔可夫链用在基于观察数据的二到三维离散变量的随机模拟。
这一应用类似于“克里金”地理统计学(Kriging geostatistics),被称为是“马尔可夫链地理统计学”。
这一马尔可夫链地理统计学方法仍在发展过程中。
[编辑]人力资源中的应用马尔可夫链模型主要是分析一个人在某一阶段内由一个职位调到另一个职位的可能性,即调动的概率。
该模型的一个基本假设就是,过去的内部人事变动的模式和概率与未来的趋势大体相一致。
实际上,这种方法是要分析企业内部人力资源的流动趋势和概率,如升迁、转职、调配或离职等方面的情况,以便为内部的人力资源的调配提供依据。
它的基本思想是:通过发现过去组织人事变动的规律,以推测组织在未来人员的供给情况。
马尔可夫链模型通常是分几个时期收集数据,然后再得出平均值,用这些数据代表每一种职位中人员变动的频率,就可以推测出人员变动情况。
具体做法是:将计划初期每一种工作的人数量与每一种工作的人员变动概率相乘,然后纵向相加,即得到组织内部未来劳动力的净供给量。
其基本表达式为:N i(t):t时间内I类人员数量;P ji:人员从j类向I类转移的转移率;V i(t):在时间(t-1,t)I类所补充的人员数。
企业人员的变动有调出、调入、平调、晋升与降级五种。
表3 假设一家零售公司在1999至2000年间各类人员的变动情况。
年初商店经理有12人,在当年期间平均90%的商店经理仍在商店内,10%的商店经理离职,期初36位经理助理有11%晋升到经理,83%留在原来的职务,6%离职;如果人员的变动频率是相对稳定的,那么在2000年留在经理职位上有11人(12×90%),另外,经理助理中有4人(36×83%)晋升到经理职位,最后经理的总数是15人(11+4)。
可以根据这一矩阵得到其他人员的供给情况,也可以计算出其后各个时期的预测结果。
假设的零售公司的马尔可夫分析,见下表:区域经理(n=96) 11%1166%638%815%14部门经理(=288) 10%2972%2072%616%46销售员(=1440) 6%8674%106625%228供给预测15 41 92 301 1072 351[编辑]马尔可夫模型案例分析[1]案例:在信用卡账户行为变化预测中的应用信用卡业务是商业银行的零售业务,信用卡的消费金额是银行的应收账款.在此,我们可以借鉴零售行业应收账款状态变化的预测方法对信用卡账户的行为变化进行描述和预测。
对信用卡账户的马尔可夫过程进行研究,主要解决新增贷款发生周期性变化的情况下利用马尔可夫过程预测不同时刻的信用卡账户各状态下的金额、已偿付态和坏帐态的金额、全部应收款的现值及它们的方差计算等内容,以为商业银行信用卡账户的行为风险管理提供方法依据。
[编辑]马尔可夫模型的建立马尔可夫状态转移模型是在满足“马氏性”和“平稳性”的基础上建立的.假定银行的信用卡账户中每期处于不同期限的逾期贷款数量只与上期逾期贷款的数量与结构有关,而与前期的状态无关,这就满足了“马氏性”。
同时,在外部经济环境稳定、人口特征比较稳定、银行的信用卡管理技术和方法没有发生重大变化的情况下,可以认为逾期贷款由一种状态转移到另一种状态的概率在各期是保持不变的,即每年的转移概率矩阵基本保持稳定,满足了马氏链的“平稳性”要求.这样,银行就可以通过往年的数据资料模拟出比较精确的转移概率矩阵,对信用卡账户的行为状态做出预测和评估,下面给出具体分析。
假设某一银行在时间i有一定的信用卡应收账款,当前或者随后的时间内这些余额都可以划分为n个时间段(即状态。
对于这批在时间i的应收账款而言,有:B0=逾期为0期的应收账款余额(也就是当前期);B1 = 逾期为1期的应收账款余额;…Bj = 逾期为j期的应收账款余额;…Bn− 1 = 逾期为n-1期的应收账款余额;Bn = 逾期为n期的应收账款余额。
实践中,时间段的数目将视情况而定,最后一个时间段主要依赖于银行应收账款的“冲销”原则,美国的信用卡贷款一般拖欠180天以上即成为呆账予以“冲销”.虽然拖欠账款最终也可能得到偿还,但是将超过规定还款期限的应收账款归入坏帐种类中是很自然的会计程序。
一般而言,我们可以让Bjk表示从i时刻处于j状态转移到i+1时刻处于k状态的账户的金额.用这种方法,我们可以对处于i时刻的所有应收账款做出在i+1时刻的一步转移账户.需要注意的是,还应该有一个“时间”状态应该加入到先前所描述的分类中,这一状态就是已付款状态,用表示.在i时刻任何一种分类状态从0到n的账户在i+1时刻都可以转移到状态.这样,i时刻的应收账款账户可以用一个n+2维矩阵来表示,矩阵中的每一项Bjk表示i时刻j状态转移为i+1时刻k状态的金额,如下所示:对信用卡账户而言,需要注意的是,当状态Bjk中的j<i时,应理解为i时刻处于状态j的账户,在随后的i+1时刻(一般为30天后)偿还了部分的利息,使得应收账款(贷款)又转变为k状态。
从n+2维应收账款矩阵B可以导出n+2维转移概率矩阵P.转移概率矩阵P中的每一项目表示在特定时间内某一账户由一种状态转移到另一状态的可能性.这样的话,一个隐含假设是,转移概率矩阵的考察周期和应收账款分类的考察周期是相同的.一般情况下,转移概率Pjk表示的是i时刻j状态的账款转移到i+1时刻k状态账款的可能性.根据应收账款矩阵B及Bjk,转移概率P jk可被定义为:(1)在应用转移概率矩阵时需要注意两点。