2 一元线性回归模型(计量经济学)
《计量经济学》eviews实验报告一元线性回归模型详解

计量经济学》实验报告一元线性回归模型-、实验内容(一)eviews基本操作(二)1、利用EViews软件进行如下操作:(1)EViews软件的启动(2)数据的输入、编辑(3)图形分析与描述统计分析(4)数据文件的存贮、调用2、查找2000-2014年涉及主要数据建立中国消费函数模型中国国民收入与居民消费水平:表1年份X(GDP)Y(社会消费品总量)200099776.339105.72001110270.443055.42002121002.048135.92003136564.652516.32004160714.459501.02005185895.868352.62006217656.679145.22007268019.493571.62008316751.7114830.12009345629.2132678.42010408903.0156998.42011484123.5183918.62012534123.0210307.02013588018.8242842.82014635910.0271896.1数据来源:二、实验目的1.掌握eviews的基本操作。
2.掌握一元线性回归模型的基本理论,一元线性回归模型的建立、估计、检验及预测的方法,以及相应的EViews软件操作方法。
三、实验步骤(简要写明实验步骤)1、数据的输入、编辑2、图形分析与描述统计分析3、数据文件的存贮、调用4、一元线性回归的过程点击view中的Graph-scatter-中的第三个获得在上方输入Isycx回车得到下图DependsntVariable:Y Method:LeastSquares□ate:03;27/16Time:20:18 Sample:20002014 Includedobservations:15VariableCoefficientStd.Errort-StatisticProb.C-3J73.7023i820.535-2.1917610.0472X0416716 0.0107S838.73S44 a.ooao R-squared0.991410 Meandependentwar119790.2 AdjustedR.-squared 0.990750 S.D.dependentrar 7692177 S.E.ofregression 7J98.292 Akaike infocriterion20.77945 Sumsquaredresid 7;12E^-08 Scliwarz 匚「爬伽20.37386 Loglikelihood -1&3.3459Hannan-Quinncriter. 20.77845 F-statistic 1I3&0-435 Durbin-Watsonstat0.477498Prob(F-statistic)a.oooooo在上图中view 处点击view-中的actual ,Fitted ,Residual 中的第一 个得到回归残差打开Resid 中的view-descriptivestatistics 得到残差直方图/icw Proc Qtjject PrintN^me FreezeEstimateForecastStatsResids凹Group:UNIIILtD Worktile:UN III LtLJ::Unti1DependentVariablesMethod;LeastSquares□ate:03?27/16Time:20:27Sample(adjusted):20002014Includedobservations:15afteradjustmentsVariable Coefficient Std.Errort-Statistic ProtJ.C-3373.7023^20.535-2.191761 0.0472X0.4167160.01075S38.735440.0000R-squared0.991410 Meandependeniwar1-19790.3 AdjustedR-squa.red0990750S.D.dependentvar 76921.77 SE.ofregre.ssion 7J98.292 Akaike infacriterion20.77945 Sumsquaredresid 7.12&-0S Schwarzcriterion 20.S73S6 Laglikelihood -153.84&9Hannan-Quinncrite匚20.77545 F-statistic1I3&0.435Durbin-Watsonstat 0.477498 ProbCF-statistic) a.ooaooo在回归方程中有Forecast,残差立为yfse,点击ok后自动得到下图roreestYFM J訓YForea空巾取且:20002015 AdjustedSErmpfe:2000231i mskJddd obaerratire:15Roof kter squa red Error理l%2Mean/^oLteError畐惯啟iJean Afe.PereersErro r5.451SSQThenhe鼻BI附GKWCE口.他腐4Prop&niwi□ooooooVactaree Propor^tori0.001^24G M『倚■底Props^lori09®475在上方空白处输入lsycs…之后点击proc中的forcase根据公式Y。
计量经济学的2.2 一元线性回归模型的参数估计

基于样本数据,所得到的总体回归函数的一个估 计函数称为样本回归函数。
问题:当我们设定总体回归模型的函数形式后, 如何通过样本数据得到总体回归函数的一个估计 (即样本回归函数)?--参数估计问题
E (Y | X i ) 0 1 X i
ˆ ˆ ˆ Yi f ( X i ) 0 1 X i
Xi确定
作此假设的理由:当我们把PRF表述为 时,我们假定了X和u(后者代表所有被省略的变量的影 响)对Y有各自的(并且可加的)影响。但若X和u是相关 25 的,就不可能评估它们各自对Y的影响。
线性回归模型的基本假设(4)
假设4、服从零均值、同方差、零协方差的正态分布 i~N(0, 2 ) i=1,2, …,n 意为:ui服从正态分布且相互独立。因为对两个正态 分布的变量来说,零协方差或零相关意为这两个变量 独立。 作该假设的理由:i代表回归模型中末明显引进的许多解释
Yi 0 1 X i i
i=1,2,…,n
Y为被解释变量,X为解释变量,0与1为待估 参数, 为随机干扰项
3
回归分析的主要目的是要通过样本回归函 数(模型)SRF尽可能准确地估计总体回归函 数(模型)PRF。
ˆ ˆ ˆ Yi 0 1 X i
ˆ ˆ ˆ Yi 0 1 X i ui
同方差假设表明:对应于不同X值的全部Y值具有同 样的重要性。
22
线性回归模型的基本假设(2-3)
假设2、随机误差项具有零均值、同方差和不自相关 性(不序列相关): (2.3) 不自相关: Cov(i, j|Xi, Xj)=0 i≠j i,j= 1,2, …,n 或记为 Cov(i, j)=0 i≠j i,j= 1,2, …,n 意为:相关系数为0, i, j非线性相关。 几何意义如下
计量经济学第二章--一元线性回归模型

2 、同方差假定:每一个随机误差项的方差为常数,即:
经 济
Var(Yi ) Var(i ) 2 (常数)
学
该假定表明:给定X对应的每个条件
分布都是同方差的,每个Y值以相同
的分布方式在它的期望值E(Y)附近波
动
10
3、无自相关假定:任意两个随机误差项之间不相关,用数学
形式表示为:
Cov(i, j ) E (i E(i ))( j E( j )) 0
)
xiYi Y xi2
xi
xi 0
bˆ1
xiYi xi2
(bˆi
x12
x1Y1 x22
xn2
x12
x2Y2 x22
xn2
...
x12
xnYn x22
xn2
)
19
令
ki
xi xi2
则
bˆi
kiYi
(1) k i
(
xi xi2
)
xi xi2
0
计 量 经 ki的性质 济 学
2 n
2k1k21 2
2kn1kn n1 n
)
量
经
k12
E
(12
)
k22
E
(
2 2
)
kn2
E
(
2 n
)
2k1k2
E
(1
2
)
2kn
1kn
E
(
n1
n
)
济
学 由古典线性回归模型的假定可知,对每一个随机变量,有
E(i2) 2, E(i j ) 0(当i j时)
Var(bˆ1)
k12 E (12
计量经济学复习

第二章 一元线性回归模型1.随机误差项形成的原因:① 在解释变量中被忽略的因素 ② 变量观测值的观测误差 ③ 模型的关系误差或设定误差 ④ 其他随机因素的影响。
2.总体回归方程和样本回归方程的区别和联系:总体回归方程是对总体变量间关系的定量表述,条件均值E(Y|X=x)是x 的一个函数 ,记作:E(Y|X=x)=f(x),其中,f(x)为x 的某个函数 ,它表明在X=x 下,Y 的条件均值与x 之间的关系。
但实际中往往不可能得到总体的全部资料 ,只能先从总体中抽取一个样本,获得样本回归方程 ,并用它对总体回归方程做出统计推断。
通过样本回归方程按照一定的准则近似地估计总体回归方程 ,但由于样本回归方程随着样本的不同而有所不同,所以这种高估或低估是不可避免的。
3.随机误差项的假定条件:(1)零均值:随机误差项具有零均值,即E( )=0,i=1,2,… (2)随机误差项具有同方差: 即每个 对应的随机误差项 具有相同的常数方差。
Var( )=Var( )= ,i=1,2,… (3)无序列相关:即任意两个 和 所对应的随机误差项 、 是不相关的。
Cov( , )=E( )=0,i j,i,j=1,2,… (4)解释变量X 是确定性变量,与随机误差项不相关。
Cov( , )=E( )=0,此假定保证解释变量X 是非随机变量。
(5) 服从正态分布, ~N(0, )4.为什么用决定系数 评价拟合优度,而不用残差平方和作为评价标准?判定系数 = = 1- ,含义为由解释变量引起的被解释变量的变化占被解释变量总变化的比重,用来判定回归直线拟合的优劣。
该值越大说明拟合得越好。
而残差平方和值的大小受变量值大小的影响,不适合具有不同量纲的模型的比较。
5.可决系数 说明了什么?在简单线性回归中它与斜率系数的t 检验的关系是什么?可决系数 是对模型拟合优度的综合度量 ,其值越大,说明在Y 的总变差中由模型作出了解释的部分占得比重越大 ,模 型的拟合优度越高 ,模型总体线性关系的显著性越强。
第二章 一元线性回归模型(本科生计量经济学)

即:正规方程组揭示的是残差的性质。
26
普通最小二乘估计有关 的其他性质(课后习题)
Y Y
^
e Y e y
i ^ i
^
i
0 0
27
i
2、由普通最小二乘估计系数的性质可证
得普通最小二乘估计与参数的关系如下:
1 1 k i u i
^
0 0 wi ui
( 1) ( 2)
( 1)
0 Y 1 X
^
^
Y
1 n
Y , X X
i 1 i 1 n i 1
n
n
i
18
参数的普通最小二乘估计量
ˆ ˆ X )0 (Yi 0 1 i ˆ ˆ X )X 0 ( Y i 0 1 i i
^
33
三、一元线性回归模型参数的最大似 然法(Maximum Likehood,ML)估计
• 基本原理:似然原理
• 一元线性回归模型ML使用的条件:已知随机扰动 项的分布。
34
Y1 , Y2 ,...,Yn
1 f (Yi ) e 2
1 2
1 2
2
Yi ~ N (0 1 X i , 2 )
w 1
i
22
普通最小二乘估计的例
年份
1991 1992 1993 1994
ED(X)
708 793 958 1278
FI(Y)
3149 3483 4349 5218
ed(x)
-551 -466 -301 19
fi(y)
-2351 -2017 -1151 -282
2 一元线性回归模型

4、回归分析
(1)“回归”一词的古典意义 英国生物学家F.高尔顿(Francis 遗传学研究中首先提出的。
Galton)在
(2)“回归”一词的现代意义: 回归分析是研究一个被解释变量(或因变量)对一 个或多个解释变量(或自变量)数量依赖关系的数 学分析方法。 目的:通过解释变量的已知值或设定值,去估计被 解释变量的平均值,或分析解释变量变动对被解释 变量产生的影响。
相关关系:非确定现象随机变量间的关系。
函数关系:
圆面积 f , 半径 半径2
欧姆定律(电流C=V/k, V为电压)
相关关系: 农作物产量 f 气温, 降雨量, 阳光, 施肥量
高档消费品的销售量与城镇居民收入之间的关 系 储蓄额与居民收入之间的关系 广告支出与商品销售额 工业增加值与能源消耗量 数学成绩与统计学成绩 „„
问:能否从该样本估计总体回归函数PRF?
可支配收入X 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 消费支出Y 888 1121 1340 1650 2179 2210 2398 2650 3021 3288
回答:of course
该样本的散点图: 样本散点图近 似于一条直线,画 一条直线以尽可能 地拟合该散点图, 由于样本取自总体, 该线可以近似地代 表总体回归线。该 线称为样本回归线
上例
ui Yi -E(Y Xi ) Yi 0 1X i 总体回归函数 Yi 0 1X i ui 个别值表现形式
引入随机扰动项的主要原因: 1、作为未知影响因素的代表
2、作为无法取得数据的已知因素的代表 3、作为众多细小影响因素的综合代表 4、模型的设定误差 5、变量的观测误差 6、变量的内在随机性
计量经济学第二篇一元线性回归模型

第二章 一元线性回归模型2.1 一元线性回归模型的基本假定有一元线性回归模型(统计模型)如下, y t = β0 + β1 x t + u t上式表示变量y t 和x t 之间的真实关系。
其中y t 称被解释变量(因变量),x t 称解释变量(自变量),u t 称随机误差项,β0称常数项,β1称回归系数(通常未知)。
上模型可以分为两部分。
(1)回归函数部分,E(y t ) = β0 + β1 x t ,(2)随机部分,u t 。
图2.1 真实的回归直线这种模型可以赋予各种实际意义,居民收入与支出的关系;商品价格与供给量的关系;企业产量与库存的关系;身高与体重的关系等。
以收入与支出的关系为例。
假设固定对一个家庭进行观察,随着收入水平的不同,与支出呈线性函数关系。
但实际上数据来自各个家庭,来自同一收入水平的家庭,受其他条件的影响,如家庭子女的多少、消费习惯等等,其出也不尽相同。
所以由数据得到的散点图不在一条直线上(不呈函数关系),而是散在直线周围,服从统计关系。
“线性”一词在这里有两重含义。
它一方面指被解释变量Y 与解释变量X 之间为线性关系,即另一方面也指被解释变量与参数0β、1β之间的线性关系,即。
1ty x β∂=∂,221ty β∂=∂0 ,1ty β∂=∂,2200ty β∂=∂2.1.2 随机误差项的性质随机误差项u t 中可能包括家庭人口数不同,消费习惯不同,不同地域的消费指数不同,不同家庭的外来收入不同等因素。
所以在经济问题上“控制其他因素不变”是不可能的。
随机误差项u t 正是计量模型与其它模型的区别所在,也是其优势所在,今后咱们的很多内容,都是围绕随机误差项u t 进行了。
回归模型的随机误差项中一般包括如下几项内容: (1)非重要解释变量的省略,(2)数学模型形式欠妥, (3)测量误差等,(4)随机误差(自然灾害、经济危机、人的偶然行为等)。
2.1.3 一元线性回归模型的基本假定通常线性回归函数E(y t ) = β0 + β1 x t 是观察不到的,利用样本得到的只是对E(y t ) =β0 + β1 x t 的估计,即对β0和β1的估计。
计量经济学第2章 一元线性回归模型

ˆ2 ˆ2
) )
ˆ2
0 0
6
Q(ˆ1, ˆ2 ˆ1
Q(ˆ1, ˆ2 ) ˆ2
) [ [
(Yi
ˆ1 ˆ1
ˆ2
X
i
)2
]
2
(Yi
ˆ1 ˆ2
ˆ2
X
i
)2
]
2
Yi ˆ1 ˆ2 X i Yi ˆ1 ˆ2 X i X i
Yi ˆ1 ˆ2 X i 0 Yi ˆ1 ˆ2 X i X i 0
全为零,线性性得证。 i
• ˆ的1 线性性可利用 的ˆ2线性性得到。
ˆ1
Y
ˆ2 X
1 n
i
Yi X
i
biYi
i
(
1 n
Xbi
)Yi
• 可记为
ˆ1 WiYi
i
这表明 同ˆ1 样是Yi的线性组合,其中Wi也不全为零,线性
性也得到证明。
12
• 2.无偏性
• 无偏性指ˆ1和的ˆ2数学期望分别等于总体回归系数的值β1和
5
• 下面用最小二乘法求总体回归系数β1、β2的估计 值 ˆ1和。ˆ2 即令
min Q(ˆ1, ˆ2 ) ei2 (Yi Yˆi )2 [Yi (ˆ1 ˆ2 Xi )]2
i
i
i
• 根据微积分多元函数极值原理,要使上式达到最
小,对ˆ1和ˆ2 的一阶偏导数都等于零,即
Q(ˆ1,
ˆ1 Q(ˆ1,
归模型的基本假定。
4
§2.2 一元线性回归模型的参数估计
• 1.普通最小二乘法(OLS)
• 总体回归模型:
Yi 1 2 X i ui
• 总体回归方程:
E(Yi ) 1 2 X i
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元线性回归模型:只有一个解释变量
Yi 0 1 X i i
i=1,2,…,n
Y为被解释变量,X为解释变量,0与1为待估 参数, 为随机干扰项。
回归分析的主要目的是要通过样本回归 函数(模型)SRF尽可能准确地估计总 体回归函数(模型)PRF。
为保证参数估计量具有良好的性质,通 常对模型提出若干基本假设。
后者称为解释变量(Explanatory Variable)或 自变量(Independent Variable)。
课堂思考题
回归分析构成计量经济学的方法论基础,其 主要内容包括:
(1)根据样本观察值对经济计量模型参数
进行估计,求得回归方程;
(2)对回归方程、参数估计值进行显著性
检验;
随机误差项主要包括下列因素:
在解释变量中被忽略的因素的影响;
变量观测值的观测误差的影响;
模型关系的设定误差的影响;
其它随机因素的影响。
四、样本回归函数
由于总体回归函数所需全部数据的获取往 往是非常困难的,有时甚至是不可能的, 于是我们关心:
能从一次抽样中获得总体的近似的信息吗? 如果可以,如何从抽样中获得总体的近似信息?
共计
2420
21450 21285
15510
一个抽样
由于调查的完备性,给定收入水平 X的消费
支出Y的分布是确定的。即以X的给定值为条 件的 Y 的分布是已知的,如 P(Y=561 | X = 800) =1/4。 进而,给定某收入 Xi ,可得消费支出 Y 的条 件均值,如 E(Y | X = 800) =605。 这样,可依次求出所有不同可支配收入水平 下相应家庭消费支出的条件概率和条件均值, 见表2.1.2.
由于方程中引入了随机项,成为计量经济模型, 因此也称为样本回归模型。
课堂思考题
▼回归分析的主要目的,就是根据样本回 归函数SRF,估计总体回归函数PRF。
ˆ ˆ X e ˆ e 即,由 Yi Y i i 0 1 i i
估计 Yi E(Y | X i ) i 0 1 X i i
课堂思考题
2、回归分析的基本概念
回归分析(regression analysis)是研究一个变量 关于另一个(些)变量的具体依赖关系的计算方 法和理论。其目的在于通过后者的已知或设定值, 去估计和(或)预测前者的(总体)均值。 前者称为被解释变量(Explained Variable)或 应变量(Dependent Variable)。
一、变量间的关系及回归分析的基本概念
1、变量间的关系
(1)确定性关系或函数关系:研究的是确定现 象非随机变量间的关系。
圆面积 f , 半径 半径2
(2)统计依赖或相关关系:研究的是非确定现 象随机变量间的关系。
农作物产量 f 气温, 降雨量, 阳光, 施肥量
对变量间统计依赖关系的考察主要是通过 相关分析(correlation analysis)或回归分 析(regression analysis)来完成的。 相关分析主要研究随机变量间的相关形式 及相关程度。变量间的相关程度可通过计 算相关系数来考察。 具有相关关系的变量有时存在因果关系, 这时,我们可以通过回归分析来研究它们 之间的具体依存关系。
例2.1中,给定收入水平Xi ,个别家庭的支出可 表示为两部分之和:
(1)该收入水平下所有家庭的平均消费支出 E(Y|Xi),称为系统性或确定性部分; (2)其他随机或非确定性部分i。
称为总体回归函数(PRF)的随机设定 形式。表明被解释变量除了受解释变 量的系统性影响外,还受其他因素的 随机性影响。 由于方程中引入了随机项,成为计量 经济学模型,因此也称为总体回归模 型。
第二节课堂思考题
一元线性回归模型的基本假设有哪些?
§2.3 一元线性回归模型的参数估 计
一、参数的普通最小二乘估计(OLS) 二、最小二乘估计量的性质 三、参数估计量的概率分布及随机干扰项 方差的估计 四、某城市消费规律研究
一元线性回归模型的参数估计,是在一组 样本观测值(xi,yi ),i=1,2,…,n下,通过一定 的参数估计方法,估计出样本回归线。 最常用的是普通最小二乘法( Ordinary least squares, OLS)估计。 除此之外,还有其他的估计方法,如最大 似然法(ml )和矩法(mm ),有兴趣的 同学可自学。
仍以例2.1.1(回顾)为例,假设总体中有如下 一个样本,能否从该样本估计总体回归函数?
表2.1.3 家庭消费支出与可支配收入的一个随机样本
X Y 800 638 1100 1400 1700 2000 2300 2600 2900 3200 3500 935 1155 1254 1408 1650 1925 2068 2266 2530
每月可支配收入X(元)
在给定解释变量Xi条件下被解释变量Yi的期望 轨迹称为总体回归线(population regression line),或更一般地称为总体回归曲线。 相应的函数:
E (Y | X i ) f ( X i )
称为(双变量)总体回归函数(population regression function, PRF)。
E(i|Xi)=0 Var
(i|Xi)=2 Cov(i, j|Xi,, …,n i≠j i,j= 1,2, …,n
假设5:随机误差项与解释变量之间不相关。 假设6:随机误差项服从零均值、同方差的 正态分布。
课堂思考题
以上假设称为线性回归模型的经典假设。 满足该假设的线性回归模型称为经典线性 回归模型。
假设1:回归模型是正确设定的。 假设2:解释变量X是确定性变量,不是随 机变量。 假设3:解释变量X在所抽取的样本中具有 变异性,而且随着样本容量的无限增加, 解释变量X的样本方差趋于一个非零的有限 常数。
课堂思考题
假设4:随机误差项具有给定X条件下的零 均值、同方差和不序列相关性:
一、参数的普通最小二乘估计
给定一组样本观测值(Xi, Yi)(i=1,2,…n)要求 样本回归函数尽可能好地拟合这组值.
描出散点图可以发现:随着收入的增加,消费 “平均地说”也在增加,且 Y的条件均值均落在 一根正斜率的直线上,这条直线称为总体回归线。
课堂思考题
3500
3000 每 月 消 费 支 出 Y (元) 2500 2000 1500 1000 500 0 500 1000 1500 2000 2500 3000 3500 4000
课堂思考题
两者的区别
一方面,相关分析仅关注变量间的联系程 度,不关注具体的依赖关系;而回归分析 则关注变量间的具体依赖关系(因果关系 ),研究如何通过解释变量的变化来估计 或预测被解释变量的变化。 另一方面,在相关分析中,变量的地位是 对称的。而在回归分析中,变量的地位是 不对称的,有解释变量与被解释变量之分 。
三、随机扰动项
总体回归函数说明在给定的收入水平Xi下,该 社区家庭的平均消费支出水平。 但对某一个别的家庭,其消费支出可能与该平 均水平有偏差。对每个个别家庭,记
i Yi E (Y | X i )
为观察值Yi围绕它的期望值E(Y|Xi)的离差。它 是一个不可观测的随机变量,称为随机误差项 或随机干扰项。
称为样本回归函数。
样本回归模型
课堂思考题
将样本回归线看成总体回归线的近似替代,则有
于是
同样地,样本回归函数也有如下的随机形式:
ˆ ˆ X e ˆ ˆ Yi Y i i 0 1 i i
式中,ei 称为 (样本)残差 (或剩余)项 ( residual) ,代表
ˆi 。 i 的估计量 了其他影响 Yi 的随机因素的集合,可看成是
注意:这里PRF (总体回归函数) 可能永远无法知道
第一节课堂思考题
什么是回归分析?回归分析和相关分析是 一回事吗,为什么? 以例2.1.1为例,概述总体回归函数和样本 回归函数有什么区别(提示:Y,家庭个 数)。 样本(总体)回归函数和样本(总体)回 归模型有什么区别?
§2.2 一元线性回归模型的基本假 设
总体回归函数说明被解释变量Y的平均状 态(总体条件期望)随解释变量X变化的 规律。至于具体的函数形式,则由所考 察的总体的特征和经济理论来决定。 在例2.1中,将居民消费支出看成是其可 支配收入的线性函数时,该总体回归函 数为: E (Y | X i ) 0 1 X i
它是一个线性函数。其中,0,1是未知 参数,称为回归系数(regression coefficients)。
回答:能。
课堂思考题
在例2.3.1中的应用
该样本的散点图(scatter diagram):
画一条直线以尽好地拟合该散点图,由 于样本取自总体,可以该直线近似地代表 总体回归线。该直线称为样本回归线。
记样本回归线的函数形式为:
ˆ ˆX ˆ f (X ) Y i i 0 1 i
表2.1.2 各收入水平组家庭消费支出的条件均值
收入 800 水平
1100 1400 1700 2000 2300 2600 2900 3200 3500
条件 1/4 概率
条件 605 均值
1/6
825
1/11 1/13 1/13 1/14 1/13 1/10 1/9
1/6
1045 1265 1485 1705 1925 2145 2365 2585
表 2.1.1 某社区家庭每月收入与消费支出统计表 每月家庭可支配收入 X(元) 800 每 月 家 庭 消 费 支 出 Y (元) 561 594 627 638 1100 638 748 814 847 935 968 1400 869 913 924 979 1012 1045 1078 1122 1155 1188 1210 1700 1023 1100 1144 1155 1210 1243 1254 1298 1331 1364 1408 1430 1485 2000 1254 1309 1364 1397 1408 1474 1496 1496 1562 1573 1606 1650 1716 2300 2600 2900 1969 1991 2046 2068 2101 2189 2233 2244 2299 2310 3200 2090 2134 2178 2266 2354 2486 2552 2585 2640 3500 2299 2321 2530 2629 2860 2871 1408 1650 1452 1738 1551 1749 1595 1804 1650 1848 1672 1881 1683 1925 1716 1969 1749 2013 1771 2035 1804 2101 1870 2112 1947 2200 2002 4950 11495 16445 19305 23870 25025