数学竞赛模拟题1
八年级数学竞赛试题(1)(附答案)

八年级数学竞赛试题(1)一、 选择题:(每题4分,共40分)。
1.方程组12,6x y x y ⎧+=⎪⎨+=⎪⎩的解的个数为( ).(A )1 (B ) 2 (C ) 3 (D )42.口袋中有20个球,其中白球9个,红球5个,黑球6个.现从中任取10个球,使得白球不少于2个但不多于8个,红球不少于2个,黑球不多于3个,那么上述取法的种数是( ).(A ) 14 (B ) 16 (C )18 (D )203.满足两条直角边长均为整数,且周长恰好等于面积的整数倍的直角三角形的个数有( )(A)1个 (B) 2个 (C) 3个 (D)无穷多个4.若(x -1)2的算术平方根是x -1,则x 的取值范围是( )A .x <1B .x≤1C .x >1D .x≥15.已知m ×n <0且1—m >1—n >0>n+m+1,那么n ,m ,1n ,1n m+的大小关系是( ) A .11m n n n m <<+< B .11m n n m n<+<< C .11n m n m n +<<< D .11m n n m n <+<< 6.如图,甲、乙两动点分别从正方形ABCD 的顶点A 、C 同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的4倍,则它们第2000次相遇在边(A )A .AB 上 B .BC 上 C .CD 上 D .DA 上7、甲、乙、丙三个学生分别在A 、B 、C 三所大学学习数学、物理、化学中的一个专业,若:①甲不在A 校学习;②乙不在B 校学习;③在B 校学习的学数学;④在A 校学习的不学化学;⑤乙不学物理,则( )A 、甲在B 校学习,丙在A 校学习 B 、甲在B 校学习,丙在C 校学习C 、甲在C 校学习,丙在B 校学习D 、甲在C 校学习,丙在A 校学习 8、使|a —b|=|a|+|b|成立的条件是( )A 、ab >0B 、ab >1C 、ab ≤0D 、ab ≤19,设a, a + 1, a + 2为钝角三角形的三边,那么a 的取值范围是( )。
九年级数学竞赛综合训练题(1)(含解答)-

九年级数学竞赛综合训练题(1)(满分120分,考试时间120分)学校 班级 姓名一、选择题:(每小题5分,共30分)1.过点P (-1,3)作直线,使它与两坐标轴围成的三角形面积为5,这样的直线可以作( )条 (A )4 (B )3 (C )2 (D )1 2.方程13++x x -y=0的整数解有( )组 (A )1 (B )2 (C )3 (D )4 3.如图,若将图(a )的正方形剪成四块,恰能拼成图(b)的矩形,设a=1,则这个正方形的面积为( )(A )2537+ (B )253+(C )251+ (D )21(+)24.关于x 的不等式组255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩只有5个整数解,则a 的取值范围是( )(A )-6<a <-211 (B )-6≤a <-211 (C )-6<a ≤-211 (D )-6≤a ≤-2115.已知四边形ABCD ,从下列条件:(1)AB ∥CD (2)BC ∥AD (3)AB =CD (4)BC =AD (5)∠A =∠C (6)∠B =∠D中任取其中两个,可以得出“四边形ABCD 是平行四边形”这一结论的情况有( )种(A )4 (B )9 (C )13 (D )15 6.已知x 、y 、z 都是实数,且x 2+y 2+z 2=1,则m=xy+yz+zx ( )(A)只有最大值 (B )只有最小值 (C )既有最大值又有最小值 (D )既无最大值又无最小值 二、填空题:(每小题5分,共30分)jab a b ⅠⅡⅢⅣⅣⅢⅡⅠ(b)(a)ba7.已知x=1313+-,y=1313-+, 则x 4+y 4等于 .8.甲、乙两商店某种铅笔标价都是1元,一天,让学生小王欲购这种铅笔,发现甲、乙两商店都让利优惠:甲店实行每买5枝送1枝(不足5枝不送);乙店实行买4枝或4枝以上打8.5折,小王买了13枝这种铅笔,最少需要花 元.9.若1≤p ≤20, 1≤q ≤10,且方程4x 2-px+q=0的两根均为奇数,则此方程的根为 . 10.在1、2、……,2003中有些正整数n ,使得x 2+x -n 能分解为两个整系数一次式的乘积,则这样的n 共有 个.11.已知如图所示,∠MON=40°,P 为∠MON 内一点,A 为OM 上一点,B 为ON 上一点,则当△PAB 的周长取最小值时,∠APB 的度数为 .12.若关于x 的方程rx 2-(2r+7)x+r+7=0的根是正整数,则整数r 的值可以是 .三、解答题:(每小题15分,共60分)13.已知a 、b 、c满足方程组2848a b ab c +=⎧⎪⎨-+=⎪⎩, 试求方程bx 2+cx-a=0的根.PNMBOA14.已知两个二次函数y1 和y2,当x=a(a>0)时,y1取得最大值5,且y2=25. 又y2的最小值为-2,y1+y2=x2+16x+13. 求a的值及二次函数y1、y2的解析式.15.如图所示,正方形ABCD的边长为1,点M、N分别在BC、CD上,使得△CMN的周长为2.求:(1)∠MAN的大小;(2)△MAN面积的最小值.ND CMAB16.如图所示,四边形ABCD 是矩形,甲、乙两人分别从A 、B 同时出发,沿矩形按逆时针方向前进,即按A →B →C →D →……顺序前进,已知甲的速度为每分钟65米,乙的速度为每分钟74米,问乙至少在跑第几圈时才有可能第一次追上甲?又乙至多在跑第几圈时一定能追上甲?请说明理由。
2010年初二数学竞赛训练题1

景弘中学初二数学竞赛模拟试题(一)一、选择题1.已知2009222==-=+cb a ,且kc b a 2009=++,则k 的值为( ). A.41 B.4 C.41- D.-4 2.已知3,2,1222=++=++=c b a c b a abc ,则111111-++-++-+b ca a bc c ab 的值为( ).A.1B.21-C.2D.32-3.若x 2-219x +1=0,则44x 1x +等于( ).A .411 B . 16121 C . 1689 D . 4274.使分式a xax --1有意义的x 应满足的条件是( ).A.0≠xB.)0(1≠≠a axC.0≠x 或)0(1≠≠a a xD.0≠x 且)0(1≠≠a ax5. 已知0≠abc ,并且p bac a c b c b a =+=+=+,那么直线p px y +=一定通过( ). A.第一、第二象限 B.第二、第三象限C.第三、第四象限D.第一、第四象限6.如图,在△ABC 中,D AC AB ,=点在AB 上,AC DE ⊥于E ,BC EF ⊥于F .若︒=∠140BDE ,那么DEF ∠等于( ). A.55° B.60° C.65°D.70°7.如图,已知边长为a 的正方形E ABCD ,为AD 的中点,P 为CE 的中点,F 为BP 的中点,则△BFD 的面积是( ). A.281a B.2161a C. 2321a D.2641a8.一个正方形纸片,用剪刀沿一条不过任何顶点的直线将其剪成两部分;拿出其中一部分,再沿一条不过任何顶点的直线将其剪成两部分;又从得到的三部分中拿出其中之一,还是沿一条不过任何顶点的直线将其剪成两部分……如此下去,最后得到了34个六十二边形和一些多边形纸片,则至少要剪的刀数是( ) A .2005 B .2006 C .2007 D .2008(第6题)(第7题)9.明明用计算器求三个正整数a, b, c 的表达式a bc+的值。
一年级数学竞赛模拟试题

一年级数学竞赛模拟试题一、填空题(每题2分,共20分)1. 一个苹果加上两个苹果,一共有____个苹果。
2. 从1数到10,一共有____个数字。
3. 5个草莓减去3个草莓,还剩下____个草莓。
4. 2+3=____。
5. 一个班级有8个男生和5个女生,一共有____个学生。
6. 一个正方形有____个角,每个角都是直角。
7. 把6个橘子平均分给3个小朋友,每个小朋友可以得到____个橘子。
8. 9-4=____。
9. 一个钟表上,时针走一大格是____小时。
10. 一个圆圈可以分成____个半圆。
二、选择题(每题2分,共20分)11. 下列哪个数字比5大1?()A. 4B. 6C. 712. 如果我有4支铅笔,再得到3支,我一共有多少支铅笔?()A. 6B. 7C. 813. 一个长方形有4个角,每个角都是()A. 锐角B. 直角C. 钝角14. 7-2=()A. 4B. 5C. 615. 一个班级有10个学生,如果走了2个,还剩多少个学生?()A. 8B. 9C. 1016. 一个数加上0还是原来的数,这个数是()A. 1B. 0C. 任何数17. 2个苹果和3个苹果一共有()A. 5B. 4C. 618. 一个班级有6个男生和4个女生,男生比女生多()A. 1B. 2C. 319. 4+4=()A. 6B. 8C. 1020. 一个圆圈没有()A. 角B. 边C. 半径三、判断题(每题1分,共10分)21. 所有的直角都是90度。
()22. 一个班级有10个学生,如果走了5个,还剩5个学生。
()23. 一个正方形的四条边都相等。
()24. 6+7=13。
()25. 一个班级有5个男生和5个女生,男生和女生一样多。
()26. 8-3=5。
()27. 一个数减去它自己等于0。
()28. 一个钟表上,分针走一大格是1分钟。
()29. 一个圆圈可以分成2个半圆。
()30. 5-0=5。
()四、计算题(每题5分,共30分)31. 计算下列各题:- 7+2=- 8-5=- 9+0=- 10-4=32. 解决实际问题:- 如果我有5个苹果,给了小明3个,我还剩下多少个苹果? - 一个班级有12个学生,如果走了4个,还剩多少个学生?- 一个长方形的长是6厘米,宽是3厘米,它的周长是多少? - 一个班级有7个男生和8个女生,男生和女生一共有多少人?五、应用题(每题5分,共20分)33. 小明有10个气球,他给了小红3个,又给了小华4个,小明现在还有多少个气球?34. 一个班级有15个学生,其中8个是男生,剩下的是女生。
五年级数学竞赛试题1~3

五年级数学竞赛试题01一、填空。
(10分)1.12个0.5是( )。
2.5个0.1是( )。
3.74个百分之一是( )。
4.6个千分之一和3个百组成的数是( )。
5.小明有故事书a 本,比李华多5本,李华有故事书( )本。
6.一个平行四边形是与它等底等高三角形面积的( )倍。
7.9.96保留一位小数是( )。
8.两个因数,一个因数扩大10倍,另一个因数缩小2倍,积( )倍。
9.0.3除3.8,商是12,余数是( )。
10.一个三位小数,精确到百分位是0.57,这个小数最大是( )。
二、选择题。
(12分)1.除数的小数点向右移动两位,要使商缩小10位,被除数的小数点应( )。
A .向右移动两位 B .向左移动两位 C .向右移动一位D .向左移动一位2.15÷7的商是( )小数。
A .有限 B .循环 C .无限循环 3.下面各式中,( )是方程。
A .7X +6>9B .8X -7C .X -3=0 4.X 加上它本身的3倍,和是16,求X ,不正确的方程是( )。
A .4X =16 B .3X =16-X C .3X =16+X5.等底等高的两个三角形( )。
A .形状完全相同B .面积相等C .形状相同,面积相等6.如图,一个正方体的六个面分别编写号1,2,3,4,5,6,根据图中提供的 三种摆放情况。
请你判断:1和( )相对,2和( )相对。
A .3B .4C .5D .6三、计算。
(能简算的要简算)(24分) [50.8-(20+26)]÷0.9638.4×7.6-3.84×661 32 1 63 4 36(20+9.774÷2.4)×0.5-1.427 [29.7-(6.2+0.85)×3]÷4427÷2.68×16×26.8÷42.7×1610-10.5÷[5.2×14.6-(9.2×5.2+5.4×3.7-4.6×1.5)]-(1.7+1.9)÷0.225×70 (2000-1)+(1999-2)+(1998-3)+……+(1002-999)+(1001-1000)四、列方程解答。
六年级数学竞赛题(1)

1、甲乙丙各拿9元钱买练习本,由于甲比丙少拿15本,乙拿的与丙同样多,这样乙和丙两个人都要给甲1.5元,一本练习本 元。
2、一个长方形长减少2/5,宽增加4/5米,则面积不变,原来长方形的宽是 米。
3、火车进隧道,从车头进入到车尾进入,共用A 分钟,又经过B 分钟,车尾出隧道。
已知A ︰B =3︰5,隧道长360米,火车长 米。
4、王叔叔加工50个零件,其中2个是次品,按这样的合格率,他想加工出192个合格零件,应加工 个零件。
5、甲乙两仓库共存粮食260吨,如果甲仓库运25﹪到乙仓库,则乙仓库比甲仓库多20吨,原来甲仓库存粮食 吨。
6、已知三角形的面积是10平方厘米,空白部分面积是 平方厘米。
7、右图五边形的面积是 平方厘米。
8、一个等边三角形与一个正六边形的周长相等,如果三角形的面积是36平方厘米,那么六边形的面积是 平方厘米。
9、钢笔5支包装售51元,8支包装售72元,(钢笔只能整盒卖)张老师打算给全班49名学生每人买1支钢笔,他最少要花 元。
10、某班参加数学兴趣小组,参加的男生占全班的1/5,参加的女生占全班的2/7多2人,不参加的占全班的3/5少5人,全班有 人。
11、小王和小李同时从AB 两地出发相向而行,速度比是5︰4。
已知全程3600米。
那么他们第一次相遇点与第二次相遇点相距多少米?12、有甲乙两个长方体玻璃缸从里面量,它们的深度相等,底面分别是边长4分米和5分米的正方形,现将甲缸盛满水后,倒入乙缸,水面比乙缸深度的4/5还低0.48分米,玻璃缸深多少分米?13、校图书室的图书,如果将400本科技书换成故事书,故事书的本数是科技书的3倍,如果将1000本故事书换成科技书,则故事书是科技书的5/11,原来科技书有多少本?故事书有多少本?14、甲袋中有红球120个、蓝球40个,乙袋中有红球360个、蓝球80个,要使两袋中红球所占的百分数一样,应从甲袋中取多少个蓝球与乙袋中的红球进行等量交换?15、甲乙丙三人进行400米跑比赛。
八年级上数学竞赛练习题1含答案

八年级(上)数学竞赛练习题(1)一、选择题1、设x 、y 、z 均为正实数,且满意z x+y <x y+z <yz+x ,则x 、y 、z 三个数的大小关系是( )A 、z<x<yB 、y<z<xC 、x<y<zD 、z<y<x2、已知a 、b 都是正整数,那么以a 、b 和8为边组成的三角形有( ) A 、3个B 、4个C 、5个D 、多数个3、将一长方形切去一角后得一边长分别为13、19、20、25和31的五边形(依次不肯定按此),则此五边形的面积为( ) A 、680B 、720C 、745D 、7604、假如不等式组⎩⎨⎧<-≥-0809b x a x 的整数解仅为1,2,3,那么合适这个不等式组的整数a 、b的有序数对(a 、b )共有( )A.17个B.64个C.72个D.81个5、设标有A 、B 、C 、D 、E 、F 、G 记号的7盏灯顺次排成一行,每盏灯安装一个开关,如今A 、C 、E 、G 4盏灯开着,其余3盏灯是关的,小岗从灯A 开场,顺次拉动开关,即从A 到G ,再顺次拉动开关,即又从A 到G ,…,他这样拉动了1999次开关后,则开着的灯是( )A 、A.C.E.GB 、 A.C.FC 、 B.D.FD 、C.E.G 6、已知13x x-=,那么多项式3275x x x --+的值是( ) A .11 B .9 C .7 D .5 7、线段12y x a =-+(1≤x ≤3,),当a 的值由-1增加到2时,该线段运动所经过的平面区域的面积为( )A .6B .8C .9D .108、已知四边形ABCD 为随意凸四边形,E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点,用S 、P 分别表示四边形ABCD 的面积和周长;S 1、P 1分别表示四边形EFGH 的面积和周长.设K =S S 1,K 1 = PP 1,则下面关于K 、K 1的说法正确的是( ). A .K 、K 1均为常值 B .K 为常值,K 1不为常值 C .K 不为常值,K 1为常值 D .K 、K 1均不为常值 二、填空题1、如图,△ABC 是一个等边三角形,它围着点P 旋转,可以与等边△ABD 重合,则这样的点P 有_______个。
高等数学竞赛试题(一)

高等数学竞赛试题(一)一、填空:1.若()⎪⎩⎪⎨⎧≤->-=,x ,a x ,x f x xx01e 0,arctan e 12sin 是()+∞∞-,上的连续函数,则a = -1 。
2.函数x x y 2sin +=在区间⎥⎦⎤⎢⎣⎡ππ,2上的最大值为332+π 。
3.()=+⎰--22d ex x x x26e 2-- 。
4.由曲线⎩⎨⎧==+0122322z y x 绕y 轴旋转一周得到的旋转面在点()230,,处的指向外侧的单位法向量为{}32051,, 。
5.设函数()x,y z z =由方程2e =+----x y z x x y z 所确定,则=z d ()y x x x xy z xy z d d e 1e 1-1+++---- 。
二、选择题:1. 设函数f (x )可导,并且()50='x f ,则当0→∆x 时,该函数在点0x 处微分d y 是y ∆的( A ) (A )等价无穷小; (B )同阶但不等价的无穷小; (C )高阶无穷小; (D )低阶无穷小。
2. 设函数f (x )在点x = a 处可导,则()x f 在点x = a 处不可导的充要条件是( C ) (A )f (a ) = 0,且()0='a f ; (B )f (a )≠0,但()0='a f ; (C )f (a ) = 0,且()0≠'a f ; (D )f (a )≠0,且()0≠'a f 。
3. 曲线12+-+=x x x y ( B )(A )没有渐近线; (B )有一条水平渐近线和一条斜渐近线; (C )有一条铅直渐近线; (D )有两条水平渐近线。
4.设()()x,y x,y f ϕ与均为可微函数,且()0≠'x,y y ϕ。
已知()00,y x 是()x,y f 在约束条件()0=x,y ϕ下的一个极值点,下列选项中的正确者为( D )(A )若()000=',y x f x ,则()000=',y x f y ; (B )若()000=',y x f x ,则()000≠',y x f y ; (C )若()000≠',y x f x ,则()000=',y x f y ; (D )若()000≠',y x f x ,则()000≠',y x f y 。