1-2.线性回归(一)
2025高考数学一轮复习-9.1.2-线性回归方程【课件】

(3)该企业采取订单生产模式(根据订单数量进行生产,即产品全部售出). 根据市场调研数据,若该产品单价定为100元,则签订9千件订单的概 率为0.8,签订10千件订单的概率为0.2;若单价定为90元,则签订10千 件订单的概率为0.3,签订11千件订单的概率为0.7.已知每件产品的原料 成本为10元,根据(2)的结果,企业要想获得更高利润,产品单价应选 择100元还是90元,请说明理由.
因为 y =3860=45,
8
uiyi-8 u y
i=1
所以b^ =
8
u2i -8 u 2
i=1
=1831..45- 3-8×8×0.03.411×545=06.611=100,
则a^ = y -b^ u =45-100×0.34=11, 所以y^ =11+100u, 所以 y 关于 x 的回归方程为y^=11+10x0.
三、非线性回归问题
知识梳理
解非线性回归分析问题的一般步骤 有些非线性回归分析问题并不给出函数,这时我们可以根据已知数据 画出散点图,与学过的各种函数(幂函数、指数函数、对数函数等)的图 象进行比较,挑选一种跟这些散点拟合得最好的函数,用适当的变量 进行变换,把问题转化为线性回归分析问题,使之得到解决.
n
v2i -n
v
2
i=1
i=1
解 ①当产品单价为100元,设订单数为m千件,因为签订9千件订单的 概率为0.8,签订10千件订单的概率为0.2, 所以E(m)=9×0.8+10×0.2=9.2, 所以企业利润为 100×9.2-9.2×190.20+21=626.8(千元). ②当产品单价为90元,设订单数为n千件, 因为签订10千件订单的概率为0.3,签订11千件订单的概率为0.7, 所以E(n)=10×0.3+11×0.7=10.7,
2019-2020学年高中数学(人教B版 选修1-2)教师用书:第1章 1.2 回归分析

1.2 回归分析1.会用散点图分析两个变量是否存在相关关系.(重点)2.会求回归方程、掌握建立回归模型的步骤,会选择回归模型.(重点、难点)[基础·初探]教材整理1 线性回归模型 阅读教材P 10~P 12,完成下列问题. 1.回归直线方程其中b ^的计算公式还可以写成b ^=∑xiyi -n x - y -∑x 2i -n x -2.2.线性回归模型y =bx +a +εi ,其中εi 称为随机误差项,a 和b 是模型的未知参数,自变量x 称为解释变量,因变量y 称为预报变量.设某大学的女生体重y (单位:kg)与身高x (单位:cm)具有线性相关关系.根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y^=0.85x -85.71,则下列结论中正确的是________(填序号).(1)y 与x 具有正的线性相关关系;(2)回归直线过样本点的中心(x -,y -);(3)若该大学某女生身高增加1 cm ,则其体重约增加0.85 kg ; (4)若该大学某女生身高为170 cm ,则可断定其体重必为58.79 kg.【解析】 回归方程中x 的系数为0.85>0,因此y 与x 具有正的线性相关关系,(1)正确; 由回归方程系数的意义可知回归直线过样本点的中心(x -,y -),(2)正确;依据回归方程中b ^的含义可知,x 每变化1个单位,y ^相应变化约0.85个单位,(3)正确; 用回归方程对总体进行估计不能得到肯定结论,故(4)不正确. 【答案】 (1)(2)(3) 教材整理2 相关性检验阅读教材P 13~P 15例3以上部分,完成下列问题. 1.相关系数(1)作统计假设:x 与Y 不具有线性相关关系;(2)根据小概率0.05与n -2在附表中查出r 的一个临界值r 0.05; (3)根据样本相关系数计算公式算出r 的值;(4)作统计推断.如果|r |>r 0.05,表明有95%把握认为x 与y 之间具有线性相关关系.如果|r |≤r 0.05,没有理由拒绝原来的假设.1.判断(正确的打“√”,错误的打“×”) (1)求回归直线方程前必须进行相关性检验.( )(2)两个变量的相关系数越大,它们的相关程度越强.( ) (3)若相关系数r =0,则两变量x ,y 之间没有关系.( )【解析】 (1)正确.相关性检验是了解成对数据的变化规律的,所以求回归方程前必须进行相关性检验.(2)错误.相关系数|r |越接近1,线性相关程度越强;|r |越接近0,线性相关程度越弱. (3)错误.若r =0是指x ,y 之间的相关关系弱,但并不能说没有关系.【答案】 (1)√ (2)× (3)× 2.下列结论正确的是( ) ①函数关系是一种确定性关系;②相关关系是一种非确定性关系;③回归分析是对具有函数关系的两个变量进行统计分析的一种方法;④回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法.A.①②B.①②③C.①②④D.①②③④【解析】 函数关系和相关关系的区别为前者是确定性关系,后者是非确定性关系,故①②正确;回归分析是对具有相关关系的两个变量进行统计分析一种方法,故③错误,④正确.【答案】 C[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1: 解惑: 疑问2: 解惑: 疑问3: 解惑:[小组合作型](1)①线性回归分析就是由样本点去寻找一条直线,使之贴近这些样本点的数学方法;②利用样本点的散点图可以直观判断两个变量的关系是否可以用线性关系表示;③通过回归方程y^=b^x +a ^,可以估计和观测变量的取值和变化趋势;④因为由任何一组观测值都可以求得一个线性回归方程,所以没有必要进行相关性检验.其中正确命题的个数是( )A.1B.2C.3D.4(2)如果某地的财政收入x 与支出y 满足线性回归方程y ^=b ^x +a ^+ε(单位:亿元),其中b ^=0.8,a^=2,|ε|≤0.5,如果今年该地区财政收入10亿元,则今年支出预计不会超过________亿.【自主解答】 (1)①反映的是最小二乘法思想,故正确.②反映的是画散点图的作用,也正确.③解释的是回归方程y ^=b ^x +a ^的作用,故也正确.④是不正确的,在求回归方程之前必须进行相关性检验,以发现两变量的关系.(2)由题意可得:y ^=0.8x +2+ε,当x =10时,y ^=0.8×10+2+ε=10+ε,又|ε|≤0.5,∴9.5≤y ^≤10.5.故今年支出预计不会超过10.5亿. 【答案】 (1)C (2)10.51.在分析两个变量的相关关系时,可根据样本数据散点图确定两个变量之间是否存在相关关系,然后利用最小二乘法求出回归直线方程.2.由线性回归方程给出的是一个预报值而非精确值.3.随机误差的主要来源.(1)线性回归模型与真实情况引起的误差; (2)省略了一些因素的影响产生的误差; (3)观测与计算产生的误差.[再练一题]1.下列有关线性回归的说法,不正确的是________(填序号).【导学号:37820002】①自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系;②在平面直角坐标系中用描点的方法得到表示具有相关关系的两个量的一组数据的图形叫做散点图;③线性回归方程最能代表观测值x ,y 之间的关系; ④任何一组观测值都能得到具有代表意义的回归直线方程.【解析】 只有具有线性相关的两个观测值才能得到具有代表意义的回归直线方程. 【答案】 ④为研究拉力x (N)对弹簧长度y (cm)的影响,对不同拉力的6根弹簧进行测量,测得如下表中的数据:(1)(2)如果散点图中的各点大致分布在一条直线的附近,求y 与x 之间的回归直线方程. 【精彩点拨】 作散点图→得到x ,y 有较好线性关系 →代入公式求得线性回归方程 【自主解答】 (1)散点图如图所示.(2)将已知表中的数据列成下表:∴回归直线方程为y ^=0.18x +6.34.1.散点图是定义在具有相关关系的两个变量基础上的,对于性质不明确的两组数据,可先作散点图,在图上看它们有无关系,关系的密切程度,然后再进行相关回归分析.2.求回归直线方程时,首先应注意到,只有在散点图大致呈线性时,求出的回归直线方程才有实际意义,否则,求出的回归直线方程毫无意义.[再练一题]2.本题条件不变,若x 增加2个单位,y ^增加多少? 【解】 若x 增加2个单位,则 y ^=0.18(x +2)+6.34 =0.18x +6.34+0.36, 故y ^增加0.36个单位.[探究共研型]探究1 【提示】 非线性回归问题有时并不给出经验公式.这时我们可以画出已知数据的散点图,把它与学过的各种函数(幂函数、指数函数、对数函数等)图象作比较,挑选一种跟这些散点拟合得最好的函数,然后采用适当的变量变换,把问题化为线性回归分析问题,使之得到解决.其一般步骤为:探究2 已知x 和y 之间的一组数据,则下列四个函数中,哪一个作为回归模型最好?①y =3×2x -1; 2③y =4x;④y =x 2.【提示】 观察散点图中样本点的分布规律可判断样本点分布在曲线y =3×2x -1附近.①作为回归模型最好.某地区不同身高的未成年男性的体重平均值如下表:(1)(2)如果一名在校男生身高为168 cm ,预测他的体重约为多少?【精彩点拨】 先由散点图确定相应的函数模型,再通过对数变换将非线性相关转化为线性相关的两个变量来求解.【自主解答】 (1)根据表中的数据画出散点图,如下:由图看出,这些点分布在某条指数型函数曲线y =的周围,于是令z =ln y ,列表如下:由表中数据可求得z 与x 之间的回归直线方程为z ^=0.693+0.020x ,则有y ^=e 0.693+0.020x . (2)由(1)知,当x =168时,y ^=e 0.693+0.020×168≈57.57,所以在校男生身高为168 cm ,预测他的体重约为57.57 kg.两个变量不具有线性关系,不能直接利用线性回归方程建立两个变量的关系,可以通过变换的方法转化为线性回归模型,如,我们可以通过对数变换把指数关系变为线性关系,令z =ln y ,则变换后样本点应该分布在直线z =bx +a (a =ln c 1,b =c 2)的周围.[再练一题]3.有一个测量水流量的实验装置,测得试验数据如下表:【解】 由表中测得的数据可以作出散点图,如图.观察散点图中样本点的分布规律,可以判断样本点分布在某一条曲线附近,表示该曲线的函数模型是Q =m ·h n (m ,n 是正的常数).两边取常用对数,则lg Q =lg m +n ·lg h ,令y =lg Q ,x =lg h ,那么y =nx +lg m ,即为线性函数模型y =bx +a 的形式(其中b =n ,a =lg m ).由下面的数据表,用最小二乘法可求得b ^≈2.509 7,a ^=-0.707 7,所以n ≈2.51,m ≈0.196.[构建·体系]1.下表是x 和y 之间的一组数据,则y 关于x 的线性回归方程必过点( )A.(2,3) C.(2.5,4)D.(2.5,5)【解析】 线性回归方程必过样本点的中心(x -,y -), 即(2.5,4),故选C. 【答案】 C2.在两个变量y 与x 的回归模型中,分别选择了4个不同的模型.它们的相关指数R 2如下,其中拟合效果最好的模型是( )A .模型1的相关指数R 2为0.98B .模型2的相关指数R 2为0.80C .模型3的相关指数R 2为0.50D .模型4的相关指数R 2为0.25【解析】 相关指数R 2越接近于1,则该模型的拟合效果就越好,精度越高. 【答案】 A3.如图1-2-1所示,有5组(x ,y )数据,去掉________这组数据后,剩下的4组数据的线性相关系数最大.图1-2-1【答案】D(3,10)4.为了考查两个变量Y与x的线性相关性,测是x,Y的13对数据,若Y与x具有线性相关关系,则相关系数r绝对值的取值范围是________.【导学号:37820003】【解析】相关系数临界值r0.05=0.553,所以Y与x若具有线性相关关系,则相关系数r 绝对值的范围是(0.553,1].【答案】(0.553,1]5.某种产品的广告费支出x与销售额Y(单位:百万元)之间有如下对应数据:(1)画出散点图;(2)对两个变量进行相关性检测;(3)求回归直线方程.【解】(1)散点图如图所示(2)计算各数据如下:r = 1 380-5×5×50(145-5×52)(13 500-5×502)≈0.92,查得r 0.05=0.878,r >r 0.05,故有95%的把握认为该产品的广告费支出与销售额之间具有线性相关关系.(3) ,,于是所求的回归直线方程是y ^=6.5x +17.5.我还有这些不足:(1)(2) 我的课下提升方案:(1)(2)。
线性回归计算方法及公式

• 多 元 线 性 回 归 分 析 的 作 用
• 回 归 分 析 中 自 变 量 的 选 择
一般地,设某事件D发生(D=1)的概 率P依赖于多个自变量(x1,x2, …,xp),且
P(D=1)=e Bo+B1X1+…+BpXp /(1+e Bo+B1X1+…+BpXp ) 或
Logit(P) = Bo+B1X1+…+Bp X p 则称该事件发生的概率与变量间关系符合多元 Logistic回归或对数优势线性回归。
和多元线性回归分析一样,在Logistic回 归分析中也须对自变量进行筛选。方法 和多元线性回归中采用的方法一样,有 向后剔除法、向前引入法及逐步筛选法 三种。筛选自变量的方法有wald检验、 Score test、likelihood ratio test(wald chisquare test)三种。
• 逐步引入-剔除法(stepwise selection) 先规定两个阀值F引入和F剔除,当候选变 量中最大F值>=F引入时,引入相应变量; 已进入方程的变量最小F<=F剔除时,剔 除相应变量。如此交替进行直到无引入 和无剔除为止。(计算复杂)
多元线性回归方程的作用
• 因素分析 • 调整混杂因素的作用 • 统计预测
X的取值在正负无穷大之间;F( 用Logistic分布函数这一特征,将其应用到临床 医学和流行病学中来描述事件发生的概率。
人教版高中数学选修(1-2)-1.1典型例题:线性回归方程

认识线性回归方程一、线性回归方程设x 与y 是具有相关关系的两个变量,且相应于n 个观测值的n 个点大致分布在一条直线的附近,这条直线就叫做回归直线.例1.假设关于某设备的使用年限x (年)和所支出的维修费用y (万元)有如下的统计资料:若由资料知y 对x 呈线性相关关系,试求: (1)线性回归方程y a bx =+;(2)估计使用年限10年时,维修费用是多少?分析:因为y 对x 呈线性相关关系,所以可以用线性相关的方法解决问题. 解:(1)制表于是有21.239054b ==-⨯,5 1.2340.08a y bx =-=-⨯=.∴线性回归方程为 1.230.08y x =+;(2)当10x =时, 1.23100.0812.38y =⨯+=(万元),即估计使用10年时维修费用约是12.38万元.评注:已知y 对x 呈线性相关关系,无须进行相关性检验,否则应首先进行相关性检验. 二、回归分析通过对有关数据的分析,作出散点图,并利用散点图直观地认识两个变量的相关关系,也可以用相关系数r 来确定两个变量的线性相关关系.例2.一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了10次试验,测得的数据如下:(1)y 与x 是否具有线性相关关系?(2)如果y 与x 具有线性相关关系,求回归直线方程.分析:先求出r 的值,r 的值越接近于1,表明两个变量的线性相关关系越强.解:(1)列出下表,并用科学计算器进行计算.1010i ix y x yr -=∑0.9998=≈。
∵0.99980.632>,∴y 与x 具有线性相关关系; (2)设所求的回归直线方程为y a bx =+,。
线性回归算法原理

线性回归算法原理
线性回归是一种预测模型,用于建立自变量(输入)与因变量(输出)之间的线性关系。
其原理基于最小二乘法,通过拟合一条最优直线来描述数据点的分布趋势。
线性回归假设自变量与因变量之间存在线性关系,可以表示为
y = β0 + β1x + ε,其中 y 是因变量,x 是自变量,β0 和β1 是
回归系数,ε 是随机误差项。
回归系数的求解过程是通过最小化残差平方和来实现的,即找到使得∑(yi - β0 - β1xi)² 最小化的β0 和β1。
求解过程主要利用了最小二乘法,该方法通过对误差的平方和进行求导,使得导数等于零得到回归系数的估计值。
对于简单线性回归来说,只有一个自变量,回归方程可以表示为y = β0 + β1x + ε。
而对于多元线性回归,有多个自变量,回归方程可以表示为y = β0 + β1x1 + β2x2 + ... + βnxn + ε。
线性回归模型在实际应用中具有广泛的适用性,特别是在预测和预测分析领域。
它可以用来解决许多实际问题,如房价预测、销售量预测、趋势分析等。
计量经济学第二章 一元线性回归模型(1)(肖)

10
2.在经济学中,经济学家要研究个人
消费支出与个人可支配收入的依赖关系。
这种分析有助于估计边际消费倾向,就是
可支配收入每增加一元引起消费支出的平
均变化。
11
3.在企业中,我们很想知道人们对企
业产品的需求与广告费开支的关系。这种
研究有助于估计出相对于广告费支出的需
求弹性,即广告费支出每变化百分之一的
(2.3)
想想:结合表2.1的资料 ,怎样理解式(2.3)
变量Y 的原因, 给定变量X 的值也不能具
体确定变量Y的值, 而只能确定变量Y 的
统计特征,通常称变量X 与Y 之间的这种
关系为统计关系。
16
例如,企业总产出Y 与企业的资本投入
K 、劳动力投入L 之间的关系就是统计关 系。虽然资本K 和劳动力L 是影响产出Y 的两大核心要素,但是给定K 、L 的值并 不能确定产出Y 的值。因为,总产出Y 除 了受资本投入K、劳动力投入L 的影响外
在进入正式的回归理论之前,先斟酌一下变量y与变 量x可以互换的不同名称、术语。 Y 因变量 X 自变量
被解释变量 响应变量
被预测变量
解释变量 控制变量
预测变量
回归子
归回元
22
第二节
一、引例
一元线性回归模型
假定我们要研究一个局部区域的居 民消费问题,该区域共有80户家庭组成 ,将这80户家庭视为一个统计总体。
32
函数f (Xi)采取什么函数形式,是一个
需要解决的重要问题。在实际经济系统
中,我们不会得到总体的全部数据,因
而就无法据已知数据确定总体回归函数 的函数形式。同时,对总体回归函数的 形式只能据经济理论与经验去推断。
第2章 线性回归

体重与体表面 积的关系
回归分析是用来研究非确定性关系的一种统计分析方法
2.1.3 相关分析与回归分析
相关分析就是对两个变量之间线性关系的描述和度量。 统计关系的形态大体上可以分为线性相关、非线性相 关、完全相关和不相关等几种。
相关关系的种类:
1、按相关关系涉及变量的多少可分为: 单相关
是两个变量之间存在的相关关系,
量是随机的。而回归分析一般都假设解释变量是确定性的, 在重复抽样中取固定的值;被解释变量是随机的,它有一 个概率分布。回归分析的目的就是要通过给定解释变量的 值来预测或控制被解释变量的总体均值或个别值。
2.1.3 相关分析与回归分析
相关分析和回归分析的联系
在进行回归分析之前,一般要确定变量之间的线性关
不同形态的散点图
10名学生的身高与体重散点图
体重(Y)
75 70 65 60 55 50 45 40 158 163 168
身高(X)
ˆ y a bx
173
178
2.1.3 相关分析与回归分析量之间有无相关关系,并对 变量之间的关系形态做出大致的描述,但散点图不能准 确反映变量之间的关系密切程度。 因此,为准确地度量两个变量之间的关系密切程度,需 要计算相关系数。 相关系数是对变量之间密切程度的度量。对两个变量之 间线性相关程度的度量称为简单相关系数。若相关系数 是根据总体全部数据计算出来的,称为总体相关系数 ; 若是根据样本数据计算出来的,则称为样本相关系数 。 样本相关系数的计算公式为:
系是否密切,这就要依赖相关分析。
变量之间的相关系数与回归分析中的拟合程度存在一
定关系。
2.1.4 随机误差项
高中数学选修1-2-回归分析第一节.ppt

,a^ = y -b^ x ,
n
xi- x 2
n
x2i -n x 2
i=1
i=1
其中 x =1ni=n1xi, y =1ni=n1yi,( x , y )称为样本点的中心.
课前探究学习
课堂讲练互动
(3)解释变量和预报变量 线性回归模型与一次函数模型的不同之处是增加了随机误差项e, 因变量y由 自变量x 和 随机误差e 共同确定,即自变量x只解 释部分y的变化,在统计中,我们也把自变量x称为解释变量,因变 量y称为预报变量.
课前探究学习
课堂讲练互动
【变式1】 以下是某地搜集到的新房屋的销售价格y和房屋的面积x 的数据:
房屋面积/m2 115 110 80 135 105 销售价格/万元 24.8 21.6 18.4 29.2 22
(1)画出数据对应的散点图; (2)求线性回归方程,并在散点图中加上回归直线; (3)据(2)的结果估计当房屋面积为150 m2时的销售价格.
1.1 回归分析的基本思想及其初步应用
课前探究学习
课堂讲练互动
【课标要求】 1.了解随机误差、残差、残差分析的概念; 2.会用残差分析判断线性回归模型的拟合效果; 3.掌握建立回归模型的步骤; 4.通过对典型案例的探究,了解回归分析的基本思想方法
和初步应用.
课前探究学习
课堂讲练互动
【核心扫描】 1.利用散点图分析两个变量是否存在相关关系,求线性回归方
6
所以
(yi-y^ i)2≈0.013
6
18,
(yi- y )2=14.678 4.
i=1
i=1
所以,R2=1-01.40.16378184≈0.999 1, 回归模型的拟合效果较好.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学 科学案 序号 1 高二 年级 班 教师 学生
课题:§1.1.1回归分析的基本思想及其初步应用(一)
教学内容:
回归分析的基本思想与典型题型练习 教学目的:
回顾线性回归的相关知识,进一步了解回归分析的基本思想、方法及初步应用.
重点难点:了解线性回归模型与函数模型的差异, 教学过程:
(一) 复习引入
一:回顾函数的定义。
相关关系是一种函数关系吗?
二:线性回归分析的一般步骤是什么?
(二) 新知教学
一、同学们阅读教材P 1—3,了解基本内容,找出有疑问的地方。
二、典型例题
例1:假设关于某设备的使用年限x 和所支出的维修费用 y (万元),有如下的统计资料。
若由资料知,y 对x 呈线性相关关系。
试求: 1)画出散点图
2)线性回归方程y bx a =+ 的回归系数 ,a b
;
3)估计使用年限为10年时,维修费用是多少?
变式:某班5名学生的数学和物理成绩如下表:
(1) 画散点图
(2) 求物理成绩y 对数学成绩x 的回归直线方程;
(3) 该班某学生数学成绩为96,试预测其物理成绩;
(三) 课堂练习:
(07广东文科卷)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程a b y x ∧
∧
∧
+= (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性同归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值3 2.543546 4.566.5⨯+⨯+⨯+⨯=)
(四)课堂小结:
1. 求线性回归方程的步骤:
2. 线性回归模型与一次函数有何不同
(五)课后作业:
1. 下列两个变量具有相关关系的是( )
A. 正方体的体积与边长
B. 人的身高与视力
C. 人的身高与体重
D.匀速直线运动中的位移与时间 2. 在画两个变量的散点图时,下面哪个叙述是正确的( ) A. 预报变量在x 轴上,解释变量在 y 轴上 B. 解释变量在x 轴上,预报变量在 y 轴上
C. 可以选择两个变量中任意一个变量在x 轴上
D. 可选择两个变量中任意一个变量在 y 轴上
3. 回归直线
y bx a =+ 必过( ) A. (0,0) B. (,0)x C. (0,)y D. (,)x y
4. 已知回归直线方程
0.50.81y x =-,则25x =时,y 的估计值为 . 5.一台机器使用的时间较长,但还可以使用,它按不同的转速生产出来的某机械零件有一些
会有缺点,每小时生产有缺点零件的多少,随机器的运转的速度而变化,下表为抽样试验的结果:
(1)画散点图;
(2)求回归直线方程;
(3)若实际生产中,允许每小时的产品中有缺点的零件最多为 10 个,那么机器的运转速度应控制在什么范围内?。