初一数学竞赛模拟试题(1)

合集下载

七年级上学期数学竞赛试题(含答案)

七年级上学期数学竞赛试题(含答案)

学习资料七年级数学竞赛试题(一)一、精心选一选(将唯一正确答案的代号填在题后的答题卡中 12×3分=36分) 1、43-的绝对值是( ) A 、34- B 、34 C 、43- D 、432、下列算式正确的是( ) A 、239-= B 、()1414⎛⎫-÷-= ⎪⎝⎭C 、5(2)3---=-D 、()2816-=- 3、如果x 表示有理数,那么x x +的值( )A 、可能是负数B 、不可能是负数C 、必定是正数D 、可能是负数也可能是正数 4、下列各题中计算结果正确的是( )A 、0275.3=-ab ab B 、xy y x 532=+C 、2245a b ab ab -=-D 、2x x +=3x5、如图,数轴上的点A 所表示的数为k ,化简1k k +-的结果为( ) A 、1 B 、21k - C 、21k + D 、12k-6、一商店将某种服装按成本提高40%标价,又以8折优惠卖出,结果每件服装仍可获利15元,则这种服装每件的成本价是( ) A 、125元 B 、135元 C 、145元 D 、150元 7、儿子今年12岁,父亲今年39岁,( )父亲的年龄是儿子的年龄的4倍. (A )3年后; (B )3年前; (C )9年后; (D )不可能. 8、老师讲了多项式的加减,放学后,某同学回家拿出笔记,认真地复习老师讲的内容,他突然发现一道题222221131(3)(4)2222x xy y x xy y x -+---+-=- +2y 空格的地方被钢笔水弄污了,那么空格中的一项是( ) A 、7xy - B 、7xy C 、xy D 、xy - 9、把方程17.012.04.01=--+x x 中分母化整数,其结果应为( ) A 、17124110=--+x x B、107124110=--+x xC、1710241010=--+x x D、10710241010=--+x x10、观察下列算式:331=,932= ,2733=,8134=,24335=,72936=,218737=,656138=…………;那么20113的末位数字应该是( )A 、 3B 、 9C 、 7D 、 111、七年级的两名爱好数学的学生,在学完第三章《一元一次方程》后,一位同学对另一个同学说:“方程x x x -+-=--321312与方程4223324xk kx --=+-的解相同,k 的值是多少?”( )A 、0B 、 2C 、 1D 、–112、某出租车的收费标准是:起步价7元(即行驶距离不超过3km 都需付7元车费),超过3km 以后,每增加1km ,加收2.4元(不足1km 按1km 计). 某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程的最大值是( ) A 、11 B 、8 C 、7 D 、5 二、细心填一填(6×3分=18分) 13、211-的相反数是 ,倒数是 ,绝对值是 . 14、若x 2+3x -5的值为7,则2-9x -3x 2的值为__________. 15、一个长方形的周长26cm ,这个长方形的长减少1cm ,宽增2cm ,就可成为一个正方A学习资料00201003...-x002003..-形,设长方形的长为x cm ,可列方程是______________________________. 16、已知362y x 和-313m nx y 是同类项,则29517m mn --的值是 . 17、观察下列各式:2311=,233321=+,23336321=++,23333104321=+++,………根据观察,计算:333310321++++ 的值为______________. 18、一系列方程:第1个方程是32=+x x ,解为2=x ;第2个方程是532=+xx ,解为6=x ;第3个方程是743=+xx ,解为12=x ;…,根据规律,第10个方程是___________,其解为____________.三、用心做一做(本大题共7小题,满分46分) 19、计算:(每题4分,共8分)(1) 12524()236-⨯+-; (2) )3()4()2(8102-⨯---÷+-20、化简:(每题3分,共6分)(1) )]3(33[2b a b a ---- ; (2) )]3-(-7[-122222b a ab b a ab21、解方程:(每题3分,共6分) (1) (2)22、(6分)先化简,再求值:2223(2)x y x y +--(),其中21=x ,1-=y .23、( 6分)在广州亚运会中,志愿者们手上、脖子上的丝巾非常美丽.车间70名工人承接了制作丝巾的任务,已知每人每天平均生产手上的丝巾1 800条或者脖子的丝巾1 200条,一条脖子上的丝巾要配两条手上的丝巾.为了使每天生产的丝巾刚好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾?24、( 6分)如图所示,是某年12月份的日历,用一个矩形在日历内任圈出4个数。

数学竞赛试题初一及答案

数学竞赛试题初一及答案

数学竞赛试题初一及答案一、选择题(每题2分,共10分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果a和b是两个非零实数,且a+b=5,那么a-b的最大值是多少?A. 5B. 4C. 3D. 23. 一个数的平方根是它本身,这个数可能是:A. 0B. 1C. -1D. 44. 下列哪个选项是4的倍数?A. 7B. 8C. 9D. 105. 如果一个三角形的内角和为180°,那么一个四边形的内角和是多少度?A. 360°B. 540°C. 720°D. 900°二、填空题(每题2分,共10分)6. 一个数的绝对值是它与____的距离。

7. 圆的周长公式是C=__。

8. 如果一个数的立方等于它本身,那么这个数可能是____。

9. 一个直角三角形的两条直角边分别为3和4,那么它的斜边长是____。

10. 一个数的倒数是1/这个数,那么1的倒数是____。

三、简答题(每题5分,共15分)11. 解释什么是有理数,并给出两个有理数的例子。

12. 什么是质数?请列出前5个质数。

13. 描述如何使用勾股定理来计算直角三角形的斜边长度。

四、计算题(每题10分,共20分)14. 计算下列表达式的值:(2+3)×(2-3)。

15. 解下列方程:2x + 5 = 13。

五、解答题(每题15分,共30分)16. 一个长方形的长是15厘米,宽是10厘米,求它的周长和面积。

17. 一个班级有40名学生,其中1/4是男生,1/3是女生,剩余的是教师。

求男生、女生和教师的人数。

答案:一、选择题1. B2. A3. A4. B5. A二、填空题6. 07. 2πr(或πd,d为直径)8. 0, ±19. 5 10. 1三、简答题11. 有理数是可以表示为两个整数的比的数,例如1/2和3。

12. 质数是大于1的自然数,且除了1和它本身外,不能被其他自然数整除的数。

初中数学竞赛专题训练试题及解析(共10套)

初中数学竞赛专题训练试题及解析(共10套)

初中数学竞赛专项训练(1)(实 数)一、选择题1、如果自然数a 是一个完全平方数,那么与a 之差最小且比a 大的一个完全平方数是( ) A. a +1B. a 2+1C. a 2+2a+1D. a+2a +12、在全体实数中引进一种新运算*,其规定如下:①对任意实数a 、b 有a *b=(a +b )(b -1)②对任意实数a 有a *2=a *a 。

当x =2时,[3*(x *2)]-2*x +1的值为 ( ) A. 34B. 16C. 12D. 63、已知n 是奇数,m 是偶数,方程⎩⎨⎧=+=+m y x n y 28112004有整数解x 0、y 0。

则( )A. x 0、y 0均为偶数B. x 0、y 0均为奇数C. x 0是偶数y 0是奇数D. x 0是奇数y 0是偶数4、设a 、b 、c 、d 都是非零实数,则四个数-ab 、ac 、bd 、cd ( ) A. 都是正数B. 都是负数C. 两正两负D. 一正三负或一负三正5、满足等式2003200320032003=+--+xy x y x y y x 的正整数对的个数是( ) A. 1B. 2C. 3D. 46、已知p 、q 均为质数,且满足5p 2+3q=59,由以p +3、1-p +q 、2p +q -4为边长的三角形是 A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形7、一个六位数,如果它的前三位数码与后三位数码完全相同,顺序也相同,由此六位数可以被( )整除。

A. 111B. 1000C. 1001D. 11118、在1、2、3……100个自然数中,能被2、3、4整除的数的个数共( )个 A. 4 B. 6C. 8D. 16二、填空题 1、若20011198********⋯⋯++=S ,则S 的整数部分是____________________2、M 是个位数字不为零的两位数,将M 的个位数字与十位数字互换后,得另一个两位数N ,若M -N 恰是某正整数的立方,则这样的数共___个。

初一创新杯数学邀请赛模拟试题集锦(5套)

初一创新杯数学邀请赛模拟试题集锦(5套)

初一数学“创新杯”邀请赛赛前训练题-1一、选择题1.如图,已知B 是线段AC 上的一点,M 是线段AB 的中点,N 是线段AC 的中点,P 为NA 的中点,Q 是AM 的中点,则MN:PQ=( )QP M N A CBA.1B.2C.3D.4 2.若0<a ,0>b ,0<+b a ,则下列关系中正确的是( )A.a b b a ->->>B.b b a a ->>->C.a b a b ->->>D.a b b a >->>-3.若a ,b ,c 是非零有理数,且0=++c b a ,则abc abcc c b b a a +++所有可能值为( )A.0B.1或-1C.-1D.14.计算:)514131)(615141311()61514131)(5141311(++++++-++++++=( )A.21B.31C.41D.61 5.已知实数a ,b 满足ab =1且b a M +++=1111,bba a N +++=11,则( ) A.N M > B.N M < C.N M = D.M 、N 的大小不能确定 6.观察以下数组:(1),(3,5),(7,9,11),(13,15,17,19),……2011在( )A.第44组B.第45组C.第46组 D 无法确定 7.已知:523=-++x x ,54+-=x y ,则y 的最大值是( )A.12B.15C.17D.无法确定 8.有一块试验地形状为等边三角形(设其为△ABC ),为了解情况,管理员甲从顶点A 出发,沿AB —BC —CA 的方向走了一圈回到顶点A 处。

管理员乙从BC 边上的一点D 出发,沿DC —CA —AB —BD 的方向走了一圈回到出发点D 处,则甲、乙两位管理员从出发到回到原处,在途中身体( )A.甲、乙都转过︒180B.甲转过︒120,乙转过︒180C.甲、乙都转过︒360D.甲转过︒240,乙转过︒3609.在九张卡片上分别写着数字1,2,3,……9,现将卡片顺序打乱,让空白面朝上,再写出1,2,3……,9,然后将每张卡片上的两个数字作差,则九个差的积( ) A.一定是奇数 B.可能是奇数也可能是偶数 C.一定是偶数 D.一定是负数 10.一个四位数能被9整除,去掉末位数字后所得的三位数恰好是4的倍数,这样的四位数中最大的一个的末位数字是( )A.6B.4C.3D.2二、填空题11.已知两个不相等的质数的和是一个质数,则较小的质数的倒数是 。

初中数学竞赛模拟试卷试题

初中数学竞赛模拟试卷试题

初中数学竞赛模拟试卷试题初中数学竞赛模拟试题 (1)一、选择题(每题 6 分,共 30 分)1.方程 (x 2x 1) x 3 1的所有整数解的个数是()个( A )2(B )3(C ) 4(D )52.设△ ABC 的面积为 1, D 是边 AB 上一点,且 AD 1.若在边 AC 上取一点 E ,使四边形 DECB 的面积为 3 ,则CE的值为( AB3)4EA(A )1(B )1(C )1(D )1DC23453.以下列图,半圆 O 的直径在梯形 ABCD 的底边 AB 上,且与其余三边 BC ,CD ,DA 相切,若 BC =2,DA =3,则 AB 的长() A ·B(A )等于 4 ( B )等于 5 ( C )等于 6 ( D )不能够确定O4.在直角坐标系中, 纵、横坐标都是整数的点, 称为整点。

设 k 为整数, 当直线 y x 2与直线 ykx 4 的交点为整点时,k 的值能够取()个(A )8 个 (B )9 个(C )7 个(D )6 个5.世界杯足球赛小组赛,每个小组4 个队进行单循环竞赛,每场竞赛胜队得 3 分,败队得 0 分,平局时两队各得 1 分.小组赛完后, 总积分最高的 2 个队出线进入下轮竞赛. 如果总积分相同, 还有按净胜球数排序. 一个队要保证出线, 这个队最少要积 ( )分.( A )5(B )6(C )7(D )8二、填空题(每题 6 分,共 30 分)6.当 x 分别等于1 , 1 , 1 , 1 , 1, 1 ,2000 ,2001,2002 ,2005 2004 2003 2002 2001 20002003 , 2004 , 2005 时,计算代数式x 2 的值,将所得的结果相加,其和等1 x2于.7.关于 x 的不等式 ( 2a b) x > a 2b 的解是 x < 5,则关于 x 的不等式 ax b < 0 的解为.28.方程 x 2px q 0 的两根都是非零整数,且Ap q 198 ,则 p =.F 9.以下列图, 四边形 ADEF 为正方形, ABCD 为等腰直角三角形, D 在 BC 边上,△ ABC 的面积等于98,BD ∶ DCBDC= 2∶ 5.则正方形 ADEF 的面积等于.E10.有n 个数x1, x2,⋯,x n,它每个数的只能取0, 1,- 2 三个数中的一个,且 x1 x2 ⋯x n 5 , x12 x22 ⋯x n2 19 ,x15 x52 ⋯x5n的是.三、解答(每小15 分,共60 分)11.如,凸五形ABCDE 中,已知S△ABC= 1,且EC∥ AB ,AD ∥ BC,BE ∥CD,CA ∥ DE , DB ∥ EA.求五形ABCDE 的面.DE CFA B12.在正数范内,只存在一个数是关于x 2 kx 3x 的方程3x k 的解,求数kx 1的取范.13.如,一次函数的象点P( 2,3),交 x 的正半与 A ,交 y 的正半与B,求△ AOB 面的最小.yBPO A x14.预计用 1500 元购买甲商品x 个,乙商品y个,不料甲商品每个涨价 1.5 元,乙商品每个涨价 1 元,尽管购买甲商品的个数比预定数减少10 个,总金额仍多用29 元.又若甲商品每个只涨价 1 元,并且购买甲商品的数量只比预定数少 5 个,那么甲、乙两商品支付的总金额是1563.5 元.( 1)求x、y的关系式;( 2)若预计购买甲商品的个数的 2 倍与预计购买乙商品的个数的和大于205,但小于210,求x、y的值.参照答案一、选择题1.C 2.B3. B 4.A 5.C二、填空题6. 6 7. x 8 8.- 202 9. 116 10.- 125 三、解答题11.∵ BE ∥ CD , CA ∥ DE , DB ∥ EA , EC ∥AB , AD ∥ BC ,∴ S △BCD = S △CDE = S △DEA = S △EAB = S △ACB = S △ACF = 1.设 S △ AEF = x ,则 S △DEF = 1 x ,又△ AEF 的边 AF 与△ DEF 的边 DF 上的高相等, 因此,DE 1 x,而△ DEF ∽△ ACF ,则有AFxS DEF2(1 x) 2DF1 x .S ACFAFx 25 1整理解得 x.2故 S△ △55 .ABCDE = 3S ABC + S AEF =212.原方程可化为 2x 23x (k 3) 0,①( 1)当△= 0 时, k33 x 23 满足条件;, x 14812( 2)若 x 1是方程①的根,得 2 3 1 (k3) 0 , k4 .此时方程①的另一个根为1,故原方程也只有一根 x1 ;22 k 3( 3)当方程①有异号实根时,x 1 x 20 ,得 k3 ,此时原方程也只有2一个正实数根;( 4)当方程①有一个根为 0 时, k3 ,另一个根为 x3,此时原方程也只有一2个正实根。

初中数学竞赛模拟试题

初中数学竞赛模拟试题

初中数学竞赛模拟试题文/安振平苟春鹏第一试(共70分)一、选择题(每小题7分,共42分)1.a、b、c、d都是实数.若|a+b|=4,|c+d|=2,且|(a-c)+(b-d)|=(c-a)+(d-b),则a+b+c+d的最大值是().A.6 B.2 C.-2 D.-62.若实数x、y满足x2+y2-xy-y+x<0,则有().A.x2+y2<1 B.x2+y2=1C.x2+y2>1 D.x2+y2≥13.如图1,ABCDE是正五边形,AP、AQ和AR是由A向CD、CB和DE(或延长线)所引的垂线.设O是正五边形的中心,OP=1,则AO+AQ+AR等于().图1A.3 B.1+C.4 D.2+4.已知△ABC的两边长分别为2和4,且有一个内角等于30°,则这个三角形是().A.锐角三角形B.直角三角形C.钝角三角形D.直角三角形或钝角三角形5.正三角形ABC的高等于⊙O的半径,⊙O在AB上滚动,切点为T,⊙O交AC、BC于M、N则().图1A.在0°~30°变化B.在30°~60°变化C.在60°~90°变化D.保持60°不变6.已知实数a、b、c满足a2+ab+ac<0,则关于x的方程ax2+bx+c=0(). A.有两个不同的实根B.有两个相等的实根C.无实数根D.以上都不对二、填空题(每小题7分,共28分)1.设x、y、z为3个非零实数,则(x/|x|)+(|y|/y)+(z/|z|)+(xy/|xy|)+(|yz|/yz)+(zx/|zx|)+(|xyz|/xyz)=_______.2.折叠矩形纸片ABCD,先折出折痕(对角线)BD,再折叠使AD边与对角线BD重合,得折痕DG(图3).若AB=2,BC=1,则AG=_________.图33.某种商品,当出售价格是15元时卖出500个,价格每上涨1元,卖出的个数就要减少20个,要使售货金额取得最大值,价格应定为__________元.4.在△ABC中,∠ACB=75°,P点是BC边上的一点,且PC=2BP,∠APC=60°,则∠ABC=_________.第二试(共70分)一、(本题满分20分)如,OM是⊙O的半径,AB切⊙O于M,连结OA、OB交⊙O于C、D两点,且AC=BD,求证:AM=BM.图4二、(本题满分25分)解方程组=10,①=10.② 三、(本题满分25分)设x、y、z为任意实数,求证:≥.参考答案第一试一、选择题1.选C.由|a+b|=4,得a+b=±4,由|c+d|=2,得c+d=±2.∴|(a-c)+(b-d)|=(c-a)+(d-b),即|(a+b)-(c+d)|=(c+d)-(a+b),∴c+d>a+b,则c+d必等于±2,a+b必等于-4,∴a+b+c+d等于-2或-6.故a+b+c+d的最大值为-2.2.选A.对已知不等式两边乘以2,得0>2x2+2y2-2xy-2y+2x=(x2+y2-1)+[x2+y2+12-2xy-2y+2x]=(x2+y2-1)+(x-y+1)2,即x2+y2-1<-(x-y+1)2≤0.∴x2+y2<1.3.选C.∵S△ACD+S△ABC+S△ADE=S正五边形ABCDE=5S△COD,即(1/2)CD²AP+(1/2)BC²AQ+(1/2)ED²AR=5²(1/2)CD²OP.由CD=BC=DE,有AP+AQ+AR=5OP.又OP=1,AP=AO+OP,∴AO+1+AR+AQ=5,即AO+AQ+AR=4.4.选D.不妨设AC=2,BC=4,此题没有明确哪一个内角等于30°,因此三个内角都有可能等于30°,所以分以下三种情况:(第4题)①如图(1),当∠A=30°时,由BC>AC得∠B<∠A,∴∠B<30°,而且∠C>120°,即△ABC是钝角三角形;②如图(2),当∠B=30°时,过点C作CA⊥AB,垂足为A′,在Rt△A′BC中,∵∠B=30°,∴BC=2A′C,∵BC=4,AC=2,即BC=2AC,∴AC=A′C,即A′与A重合.故∠A=90°,∴△ABC是直角三角形.③如图(3),当∠C=30°时,∵AB>BC-AC,BC-AC=2=AC,∴AB>AC,∴∠B<∠C,于是有∠B<30°,∴∠A>120°,即△ABC是钝角三角形. 综合①、②、③得这个三角形是直角三角形或钝角三角形.5.选D.延长BC交⊙O于G,过C、O作⊙O的直径EF交⊙O于E、F,设CA交⊙O于M,连MG交EF于P(参看右图).(第5题)由已知得EF∥AB,∠ECM=∠A=60°,∠ECG=∠B=60°,∴∠ECM=∠ECG=60°.由于EF是⊙O的直径,由轴对称性质得EG=EM,GM⊥CE.从而∠BGM=30°,∴=60°.6.选A.Δ=b2-4ac,当c=0时,Δ>0显然成立.下设c≠0,将已知变形为a(a+b+c)<0,即说明a与a+b+c异号.构造函数f(x)=cx2+bx+a.∵f(0)=a,f(1)=a+b+c,∴f(x)的图象(抛物线)与x轴有两个交点,故判别式Δ=b2-4ac>0.综上知,b2>4ac.二、填空题1.填-1或7.设所求代数式的值为S,则S=(x/|x|)+(|y|/y)+(z/|z|)+(x/|x|)²(y/|y|)+(|y|/y)²(|z|/z)+(z/|z|)²(x/|x|)+(|x|/x)²(|y|/y)²(|z|/z)=(x/|x|)+(y/|y|)+(z/|z|)+(x/|x|)²(y/|y|)+(y/|y|)²(z/|z|)+(z/|z|)²(x/|x|)+(x/|x|)²(y/|y|)²(z/|z|)=((x/|x|)+1)((y/|y|)+1)((z/|z|)+1)-1 (∵(a/|a|)=|a|/a).因为对任意实数a≠0,有a/|a|1 (a>0),-1 (a<0),所以当x、y、z中至少有一个为负数时,S的值是-1;当x、y、z均为正数时,S的值是7. 2.填(+1)/2.(第2题)如图,设折叠后点A落在BD上A′点的位置,并设AG=x,则A′G=x,DA′=DA=BC=1,GB=2-x,且GA′⊥BD.∵BD==,∴A′B=-1.在Rt△BGA′中,A′G2+A′B2=GB2.解得AG=x=(+1)/2.3.填8000.设每个提价x元,总金额为y,则有y=500(15+x)-20x(15+x)=-20x2+200x+7500=-20(x-5)2+8000.显然当x=5时,y有最大值8000.因此要使销售金额最大,售出价格应定为15+5=20元,此时最大金额为8000元.4.填45°.(第4题)如图,过点C作CQ⊥AP,连结BQ.由∠APC=60°,∠ACB=75°,得∠CAQ=45°.∵AQ=CQ,又∠PCQ=30°,∴PQ=(1/2)PC=BP.则∠QBP=∠PQB=∠PCQ=30°.∴BQ=AQ=CQ,∠ABQ=∠BAQ=15°,则∠ABC=∠ABQ+∠QBP=15°+30°=45°.第二试一、如图,设AM=x,BM=y,OM=r,延长AO交⊙O于E,延长BO交⊙O于F.由切割线定理,得AM2=AC²AE,BM2=BD²BF,即(第一题)x2=AC(AO+OE)=AC(+OE)=AC(+r),①y2=BD(BO+OF)=BD(+OF2)=BD(+r).② ∵AC=BD,∴由①÷②,得x2/y2=(+r)/(+r),即x2-y2=(y2-x2)r.两边平方,整理得x2+2r2+y2=2.将上式两边平方,整理得(x2-y2)2=0.∴x2-y2=0,x=y,故AM=BM.二、由①得-5=-+5,分子有理化,得16(x-1)/(+5)=-9(y-1)/(+5).③对①-②的变形式-=-,作分子有理化,得(x-1)/(+)=(y-1)/(+).④ 由③³④,得16(x-1)2/(+5)(+)=-9(y-1)2/(+5)(+).⑤注意到⑤的左端非负,而右端非正,故有x-1=0,且y-1=0,∴x=y=1.三、在平面上建立坐标系xOy,并取三个点A(x,0),B(-y/2,-(/2)y),C(-z/2,(/2)z),则|AB|==,|AC|==,|BC|==.∵|AB|+|AC|≥|BC|,∴≥.。

浙教版-学年度七年级数学竞赛试卷1(含解析)

浙教版-学年度七年级数学竞赛试卷1(含解析)

绝密★启用前浙教版2018-2019学年初一数学竞赛试卷1题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明评卷人得分一.选择题(共8小题,4*8=32)1.小华利用计算机设计了一个计算程序,输入和输出的数据如下表:那么当输入数据是8时,输出的数据是()输入…12345…输出……A.B.C.D.2.在方格中,每个方格中除9、7外其余字母各表示一个数,已知其中任何3个连续方格中的数之和为19,则A+H+M+O等于()A.21 B.23 C.25 D.263.如果a、b、c是非零实数,且a+b+c=0,那么的所有可能的值为()A.0 B.1或﹣1 C.2或﹣2 D.0或﹣24.在代数式xy2z中,若x与y的值各减少25%,z的值增加25%,则代数式的值()A.减少B.减少C.减少D.减少5.如图,数轴上每个刻度为1个单位长度,点A对应的数为a,B对应的数为b,且b﹣2a=7,那么数轴上原点的位置在()A.A点B.B点C.C点D.D点6.一种“拍7”的游戏规定:把从1起的自然数中含7的数称作“明7”,把7的倍数称作“暗7”,那么在1﹣100的自然数中,“明7”和“暗7”共有()A.22个B.29个C.30个D.31个7.李红与王英用两颗骰子玩游戏,但是她们别开生面,不用骰子上的数字.这两颗骰子的一些面涂上了红色,而其余的面则涂上了蓝色.两人轮流掷骰子,游戏规则如下:两颗骰子朝上的面颜色相同时,李红是赢家;两颗骰子朝上的面颜色相异时,王英是赢家.已知第一颗骰子各面的颜色为5红1蓝,如果要使两人获胜机会相等,那么第2颗骰子上蓝色的面数是()A.6 B.5 C.4 D.38.把四张大小相同的长方形卡片(如图①按图②、图③两种放在一个底面为长方形(长比宽多6cm)的盒底上,底面未被卡片覆盖的部分用阴影表示,若记图②中阴影部分的周长C2,图③中阴影部分的周长为C3,则()A.C2=C3B.C2比C3大12cmC.C2比C3小6cm D.C2比C3大3cm第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人得分二.填空题(共8小题,4*8=32)9.在右图所示的4×4的方格中,记∠ABD=α,∠DEF=β,∠CGH=γ,则α,β,γ从小到大的排列顺序是.10.已知分式,当a、b扩大相同倍数时值不变,请你写出一个符合这一要求且与分母不同、只含字母a、b的分子来:.11.小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是分钟.12.已知方程组有正整数解,则整数m的值为.13.一个盖着瓶盖的瓶子里面装着一些水(如图所示),请你根据图中标明的数据,则瓶子的容积为cm3.14.若x>1,y>0且满足xy=x y,,则x+y的值为.15.已知甲、乙、丙三个科技攻关小组各有人数若干.现根据不同阶段的工作需要对其人员进行调整,第一次,丙组不动,从剩下两组的一组中调8人到另一组;第二次,乙组不动,从剩下两组的一组中调8人到另一组;第三次,甲组不动,从剩下两组的一组中调7人到另一组.最后甲组有5人,乙组有14人,丙组有6人,那么原来人数最多一组是组,这组原来有人.16.由自然数组成的一列数:a1,a2,a3,…,满足a1<a2<a3<…<a n<…,当n≥1时,有a n+2=a n+1+a n,如果a6=74,则a7的值为.评卷人得分三.解答题(共6小题,56分)17.(8分)已知a+b+c=0,a2+b2+c2=1,求ab+bc+ca和a4+b4+c4的值.18.(8分)甲、乙、丙、丁四人的年龄的和是108岁,甲50岁时,乙38岁,甲34时,丙的年龄是丁的3倍,求丁现在的年龄.19.(10分)在平面上有9条直线,无任何3条交于一点,则这9条直线的位置关系如何?才能使它们的交点恰好是26个,画出所有可能的情况(要求用直尺画正确).20.(10分)一个盒子里装有不多于200颗糖,如果每次2颗,3颗,4颗或6颗地取出,最终盒内都只剩一颗糖,如果每次11颗地取出,那么正好取完,求盒子里共有多少颗糖?21.(10分)某出租汽车停车站已停有6辆出租汽车,第一辆出租车出发后,每隔4分钟就有一辆出租汽车开出,在第一辆汽车开出2分钟后,有一辆出租汽车进站,以后每隔6分钟就有一辆出租汽车回站,回站的出租汽车,在原有的出租汽车依次开出之后又依次每隔4分钟开出一辆,问:第一辆出租汽车开出后,经过最少多少时间,车站不能正点发车?22.(10分)有一堆糖果平均分给若干个小朋友,规定按下面的规则取,第一个小朋友取10颗,再取余下的;接着第二个小朋友取20颗,再取余下的;如此继续下去,最后糖果被全部取光,问原来有多少颗糖果?小朋友有多少人?参考答案与试题解析一.选择题(共8小题)1.小华利用计算机设计了一个计算程序,输入和输出的数据如下表:那么当输入数据是8时,输出的数据是()输入…12345…输出……A.B.C.D.【分析】根据图表找出输出数字的规律:输出的数字中,分子就是输入的数,分母是输入的数字的平方加1,直接将输入数据代入即可求解.【解答】解:输出数据的规律为,当输入数据为8时,输出的数据为=,故选:C.【点评】此题主要考查数字的规律性问题,根据已有输入输出数据找出它们的规律,进而求解.2.在方格中,每个方格中除9、7外其余字母各表示一个数,已知其中任何3个连续方格中的数之和为19,则A+H+M+O等于()A.21 B.23 C.25 D.26【分析】由于任何相邻三个数字的和都是19,可由O+X+7=19倒推,即可求解.【解答】解:由题意可得:因为O+X+7=19且M+O+X=19,所以M=7;因为A+9+H=19且9+H+M=19,所以A=7;因为H+M+O=19.所以求A+H+M+O的值为19+7=26.故选:D.【点评】本题主要考查了数字变化类的一些简单的问题,关键要熟练掌握此类问题的解法.3.如果a、b、c是非零实数,且a+b+c=0,那么的所有可能的值为()A.0 B.1或﹣1 C.2或﹣2 D.0或﹣2【分析】根据a、b、c是非零实数,且a+b+c=0可知a,b,c为两正一负或两负一正,按两种情况分别讨论代数式的可能的取值,再求所有可能的值即可.【解答】解:由已知可得:a,b,c为两正一负或两负一正.①当a,b,c为两正一负时:;②当a,b,c为两负一正时:.由①②知所有可能的值为0.应选A.【点评】本题考查了分式的化简求值,涉及到绝对值、非零实数的性质等知识点,注意分情况讨论未知数的取值,不要漏解.4.在代数式xy2z中,若x与y的值各减少25%,z的值增加25%,则代数式的值()A.减少B.减少C.减少D.减少【分析】根据题意得出x与y的值都变为原来的75%,即为原来的,z的值变为原来的125%即,然后把它们代入代数式xy2z中即可.【解答】解:由已知条件得:x与y的值都变为原来的75%,即为原来的,z的值变为原来的125%即,∴=,∴1﹣=,∴代数式的值减小.故选:D.【点评】本题考查了代数式的求值,解题的关键是找出x、y、z的变化,然后代入代数式再求值.5.如图,数轴上每个刻度为1个单位长度,点A对应的数为a,B对应的数为b,且b﹣2a=7,那么数轴上原点的位置在()A.A点B.B点C.C点D.D点【分析】本题可根据数轴,设出B点坐标,则A点坐标可表示出,然后再与b﹣2a=7联立,即可求得结果.【解答】解:根据数轴,设出B点坐标(b,0),则表示出A点(b﹣3,0),因此可得b﹣3=a,联立b﹣2a=7,解得b=﹣1,∴原点在C处.故选:C.【点评】本题考查数轴的基本概念,结合题中条件,进行分析,得出a,b之间的关系即可.6.一种“拍7”的游戏规定:把从1起的自然数中含7的数称作“明7”,把7的倍数称作“暗7”,那么在1﹣100的自然数中,“明7”和“暗7”共有()A.22个B.29个C.30个D.31个【分析】由题意得“明7”和“暗7”各有19个,14个,但既是明7,又是暗7,有3个,7,70,77,即可得出答案.【解答】解:明7一共有10+9=19个,7,17,27,37,47,57,67,77,87,97,70,71,72,73,74,75,76,78,79;暗7一共有14个,7,14,21,28,35,42,49,56,63,70,77,84,91,98,既是明7,又是暗7,3个,即7,70,77,∴共有19+14﹣3=30个.故选:C.【点评】本题考查的是有理数,是基础知识比较简单.7.李红与王英用两颗骰子玩游戏,但是她们别开生面,不用骰子上的数字.这两颗骰子的一些面涂上了红色,而其余的面则涂上了蓝色.两人轮流掷骰子,游戏规则如下:两颗骰子朝上的面颜色相同时,李红是赢家;两颗骰子朝上的面颜色相异时,王英是赢家.已知第一颗骰子各面的颜色为5红1蓝,如果要使两人获胜机会相等,那么第2颗骰子上蓝色的面数是()A.6 B.5 C.4 D.3【分析】据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.【解答】解:根据题意列表可得当第2颗骰子上蓝色的面数是3时,两人获胜的机会相等.故选D.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.游戏双方获胜的概率相同,游戏就公平,否则游戏不公平.用到的知识点为:概率=所求情况数与总情况数之比.8.把四张大小相同的长方形卡片(如图①按图②、图③两种放在一个底面为长方形(长比宽多6cm)的盒底上,底面未被卡片覆盖的部分用阴影表示,若记图②中阴影部分的周长C2,图③中阴影部分的周长为C3,则()A.C2=C3B.C2比C3大12cmC.C2比C3小6cm D.C2比C3大3cm【分析】本题需先设小长方形的长为acm,宽为bcm,再结合图形分别得出图形②的阴影周长和图形③的阴影周长,比较后即可求出答案.【解答】解:设小长方形的长为acm,宽为bcm,大长方形的宽为xcm,长为(x+6)cm,∴②阴影周长为:2(x+6+x)=4x+12;∴③上面的阴影周长为:2(x﹣a+x+6﹣a),下面的阴影周长为:2(x+6﹣2b+x﹣2b),∴总周长为:2(x﹣a+x+6﹣a)+2(x+6﹣2b+x﹣2b)=4(x+6)+4x﹣4(a+2b),又∵a+2b=x+6,∴4(x+6)+4x﹣4(a+2b)=4x.∴C2比C3大12cm.故选:B.【点评】本题主要考查了整式的加减运算,在解题时要根据题意结合图形得出答案是解题的关键.二.填空题(共8小题)9.在右图所示的4×4的方格中,记∠ABD=α,∠DEF=β,∠CGH=γ,则α,β,γ从小到大的排列顺序是β<α<γ.【分析】根据网格,分别把α,β,γ分成两个角,然后与45°角的大小进行比较,从而即可得解.【解答】解:根据网格结构,∵∠DBM>45°,∠DFN=45°,∠ABM>∠FEN,∴∠DBM+∠ABM>∠DFN+∠FEN,即β<α,又∵∠CGH=90°,α<90°,∴α<γ,∴β<α<γ.故答案为:β<α<γ.【点评】本题利用网格考查了三角形的角的关系,把分成的角与45°角相比较是解题的关键.10.已知分式,当a、b扩大相同倍数时值不变,请你写出一个符合这一要求且与分母不同、只含字母a、b的分子来:ab.【分析】观察分式的分母,若a、b扩大相同倍数时,则分母扩大了这一倍数的平方,要使该分式的值不变,只需保证其分子也能扩大这一倍数的平方即可.【解答】解:根据分式的基本性质,则分子可以是ab.故答案为ab等.【点评】此题考查了分式的基本性质,要看已知的分母实际扩大的倍数.11.小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是4分钟.【分析】根据路程=速度×时间,则此题中需要用到三个未知量:设车的速度是a,人的速度是b,每隔t分发一班车.然后根据追及问题和相遇问题分别得到关于a,b,t的方程,联立解方程组,利用约分的方法即可求得t.【解答】解:设车的速度是a,人的速度是b,每隔t分发一班车.二辆车之间的距离是:at车从背后超过是一个追及问题,人与车之间的距离也是:at那么:at=6(a﹣b)①车从前面来是相遇问题,那么:at=3(a+b)②①﹣②,得:a=3b所以:at=4at=4即车是每隔4分钟发一班.【点评】注意:此题中涉及了路程问题中的追及问题和相遇问题.考查了对方程的应用,解方程组的时候注意技巧.12.已知方程组有正整数解,则整数m的值为﹣1或0或5.【分析】先解方程组,用m表示出方程组的解,根据方程组有正整数解得出m的值.【解答】解:方程组,∴x+my﹣x﹣3=11﹣2y,解得:(m+2)y=14,y=,∵方程组有正整数解,∴m+2>0,m>﹣2,又x=,故22﹣3m>0,解得:m<,故﹣2<m<,整数m只能取﹣1,0,1,2,3,4,5,6,7.又x,y均为正整数,∴只有m=﹣1或0或5符合题意.故答案为:﹣1或0或5.【点评】本题考查了二元一次方程组的解,难度较大,关键是根据已知条件列出关于m的不等式.13.一个盖着瓶盖的瓶子里面装着一些水(如图所示),请你根据图中标明的数据,则瓶子的容积为60cm3.【分析】结合图形,知水的体积不变,从而根据第二个图空着的部分的高度是2cm,可以求得水与空着的部分的体积比为4:2=2:1.结合第一个图中水的体积,即可求得总容积.【解答】解:由已知条件知,第二个图上部空白部分的高为7﹣5=2cm,从而水与空着的部分的体积比为4:2=2:1.由第一个图知水的体积为10×4=40,所以总的容积为40÷2×(2+1)=60立方厘米.故答案为:60.【点评】此题的关键是解决不同底的问题,能够有机地把两个图形结合起来,求得水与空着的部分的体积比.14.若x>1,y>0且满足xy=x y,,则x+y的值为.【分析】首先将xy=x y变形,得y=x y﹣1,然后将其代入,利用幂的性质,即可求得y的值,则可得x的值,代入x+y求得答案.【解答】解:由题设可知y=x y﹣1,∴x=yx3y=x4y﹣1,∴4y﹣1=1,故y=,∴x=,解得x=4,于是x+y=4+=.故答案为:.【点评】此题考查了同底数幂的性质:如果两个幂相等,则当底数相同时,指数也相同,根据将xy =x y变形,得y=x y﹣1是解题关键.15.已知甲、乙、丙三个科技攻关小组各有人数若干.现根据不同阶段的工作需要对其人员进行调整,第一次,丙组不动,从剩下两组的一组中调8人到另一组;第二次,乙组不动,从剩下两组的一组中调8人到另一组;第三次,甲组不动,从剩下两组的一组中调7人到另一组.最后甲组有5人,乙组有14人,丙组有6人,那么原来人数最多一组是乙组,这组原来有15人.【分析】每个组调整了两次,可以发现最后的3个数字都比14小,所以不可能出现一个组增加14人,或者减少14人,根据丙组最后有6人,所以甲组不动时,只能是从丙组调7人到乙组,乙组不动时,只能是从甲组调8人到丙组,丙组不动时,只能是从乙组调8人到甲组,根据此调动方法分别求出甲、乙、丙三组原来的人数即可判断.【解答】解:∵8+8=16,8+7=15,而最后最多的乙组只有14人,∴每个组只能调出一次,掉进一次,又∵丙组最后有6人,∴甲组不动时,从丙组调7人到乙组,乙组不动时,从甲组调8人到丙组,丙组不动时,从乙组调8人到甲组,甲组调进8人,调出8人,人数不变,原来有5人,乙组调进7人,调出8人,人数减少1,原来有14+1=15人,丙组调进8人,调出7人,人数增加1,原来有6﹣1=5人,∴原来人数最多一组是乙组,这组原来有15人.故答案为:乙,15.【点评】本题考查了三元一次方程组的应用,正确分析理解题意,找出调整人数的顺序,得到各小组最后的人数与原来人数的变化关系是解题的关键.16.由自然数组成的一列数:a1,a2,a3,…,满足a1<a2<a3<…<a n<…,当n≥1时,有a n+2=a n+1+a n,如果a6=74,则a7的值为119或120.【分析】设a1=a,a2=b,然后根据规律表示出a6与a7,再根据a6=74求出二元一次方程的解a、b 的值,然后代入a7的表达式计算即可.【解答】解:设a1=a,a2=b,则:a3=a2+a1=a+b,a4=a3+a2=(a+b)+b=a+2b,a5=a4+a3=(a+2b)+(a+b)=2a+3b,a6=a5+a4=(2a+3b)+(a+2b)=3a+5b=74,a7=a6+a5=(3a+5b)+(2a+3b)=5a+8b,由3a+5b=74与a1<a2,解得a=3,b=13或a=8,b=10,∴a7=5a+8b=5×3+8×13=119,或a7=5a+8b=5×8+8×10=120.故答案为:119或120.【点评】本题考查了数字变化规律的问题,设出a1与a2是解题的突破口,根据规律表示出a6与a7并求解关于a、b的二元一次方程是解题的难点.三.解答题(共6小题)17.已知a+b+c=0,a2+b2+c2=1,求ab+bc+ca和a4+b4+c4的值.【分析】把a+b+c=0两边平方,根据多项式乘多项式的法则进行计算,然后再把a2+b2+c2=1代入即可求出ab+bc+ca=﹣;把ab+bc+ca=﹣两边平方并整理求出a2b2+b2c2+c2a2的值,再把a2+b2+c2=1两边平方并代入计算即可求解.【解答】解:a+b+c=0,两边平方得:a2+b2+c2+2ab+2bc+2ca=0,∵a2+b2+c2=1,∴1+2ab+2bc+2ca=0,∴ab+bc+ca=﹣;ab+bc+ca=﹣两边平方得:a2b2+b2c2+c2a2+2ab2c+2abc2+2a2bc=,即a2b2+b2c2+c2a2+2abc(a+b+c)=,∴a2b2+b2c2+c2a2=,∵a2+b2+c2=1,∴两边平方得:a4+b4+c4+2a2b2+2b2c2+2c2a2=1,∴a4+b4+c4=1﹣2(a2b2+b2c2+c2a2)=1﹣=.故答案为:﹣,.【点评】本题考查了完全平方公式的拓广,运用多项式的乘法法则进行计算即可,因运算量较大,要小心仔细运算,以避免出错.18.甲、乙、丙、丁四人的年龄的和是108岁,甲50岁时,乙38岁,甲34时,丙的年龄是丁的3倍,求丁现在的年龄.【分析】设甲、乙、丙、丁的现在年龄分别为a,b,c,d岁,根据甲、乙、丙、丁四人的年龄的和是108岁可得a+b+c+d=108,根据甲50岁时,乙38岁,可得a﹣b=12,根据甲34时,丙的年龄是丁的3倍,可得c﹣(a﹣34)=3[d﹣(a﹣34)],三式联立,逐步消元分离出d后即可得出答案.【解答】解:设甲、乙、丙、丁的现在年龄分别为a,b,c,d岁,由题意得:,由③得:2a+c﹣3d=68④,①+②得:2a+c+d=120⑤,⑤﹣④得:4d=52,故可得d=13,答:丁现在13岁.【点评】本题考查了多元一次方程组的知识,年龄问题是此类题目经常涉及的,像这样的含有四个未知元素,只有三个方程时,难点一般不在列方程,而在于通过消元,在消元前要仔细观察,有目的为之.19.在平面上有9条直线,无任何3条交于一点,则这9条直线的位置关系如何?才能使它们的交点恰好是26个,画出所有可能的情况(要求用直尺画正确).【分析】从平行线的角度考虑,先考虑二条直线都平行,再考虑三条、四条、五条平行,作出草图即可看出.【解答】解:这9条直线的位置关系为:两两相交或平行,有两种情况,分别如下:【点评】本题考查平行线与相交线的综合运用.注意运用分类讨论思想.20.一个盒子里装有不多于200颗糖,如果每次2颗,3颗,4颗或6颗地取出,最终盒内都只剩一颗糖,如果每次11颗地取出,那么正好取完,求盒子里共有多少颗糖?【分析】根据题意可知盒内糖的颗数是11的倍数,因为如果每次2颗,3颗,4颗或6颗地取出,最终盒内都只剩一颗糖,所以盒内糖的颗数是奇数,分情况讨论是,只讨论11的奇数倍即可,确定最后结果是还要注意要不能被2、3、4、6整除.【解答】解:因为每次取11颗正好取完,所以盒内的糖果数必是11的倍数,而11的偶数倍,都能被2整除,所以不合题意,倍数列表如下:5倍7倍9倍11倍13倍15倍17倍19倍原数11557799121143165187209因为121﹣1=120,而120都能被2、3、4、6整除,所以盒子里共有121颗糖.【点评】此题主要考查了数的整除性在实际生活中的应用,体现了数学与生活的密切联系,应用了分类讨论思想.21.某出租汽车停车站已停有6辆出租汽车,第一辆出租车出发后,每隔4分钟就有一辆出租汽车开出,在第一辆汽车开出2分钟后,有一辆出租汽车进站,以后每隔6分钟就有一辆出租汽车回站,回站的出租汽车,在原有的出租汽车依次开出之后又依次每隔4分钟开出一辆,问:第一辆出租汽车开出后,经过最少多少时间,车站不能正点发车?【分析】易得6辆车全部开出需要20分钟的时间,进而得到从第五辆汽车回站就不能正点发车,依此可得最少时间.【解答】解:∵站内原有的6辆车全部开出用时为4×(6﹣1)=20分钟.此时站内又有出租车(20﹣2)÷6+1=4(辆)设再经过x分钟站内无车.+4=x=4848+20+4=72(分钟)答:经过至少72分钟站内无车.就不能正点发车.【点评】考查推理与论证;得到从第五辆汽车回站就不能正点发车,是解决本题的突破点.22.有一堆糖果平均分给若干个小朋友,规定按下面的规则取,第一个小朋友取10颗,再取余下的;接着第二个小朋友取20颗,再取余下的;如此继续下去,最后糖果被全部取光,问原来有多少颗糖果?小朋友有多少人?【分析】分别表示出2个小朋友所取走的糖果数,让其相等列式求得糖果数,进而算出每个小朋友获得的糖果数,让490除以每个小朋友获得的糖果数即为小朋友的个数.【解答】解:设共有y颗糖果,则第1个小朋友取走的糖果为10+颗,第二个小朋友取走的糖果为20+[y﹣10﹣()﹣20]×=20+颗;(3分)因为糖果是平均分配的,因此可得10+=20+(7分)解得y=490,(10分)每个小朋友分得10+60=70个糖果,有小朋友490÷70=7个.答:有490个糖果,7个小朋友.【点评】考查一元一次方程的应用;得到两个小朋友所取走的糖果数的关系式是解决本题的关键.。

初中数学竞赛模拟试卷(含答案和解析)

初中数学竞赛模拟试卷(含答案和解析)

初中数学竞赛模拟试题011.已知等比数列2341,2,2,2,2,…和等差数列2,7,12,17,22,…,将同时出现这两个数列中的数按从小到大的顺序排成一个新的数列{}n x ,记1002k x =,则_________k =. 解:由2,7,12,17,22,…,知,等差数列第k 个数表示为()251k +-,所以模5余2的数,等比数列第m 个数为12m -,两个数列同时出现在{}n x 中,所以()12512m k -+-=,那么12k -也是模5余2的数,那么{}n x 为()411592,2,2,,2a -+ ,()410011397k =⨯-+=.2.设锐角△ABC 的三个内角分别为A ,B ,C ,BC 的中点为M ,若cot A x =,cot B y =,则 cot _________BAM ∠=(用关于x ,y 的代数式表示结果)解:cot 2APA h =,cot BQ B h =,cot AQ BAM h∠=, ∵AQ AP PQ AP BQ =+=+ ∴cot 222AQ AP BQ BQ BQAP AP BAM x y h h h h hh +∠===+=⨯+=+.3.符号[]x 表示不超过x 的最大整数,则不等式[][]352018x x +=的解集是________. 解:∵[]3133x x x -<≤,[]5155x x x -<≤,∴[][]31513535x x x x x x -+-<+≤+, 即8220188x x -<≤,252.25252.5x ≤<,令()2520.250.5x a a =+≤<代入[][]352018x x +=得:[][]2016352018a a ++=,即[][]352a a +=,∴1235a ≤<,∴1225225235x ≤<4.将12个不同的物体分成3堆(不分顺序),每堆4个,则不同的分法总类为_____.解:4441284445775C C C A⨯⨯=.BC5.圆的内接四边形ABCD 中,12BD =,30ABD CBD ︒∠=∠=,则ABCD 的面积等于_______.解:∵ABD CBD ∠=∠,∴AD CD =,∴AD CD =, 又∵QD CD =,∴△AQD ≌△CPD ,∴AQD CPD S S ∆∆=, ∴11262DP =⨯=,BP ==∴1=22ABCD S ⨯⨯四边形6.如果m ,n 为正实数,分成220x mx n ++=和方程220x nx m ++=都有实数根,那么m n +的最小值是________.解:21420m n ∆=-⨯≥,∴28m n ≥;()22240n m ∆=-≥,∴2n m ≥,2m n ≤≤(),0m n >,∴2n ≥,∴48n n ≥,2n ≥,∴28m n ≥,216m ≥,∴4m ≥,∴426m n +≥+=,∴m n +的最小值为6.7.方程2237x y x xy y +=-+的所有正整数解为________.解:由2237x y x xy y+=-+得2237x y ax xy y a +=⎧⎨-+=⎩,2973a a xy -=,∴3|a , ∵()24x y xy +≥∴2297943a a a -≥⨯,即97943a a -≥⨯,289a ≤,∴3a =∴920x y xy +=⎧⎨=⎩,∴45x y =⎧⎨=⎩或54x y =⎧⎨=⎩,即()(),4,5x y =,()5,4.6P A C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学竞赛模拟试题(1)
一、选择题
1、1999-)]}1999
1998(1999[1998{---的值等于( ) (A )-2001 (B )1997 (C )2001 (D )1999
2、如果x=―41
, Y=0.5,那么X 2―Y 2―2X 的值是( ) (A)0 (B)1613 (C)165 (D) ―165
3、计算(-1)2000+(-1)1999÷|-1|的结果是( )
(A )0 (B )1 (C )-1 (D )2
4、若有理数x. y 满足|2x-1|+(y+2)2
=0,则x. y 的值等于( )
(A )-1 (B )1 (C )-2 (D )2
5、下面的四句话中正确的是( )
A .正整数a 和b 的最大公约数大于等于a 。

B .正整数a 和b 的最小公倍数大于等于ab 。

C .正整数a 和b 的最大公约数小于等于a 。

D .正整数a 和b 的公倍数大于等于ab 。

6、若数n=20·30·40·50·60·70·80·90·100·110·120·130,则不是n 的因数的最小质数是( ).
(A )19 (B )17 (C )13 (D )非上述答案
7、方程x 2-y 2=105的正整数解有( ).
(A )一组 (B )二组 (C )三组 (D )四组
8、打开A 、B 、C 每一个阀门,水就以各自不变的速度注入水槽.当所有三个阀门都打开时,注满水槽需1小时;只打开A 、C 两个阀门,需要1.5小时;如果只打开B 、C 两个阀门,需要2小时,若只打开A 、B 两个阀门时,注满水槽所需的小时数是( ).
(A )1.1 (B )1.15 (C )1.2 (D )1.25 (E)1.75
二、填空题
9、已知两个有理数-12.43和-12.45。

那么,其中的大数减小数所得的差是__。

10、(11372412
+-÷8311324-)÷=1251___。

11、关于x 的方程3mx +7=0和2 x +3n =0是同解方程,那么
.___)(2=mn 12、l n m ,,都是二位的正整楼,已知它们的最小公倍数是385,则l n m ++ 的最大值是__。

13、填数计算:〇中填入最小的自然数,△中填入最小的非负数,□中填入不小于-5且小于3的整数的个数,将下式的计算结果写在等号右边的横线上。

(〇+□)×△=__。

14、甲、乙同在一百米起跑线处,甲留在原地未动,乙则以每秒7米的速度跑向百米终
点,5秒后甲听到乙的叫声,看到乙跌倒在地,已知声音的传播速度是每秒340米,这时乙已经跑了_____.米(精确到个位)
15、如图,C是线段AB的中点,D是线段AC的
中点,已知图中所有线段的长度之和为23,
则线段AC的长度为_____.
16、用三个数码1和三个数码2可以组成__个不同的四位数。

三、解答题
17、计算:
)
1000
1
1
)(
999
1
1(
)
5
1
1
)(
4
1
1
)(
3
1
1
)(
2
1
1(
10
20
1970
1980
1990
2000
-
-
-
-
-
-
-
+
+
-
+
-
18、今有1分,2分和5分的硬币共计15枚,共值5角2分,求三种硬币个数的乘积。

19、求37x+41y=1的一组整数解.
20、一辆公共汽车由起点站到终点站(含起点站与终点站在内)共行驶8个车站。

已知前6个车站共上车100人,除终点站外共下车总计80人,问从前6站上车而在终点下车的乘客共有多少人?。

相关文档
最新文档