2006年高考第一轮复习数学:14.2 导数的应用

合集下载

高三数学第一轮复习导数的应用(二)

高三数学第一轮复习导数的应用(二)


[跟踪训练] 1 2 x 1.设函数 f(x)= x +e -xex. 2 (1)求 f(x)的单调区间; (2)若当 x∈[-2,2]时,不等式 f(x)>m 恒成立,求实数 m 的取 值范围.
解析
(1)函数 f(x)的定义域为(-∞,+∞),
∵f′(x)=x+ex-(ex+xex)=x(1-ex), 若 x=0,则 f′(x)=0; 若 x<0,则 1-ex>0,所以 f′(x)<0; 若 x>0,则 1-ex<0,所以 f′(x)<0. ∴f(x)在(-∞,+∞)上为减函数, 即 f(x)的单调减区间为(-∞,+∞).

[互动探究] 在本例条件下,是否存在正实数a,使f(x)的最 小值是3?若存在,求出a的值;若不存在,说 明理由.

解析
假设存在正实数 a,使 f(x)=ax-ln x(x∈(0,e])有最小值
1 ax-1 3.因为 f′(x)=a-x = x ,
1 1 1 当 0<a<e 时,f(x)在0,a上单调递减,在a,e上单调递增, 1 所以[f(x)]min=fa=1+ln
[听课记录]
(1)依题意得△ NDC 与△ NAM 相似,
DC ND x 20-AD 所以AM= NA ,即30= 20 , 2 2 2 故 AD=20-3x,矩形 ABCD 的面积为 20x-3x (0<x<30). 要使仓库的占地面积不少于 144 平方米, 2 2 则 20x-3x ≥144, 化简得 x2-30x+216≤0, 解得 12≤x≤18.
(2)证明:设 h(x)=xln x-2x+e(x≥1), 令 h′(x)=ln x-1=0 得 x=e, h(x),h′(x)的变化情况如下: x h′(x) 1 -1 (1,e) - e 0 0 (e,+∞) +

高考数学一轮复习导数的概念及其意义、导数的运算

高考数学一轮复习导数的概念及其意义、导数的运算

当 x< 0 时 y=ln(-x),设切点为(x1,ln(-x1)),由 y′=1x,所以 y′|x =x1=x11,所以切线方程为 y-ln(-x1)=x11(x-x1),
又切线过坐标原点,所以-ln(-x1)=x11(-x1),解得 x1=-e,所以切 线方程为 y-1=-1e(x+e),即 y=-1ex.
角度2 求切点坐标或参数的值(范围)
[例2] (1)已知曲线y=aex+xln x在点(1,ae)处的切线方程为y=2x
+b,则
()
A.a=e,b=-1
B.a=e,b=1
C.a=e-1,b=1
D.a=e-1,b=-1
(2)(2022·新高考Ⅰ卷)若曲线y=(x+a)ex有两条过坐标原点的切线, 则a的取值范围是______________________________________________.
答案:e2
4.函数 f(x)的导函数为 f′(x),若 f(x)=x2+f′π3sin x,则 f π6=________. 解析:∵f′(x)=2x+f′π3cos x, ∴f′π3=23π+21f′π3,∴f′π3=43π,∴f π6=3π62+23π. 答案:3π62+23π
[一“点”就过] (1)求导之前,应利用代数运算、三角恒等式等对函数进行化简,然 后求导,尽量避免不必要的商的求导,这样可以减少运算量,提高运算速 度,减少差错. (2)①若函数为根式形式,可先化为分数指数幂,再求导. ②复合函数求导,应由外到内逐层求导,必要时可进行换元.
022x2 + 021
1 xln
2,D
正确.
答案:A B D
2.一个质点做直线运动,其位移s(单位:米)与时间t(单位:秒)满足关系 式s=t4+(3t-1)3,则当t=1秒时,该质点的瞬时速度为 ( )

高三数学第一轮复习导数的应用(一)

高三数学第一轮复习导数的应用(一)





2.函数的极大值: 函数y=f(x)在点x=b的函数值f(b)比它在点 x = b 附近的其他点的函数值都大, f′(b) = 0 , 而且在点 f′(x)>0 x=b附近的左侧 f′(x)<0 ,右侧 , 则点 b 叫做函数 y = f(x) 的极大值点, f(b) 叫做 函数y=f(x)的极大值. 极小值点,极大值点统称为极值点,极大 值和极小值统称为极值.


3.可导函数的极值表示函数在一点附近的情 况,是在局部对函数值的比较;函数的最值 是表示函数在一个区间上的情况,是对函数 在整个区间上的函数值的比较.
运用导数解决函数的单调性问题
[典题导入] ln x+k (2012· 山东高考改编)已知函数 f(x)= ex (k 为常数, e=2.718 28„是自然对数的底数),曲线 y=f(x)在点(1,f(1))处的 切线与 x 轴平行. (1)求 k 的值; (2)求 f(x)的单调区间.

解析
(1)当 a=2 时,f(x)=(-x2+2x)ex,
∴f′(x)=(-2x+2)ex+(-x2+2x)ex=(-x2+2)ex. 令 f′(x)>0,即(-x2+2)ex>0, ∵ex>0,∴-x2+2>0, 解得- 2<x< 2. ∴函数 f(x)的单调递增区间是(- 2, 2).


第十二节
(一) 导数的应用



[主干知识梳理] 一、函数的单调性 在(a,b)内可导函数f(x),f′(x)在(a,b)任意 子区间内都不恒等于0. f′(x)≥0⇔f(x)在(a,b )上为 . 增函数 f′(x)≤0⇔f(x)在(a,b )上为 . 减函数



高三数学人教版A版数学(理)高考一轮复习教案 导数在函数研究中的应用

高三数学人教版A版数学(理)高考一轮复习教案 导数在函数研究中的应用

第十一节 导数在函数研究中的应用1.函数的单调性了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).2.函数的极值了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次).知识点一 利用导数研究函数的单调性1.函数f (x )在某个区间(a ,b )内的单调性与其导数的正负有如下关系 (1)若f ′(x )>0,则f (x )在这个区间上是增加的. (2)若f ′(x )<0,则f (x )在这个区间上是减少的. (3)若f __′(x )=0,则f (x )在这个区间内是常数. 2.利用导数判断函数单调性的一般步骤 (1)求f __′(x ).(2)在定义域内解不等式f __′(x )>0或f __′(x )<0. (3)根据结果确定f (x )的单调区间. 易误提醒1.在某个区间(a ,b )上,若f ′(x )>0,则f (x )在这个区间上单调递增;若f ′(x )<0,则f (x )在这个区间上单调递减;若f ′(x )=0恒成立,则f (x )在这个区间上为常数函数;若f ′(x )的符号不确定,则f (x )不是单调函数.2.若函数y =f (x )在区间(a ,b )上单调递增,则f ′(x )≥0,且在(a ,b )的任意子区间,等号不恒成立;若函数y =f (x )在区间(a ,b )上单调递减,则f ′(x )≤0,且在(a ,b )的任意子区间,等号不恒成立.[自测练习]1.函数f (x )=x +eln x 的单调递增区间为( ) A .(0,+∞)B .(-∞,0)C .(-∞,0)和(0,+∞)D .R解析:函数定义域为(0,+∞),f ′(x )=1+ex >0,故单调增区间是(0,+∞).答案:A2.若函数f (x )=x 3+x 2+mx +1是R 上的单调增函数,则m 的取值范围是________. 解析:∵f (x )=x 3+x 2+mx +1, ∴f ′(x )=3x 2+2x +m .又∵f (x )在R 上是单调增函数,∴f ′(x )≥0恒成立,∴Δ=4-12m ≤0,即m ≥13.答案:⎣⎡⎭⎫13,+∞ 知识点二 利用导数研究函数的极值 1.函数的极大值在包含x 0的一个区间(a ,b )内,函数y =f (x )在任何一点的函数值都小于x 0点的函数值,称点x 0为函数y =f (x )的极大值点,其函数值f (x 0)为函数的极大值.2.函数的极小值在包含x 0的一个区间(a ,b )内,函数y =f (x )在任何一点的函数值都大于x 0点的函数值,称点x 0为函数y =f (x )的极小值点,其函数值f (x 0)为函数的极小值.极大值与极小值统称为极值,极大值点与极小值点统称为极值点.易误提醒 f ′(x 0)=0是x 0为f (x )的极值点的非充分非必要条件.例如,f (x )=x 3,f ′(0)=0,但x =0不是极值点;又如f (x )=|x |,x =0是它的极小值点,但f ′(0)不存在.[自测练习]3.函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内有极小值点( )A .1个B .2个C .3个D .4个解析:导函数f ′(x )的图象与x 轴的交点中,左侧图象在x 轴下方,右侧图象在x 轴上方的只有一个,故选A.答案:A4.若函数f (x )=x 3+ax 2+3x -9在x =-3时取得极值,则a 等于( ) A .2 B .3 C .4D .5解析:f ′(x )=3x 2+2ax +3,由题意知f ′(-3)=0,即3×(-3)2+2×(-3)a +3=0,解得a =5.答案:D考点一 利用导数研究函数的单调性|(2015·高考全国卷Ⅱ)已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围. [解] (1)f (x )的定义域为(0,+∞),f ′(x )=1x -a .若a ≤0,则f ′(x )>0, 所以f (x )在(0,+∞)单调递增. 若a >0,则当x ∈⎝⎛⎭⎫0,1a 时,f ′(x )>0; 当x ∈⎝⎛⎭⎫1a ,+∞时,f ′(x )<0. 所以f (x )在⎝⎛⎭⎫0,1a 单调递增, 在⎝⎛⎭⎫1a ,+∞单调递减.(2)由(1)知,当a ≤0时,f (x )在(0,+∞)无最大值;当a >0时,f (x )在x =1a 处取得最大值,最大值为f ⎝⎛⎭⎫1a =ln 1a +a ⎝⎛⎭⎫1-1a =-ln a +a -1. 因此f ⎝⎛⎭⎫1a >2a -2等价于ln a +a -1<0.令g (a )=ln a +a -1,则g (a )在(0,+∞)单调递增,g (1)=0. 于是,当0<a <1时,g (a )<0;当a >1时,g (a )>0. 因此,a 的取值范围是(0,1).利用导数研究函数的单调性应注意两点(1)在区间内f ′(x )>0(f ′(x )<0)是函数f (x )在此区间上为增(减)函数的充分不必要条件. (2)可导函数f (x )在(a ,b )内是增(减)函数的充要条件是:∀x ∈(a ,b ),都有f ′(x )≥0(f ′(x )≤0),且f ′(x )在(a ,b )的任何子区间内都不恒为零.1.已知函数f (x )=m ln x -12x 2(m ∈R ),求函数f (x )的单调区间.解:函数f (x )=m ln x -12x 2的定义域是(0,+∞).f ′(x )=mx -x =m -x 2x .当m ≤0时,f ′(x )≤-x 2x=-x <0,函数f (x )=m ln x -12x 2在(0,+∞)上为减函数.当m >0时,令f ′(x )=0,得:x =m 或-m (舍去). 当x ∈(0,m )时,f ′(x )>0, ∴f (x )在(0,m )上是增函数. 当x ∈(m ,+∞)时,f ′(x )<0, ∴f (x )在(m ,+∞)上是减函数.综上所述,当m ≤0时,f (x )的单调递减区间为(0,+∞),当m >0时,f (x )的单调递增区间为(0,m ),单调递减区间为(m ,+∞).考点二 已知单调性求参数范围|(2015·福州模拟)已知函数f (x )=e x 2-1e x -ax (a ∈R ).(1)当a =32时,求函数f (x )的单调区间;(2)若函数f (x )在[-1,1]上为单调函数,求实数a 的取值范围. [解] (1)当a =32时,f (x )=e x 2-1e x -32x ,f ′(x )=12e x [(e x )2-3e x +2]=12e x (e x -1)(e x -2),令f ′(x )=0,得e x =1或e x =2,即x =0或x =ln 2; 令f ′(x )>0,得x <0或x >ln 2; 令f ′(x )<0,则0<x <ln 2.∴f (x )在(-∞,0],[ln 2,+∞)上单调递增,在(0,ln 2)上单调递减. (2)f ′(x )=e x 2+1e x -a ,令e x =t ,由于x ∈[-1,1],∴t ∈⎣⎡⎦⎤1e ,e .令h (t )=t 2+1t ⎝⎛⎭⎫t ∈⎣⎡⎦⎤1e ,e , h ′(t )=12-1t 2=t 2-22t2,∴当t ∈⎣⎡⎭⎫1e ,2时,h ′(t )<0,函数h (t )为单调减函数; 当t ∈(2,e]时,h ′(t )>0,函数h (t )为单调增函数. 故h (t )在⎣⎡⎦⎤1e ,e 上的极小值点为t = 2. 又h (e)=e 2+1e <h ⎝⎛⎭⎫1e =12e +e ,∴2≤h (t )≤e +12e.∵函数f (x )在[-1,1]上为单调函数,若函数在[-1,1]上单调递增,则a ≤t 2+1t 对t ∈⎣⎡⎦⎤1e ,e 恒成立,所以a ≤2;若函数f (x )在[-1,1]上单调递减,则a ≥t 2+1t 对t ∈⎣⎡⎦⎤1e ,e 恒成立,所以a ≥e +12e,综上可得a ≤ 2或a ≥e +12e.已知函数单调性,求参数范围的两个方法(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.(2)转化为不等式的恒成立问题:即“若函数单调递增,则f ′(x )≥0;若函数单调递减,则f ′(x )≤0”来求解.提醒:f (x )为增函数的充要条件是对任意的x ∈(a ,b ),都有f ′(x )≥0且在(a ,b )内的任一非空子区间上f ′(x )≠0.应注意此时式子中的等号不能省略,否则漏解.2.已知函数f (x )=e x -ax (a ∈R ,e 为自然对数的底数). (1)讨论函数f (x )的单调性;(2)若a =1,函数g (x )=(x -m )f (x )-e x +x 2+x 在(2,+∞)上为增函数,求实数m 的取值范围.解:(1)函数f (x )的定义域为R ,f ′(x )=e x -a . 当a ≤0时,f ′(x )>0,∴f (x )在R 上为增函数; 当a >0时,由f ′(x )=0得x =ln a ,则当x ∈(-∞,ln a )时,f ′(x )<0,∴函数f (x )在(-∞,ln a )上为减函数, 当x ∈(ln a ,+∞)时,f ′(x )>0, ∴函数f (x )在(ln a ,+∞)上为增函数.(2)当a =1时,g (x )=(x -m )(e x -x )-e x +x 2+x , ∵g (x )在(2,+∞)上为增函数,∴g ′(x )=x e x -m e x +m +1≥0在(2,+∞)上恒成立, 即m ≤x e x +1e x -1在(2,+∞)上恒成立,令h (x )=x e x +1e x -1,x ∈(2,+∞),h ′(x )=(e x )2-x e x -2e x (e x -1)2=e x (e x -x -2)(e x -1)2. 令L (x )=e x -x -2,L ′(x )=e x -1>0在(2,+∞)上恒成立, 即L (x )=e x -x -2在(2,+∞)上为增函数, 即L (x )>L (2)=e 2-4>0,∴h ′(x )>0, 即h (x )=x e x +1e x -1在(2,+∞)上为增函数,∴h (x )>h (2)=2e 2+1e 2-1,∴m ≤2e 2+1e 2-1.考点三 利用导数研究极值|设函数f (x )=x 2-ax +b .讨论函数f (sin x )在⎝⎛⎭⎫-π2,π2内的单调性并判断有无极值,有极值时求出极值. [解] f (sin x )=sin 2x -a sin x +b =sin x (sin x -a )+b ,-π2<x <π2.[f (sin x )]′=(2sin x -a )cos x ,-π2<x <π2.因为-π2<x <π2,所以cos x >0,-2<2sin x <2.①a ≤-2,b ∈R 时,函数f (sin x )单调递增,无极值. ②a ≥2,b ∈R 时,函数f (sin x )单调递减,无极值.③对于-2<a <2,在⎝⎛⎭⎫-π2,π2内存在唯一的x 0,使得2sin x 0=a .-π2<x ≤x 0时, 函数f (sin x )单调递减;x 0≤x <π2时,函数f (sin x )单调递增.因此,-2<a <2,b ∈R 时,函数f (sin x )在x 0处有极小值 f (sin x 0)=f ⎝⎛⎭⎫a 2=b -a24.3.(2015·太原一模)已知函数f (x )=(x 2-ax +a )e x -x 2,a ∈R . (1)若函数f (x )在(0,+∞)上单调递增,求a 的取值范围; (2)若函数f (x )在x =0处取得极小值,求a 的取值范围. 解:(1)由题意得f ′(x )=x [(x +2-a )e x -2]= x e x ⎝⎛⎭⎫x +2-2e x -a ,x ∈R , ∵f (x )在(0,+∞)上单调递增, ∴f ′(x )≥0在(0,+∞)上恒成立, ∴x +2-2ex ≥a 在(0,+∞)上恒成立,又函数g (x )=x +2-2e x 在(0,+∞)上单调递增,∴a ≤g (0)=0,∴a 的取值范围是(-∞,0].(2)由(1)得f ′(x )=x e x ⎝⎛⎭⎫x +2-2e x -a ,x ∈R , 令f ′(x )=0,则x =0或x +2-2e x -a =0,即x =0或g (x )=a ,∵g (x )=x +2-2e x 在(-∞,+∞)上单调递增,其值域为R ,∴存在唯一x 0∈R ,使得g (x 0)=a ,①若x 0>0,当x ∈(-∞,0)时,g (x )<a ,f ′(x )>0;当x ∈(0,x 0)时,g (x )<a ,f ′(x )<0,∴f (x )在x =0处取得极大值,这与题设矛盾.②若x 0=0,当x ∈(-∞,0)时,g (x )<a ,f ′(x )>0;当x ∈(0,+∞)时,g (x )>a ,f ′(x )>0,∴f (x )在x =0处不取极值,这与题设矛盾.③若x 0<0,当x ∈(x 0,0)时,g (x )>a ,f ′(x )<0;当x ∈(0,+∞)时,g (x )>a ,f ′(x )>0,∴f (x )在x =0处取得极小值.综上所述,x 0<0,∴a =g (x 0)<g (0)=0, ∴a 的取值范围是(-∞,0). 8.分类讨论思想在导数中的应用【典例】 (2015·贵阳期末)已知函数f (x )=ax -ae x (a ∈R ,a ≠0).(1)当a =-1时,求函数f (x )的极值;(2)若函数F (x )=f (x )+1没有零点,求实数a 的取值范围.[思维点拨] (1)求f ′(x )后判断f (x )在(-∞,+∞)上的单调性,可求极值. (2)分类讨论f (x )在(-∞,+∞)的单调性,利用极值建立所求参数a 的不等式求解. [解] (1)当a =-1时,f (x )=-x +1e x ,f ′(x )=x -2ex . 由f ′(x )=0,得x =2.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以函数f (x )的极小值为f (2)=-1e2,函数f (x )无极大值.(2)F ′(x )=f ′(x )=a e x -(ax -a )e x e 2x =-a (x -2)e x .①当a <0时,F (x ),F ′(x )的变化情况如下表:若使函数F (x )没有零点,当且仅当F (2)=ae 2+1>0,解得a >-e 2,所以此时-e 2<a <0;②当a >0时,F (x ),F ′(x )的变化情况如下表:因为F (2)>F (1)>0,且F ⎝⎛⎭⎫1-10a =e1-10a -10e1-10a <e -10e1-10a <0, 所以此时函数F (x )总存在零点. (或:当x >2时,F (x )=a (x -1)e x+1>1,当x <2时,令F (x )=a (x -1)e x+1<0,即a (x -1)+e x <0, 由于a (x -1)+e x <a (x -1)+e 2, 令a (x -1)+e 2≤0,得x ≤1-e 2a ,即x ≤1-e 2a时,F (x )<0,即F (x )存在零点)综上所述,所求实数a 的取值范围是(-e 2,0).[思想点评] 分类讨论思想在导数研究函数的应用中运用普遍常见的分类讨论点有: (1)f ′(x )=0是否有根.(2)若f ′(x )=0有根,根是否在定义域内. (3)若f ′(x )=0有两根,两根大小比较问题.A 组 考点能力演练1.(2015·岳阳一模)下列函数中,既是奇函数又存在极值的是( ) A .y =x 3 B .y =ln(-x ) C .y =x e -xD .y =x +2x解析:A 、B 为单调函数,不存在极值,C 不是奇函数,故选D. 答案:D2.(2016·厦门质检)函数y =12x 2-ln x 的单调递减区间为( )A .(0,1)B .(0,1]C .(1,+∞)D .(0,2)解析:由题意知,函数的定义域为(0,+∞),又由y ′=x -1x ≤0,解得0<x ≤1,所以函数的单调递减区间为(0,1].答案:B3.已知函数f (x )=x 3+bx 2+cx 的图象如图所示,则x 21+x 22=( )A.23B.43C.83D.163解析:由图象可知f (x )的图象过点(1,0)与(2,0),x 1,x 2是函数f (x )的极值点,因此1+b +c =0,8+4b +2c =0,解得b =-3,c =2,所以f (x )=x 3-3x 2+2x ,所以f ′(x )=3x 2-6x +2.x 1,x 2是方程f ′(x )=3x 2-6x +2=0的两根,因此x 1+x 2=2,x 1·x 2=23,所以x 21+x 22=(x 1+x 2)2-2x 1·x 2=4-43=83,故选C.答案:C4.已知函数f (x )=x ⎝⎛⎭⎫e x -1e x ,若f (x 1)<f (x 2),则( ) A .x 1>x 2 B .x 1+x 2=0C .x 1<x 2D .x 21<x 22解析:因为f (-x )=-x ⎝ ⎛⎭⎪⎫e -x -1e -x =x ⎝⎛⎭⎫e x -1e x =f (x ),所以f (x )为偶函数.由f (x 1)<f (x 2),得f (|x 1|)<f (|x 2|)(*).又f ′(x )=e x-1e x +x ⎝⎛⎭⎫e x +1e x =e 2x(x +1)+x -1ex,当x ≥0时,e 2x (x +1)+x -1≥e 0(0+1)+0-1=0,所以f ′(x )≥0,所以f (x )在[0,+∞)上为增函数,由(*)式得|x 1|<|x 2|,即x 21<x 22,故选D.答案:D5.若函数f (x )=x 3-tx 2+3x 在区间[1,4]上单调递减,则实数t 的取值范围是( ) A.⎝⎛⎦⎤-∞,518 B .(-∞,3] C.⎣⎡⎭⎫518,+∞ D .[3,+∞)解析:f ′(x )=3x 2-2tx +3,由于f (x )在区间[1,4]上单调递减,则有f ′(x )≤0在[1,4]上恒成立,即3x 2-2tx +3≤0,即t ≥32⎝⎛⎭⎫x +1x 在[1,4]上恒成立,因为y =32⎝⎛⎭⎫x +1x 在[1,4]上单调递增,所以t ≥32⎝⎛⎭⎫4+14=518,故选C. 答案:C6.(2016·九江一模)已知函数f (x )=12x 2+2ax -ln x ,若f (x )在区间⎣⎡⎦⎤13,2上是增函数,则实数a 的取值范围为________.解析:由题意知f ′(x )=x +2a -1x ≥0在⎣⎡⎦⎤13,2上恒成立,即2a ≥-x +1x 在⎣⎡⎦⎤13,2上恒成立,∵⎝⎛⎭⎫-x +1x max =83,∴2a ≥83,即a ≥43. 答案:⎣⎡⎭⎫43,+∞7.设x 1,x 2是函数f (x )=x 3-2ax 2+a 2x 的两个极值点,若x 1<2<x 2,则实数a 的取值范围是________.解析:本题考查利用导数研究函数的极值及不等式的解法.由f ′(x )=3x 2-4ax +a 2=0得x 1=a3,x 2=a .又∵x 1<2<x 2,∴⎩⎪⎨⎪⎧a >2,a 3<2,∴2<a <6.答案:(2,6)8.(2015·兰州一模)若函数f (x )=x 2-e x -ax 在R 上存在单调递增区间,则实数a 的取值范围是________.解析:∵f (x )=x 2-e x -ax ,∴f ′(x )=2x -e x -a , ∵函数f (x )=x 2-e x -ax 在R 上存在单调递增区间,∴f ′(x )=2x -e x -a ≥0,即a ≤2x -e x 有解,设g (x )=2x -e x ,则g ′(x )=2-e x ,令g ′(x )=0,解得x =ln 2,则当x <ln 2时,g ′(x )>0,g (x )单调递增,当x >ln 2时,g ′(x )<0,g (x )单调递减,∴当x =ln 2时,g (x )取得最大值,且g (x )max =g (ln 2)=2ln 2-2,∴a ≤2ln 2-2.答案:(-∞,2ln 2-2)9.已知函数f (x )=x -2ln x -ax +1,g (x )=e x (2ln x -x ).(1)若函数f (x )在定义域上是增函数,求a 的取值范围; (2)求g (x )的最大值.解:(1)由题意得x >0,f ′(x )=1-2x +ax2.由函数f (x )在定义域上是增函数,得f ′(x )≥0,即a ≥2x -x 2=-(x -1)2+1(x >0). 因为-(x -1)2+1≤1(当x =1时,取等号), 所以a 的取值范围是[1,+∞). (2)g ′(x )=e x ⎝⎛⎭⎫2x -1+2ln x -x , 由(1)得a =2时,f (x )=x -2ln x -2x +1,且f (x )在定义域上是增函数,又f (1)=0,所以,当x ∈(0,1)时,f (x )<0,当x ∈(1,+∞)时,f (x )>0. 所以,当x ∈(0,1)时,g ′(x )>0,当x ∈(1,+∞)时,g ′(x )<0. 故当x =1时,g (x )取得最大值-e.10.(2015·安徽六校联考)设函数f (x )=(x -1)e x -kx 2(其中k ∈R ). (1)当k =1时,求函数f (x )的单调区间和极值;(2)当k ∈[0,+∞)时,证明函数f (x )在R 上有且只有一个零点.解:(1)当k =1时,f (x )=(x -1)e x -x 2,f ′(x )=e x +(x -1)e x -2x =x e x -2x =x (e x -2), 令f ′(x )=0,得x 1=0,x 2=ln 2. 当x 变化时,f ′(x ),f (x )的变化如下表:∞).f (x )的极大值为f (0)=-1,极小值为f (ln 2)= -(ln 2)2+2ln 2-2.(2)f ′(x )=e x +(x -1)e x -2kx =x e x -2kx =x (e x -2k ), 当x <1时,f (x )<0,所以f (x )在(-∞,1)上无零点. 故只需证明函数f (x )在[1,+∞)上有且只有一个零点.①若k ∈⎣⎡⎦⎤0,e2,则当x ≥1时,f ′(x )≥0,f (x )在[1,+∞)上单调递增. ∵f (1)=-k ≤0,f (2)=e 2-4k ≥e 2-2e>0, ∴f (x )在[1,+∞)上有且只有一个零点.②若k ∈⎝⎛⎭⎫e2,+∞,则f (x )在[1,ln 2k ]上单调递减,在[ln 2k ,+∞)上单调递增. f (1)=-k <0,f (k +1)=k e k +1-k (k +1)2=k [e k +1-(k +1)2], 令g (t )=e t -t 2,t =k +1>2,则g ′(t )=e t -2t , g ″(t )=e t -2,∵t >2,∴g ″(t )>0,g ′(t )在(2,+∞)上单调递增. ∴g ′(t )>g ′(2)=e 2-4>0,∴g (t )在(2,+∞)上单调递增. ∴g (t )>g (2)=e 2-4>0. ∴f (k +1)>0.∴f (x )在[1,+∞)上有且只有一个零点.综上,当k ∈[0,+∞)时,f (x )在R 上有且只有一个零点.B 组 高考题型专练1.(2015·高考重庆卷)已知函数f (x )=ax 3+x 2(a ∈R )在x =-43处取得极值.(1)确定a 的值;(2)若g (x )=f (x )e x ,讨论g (x )的单调性. 解:(1)对f (x )求导得f ′(x )=3ax 2+2x , 因为f (x )在x =-43处取得极值,所以f ′⎝⎛⎭⎫-43=0, 所以3a ·169+2·⎝⎛⎭⎫-43=16a 3-83=0,解得a =12. (2)由(1)得g (x )=⎝⎛⎭⎫12x 3+x 2e x, 故g ′(x )=⎝⎛⎭⎫32x 2+2x e x +⎝⎛⎭⎫12x 3+x 2e x =⎝⎛⎭⎫12x 3+52x 2+2x e x=12x (x +1)(x +4)e x . 令g ′(x )=0,解得x =0,x =-1或x =-4. 当x <-4时,g ′(x )<0,故g (x )为减函数; 当-4<x <-1时,g ′(x )>0,故g (x )为增函数; 当-1<x <0时,g ′(x )<0,故g (x )为减函数; 当x >0时,g ′(x )>0,故g (x )为增函数.综上知,g (x )在(-∞,-4)和(-1,0)内为减函数,在(-4,-1)和(0,+∞)内为增函数. 2.(2015·高考安徽卷)已知函数f (x )=ax (x +r )2(a >0,r >0).(1)求f (x )的定义域,并讨论f (x )的单调性; (2)若ar=400,求f (x )在(0,+∞)内的极值.解:(1)由题意知x ≠-r ,所求的定义域为(-∞,-r )∪(-r ,+∞). f (x )=ax (x +r )2=axx 2+2rx +r 2,f ′(x )=a (x 2+2rx +r 2)-ax (2x +2r )(x 2+2rx +r 2)2=a (r -x )(x +r )(x +r )4,所以当x <-r 或x >r 时,f ′(x )<0,当-r <x <r 时,f ′(x )>0,因此,f (x )的单调递减区间为(-∞,-r ),(r ,+∞);f (x )的单调递增区间为(-r ,r ). (2)由(1)的解答可知f ′(r )=0,f (x )在(0,r )上单调递增,在(r ,+∞)上单调递减. 因此,x =r 是f (x )的极大值点,所以f (x )在(0,+∞)上的极大值为f (r )=ar (2r )2=a 4r =4004=100.3.(2016·宁夏银川一中联考)函数f (x )=x 2-2ln x ,h (x )=x 2-x +a . (1)求函数f (x )的极值;(2)设函数k (x )=f (x )-h (x ),若函数k (x )在[1,3]上恰有两个不同零点,求实数a 的取值范围.解:(1)∵f ′(x )=2x -2x,令f ′(x )=0,∵x >0,∴x =1.x (0,1) 1 (1,+∞)f ′(x ) - 0 + f (x )单调递减1单调递增∴f (x )的极小值为1,无极大值.(2)∵k (x )=f (x )-h (x )=-2ln x +x -a ,k ′(x )=-2x +1.若k ′(x )=0,则x =2.当x ∈[1,2)时,k ′(x )<0;当x ∈(2,3]时,k ′(x )>0. 故k (x )在x ∈[1,2)上单调递减,在x ∈(2,3]上单调递增.∴{ k (1)≥0,k (2)<0,k (3)≥0,∴{a ≤1,a >2-2ln 2,a ≤3-2ln 3, ∴实数a 的取值范围是(2-2ln 2,3-2ln 3].。

高三第一轮复习——导数的应用

高三第一轮复习——导数的应用
①求y = f(x)在区间(a,b)内的极值; ②将y = f(x)在各极值点的极值与f(a), f(b)比较, 其中最大的一个为最大值,最小的一个为最小值。
⑵若函数f(x)在区间[a , b]上单调递增(减),则f(a) 为最小(大)值,f(b)为最大(小)值。
二、例题选讲
例1(2000年全国高考题)设函数 f x x2 1 ax
间内的一切实根; ③把函数 f(x) 的间断点(包括 f(x) 的无定义的点) 的横坐标和上面的 f(x) 的定义区间分成 若干个小区间;
④确定 f(x) 在各区间内的符号,根据 f(x) 的符号 判定函数 f(x) 在每个相应小区间内的增减性。
一、知识要点:
2.可导函数的极值 ⑴极值的概念
设函数 f(x) 在点x0附近的所有的点都有f(x)< f(x0) (或 f(x) > f(x0) ),则称 f(x0) 为函数的一个极大(小) 值,称x0为极大(小)值点。 ⑵求可导函数 f(x) 极值的步骤:
①求导数 f x
②求方程 f x=0的根
导数的应用
一、知识要点:
1.函数的单调性: ⑴设函数y = f(x)在某个区间可导,
若f '(x) >0,则f(x)为增函数; 若f '(x) <0,则f(x)为减函数.
一、知识要点:
1.函数的单调性: ⑵求可导函数的单调区间的一般步骤和方法: ①确定函数f(x)的定义区间;
②求f x,令 f x = 0,解此方程,求出它在定义区
; bi商业智能 ;
八道.”话声未了.才积功升至汴州元帅之职.于是几待少女说完.王刚眉头几皱.”哈何人道:“清宫卫士?竟来硬抢何绿华的宝箭.口中叫道.我的箭就给磕飞了.”哈何人笑道:“我连他的外家功夫都看

高考数学一轮复习导数在函数中的应用-教学课件

高考数学一轮复习导数在函数中的应用-教学课件

聚焦中考——语文 第五讲
表达方式与记叙的顺序
• (2013·荆门)阅读下文,完成习题。 • ①那天下午6点多,该上公交车的人早已上了车,唯独有个小女孩,在车
门边来回徘徊。眼看着司机就要开车了,我在想,这小女孩肯定是没钱 上车。 ②“小姑娘,上车吧,我帮你交车票钱。”当看到我为她刷完卡后,她 随即上了车,说了声“谢谢阿姨”,一时脸蛋儿全红了。近距离一看, 才发现,小女孩左侧脸上有颗小痣。几天前的一幕不由浮现眼前—— ③送走远方的朋友,我从火车站迎着风雨赶到就近的公交车站台,已是 下午5点多。这时正是下班高峰期,来了几辆公交车,我总也挤不上去。 雨还在急速地下着,人还在不断地涌来。当又一辆10路公交驶来后,我 和许多人一起先往前门挤,但挤不上去。等司机发话后,才从后门好不 容易挤上车。车内人头攒动,人满为患。这人贴人的,身体若要移动一 下都难。正感叹着,我突然感觉好像有一件事还没做。是什么事呢?哦, 对了,没买车票。本想挤到前面去交车钱,可大伙儿都好像没事人一样 在原地一动不动,根本挤不过去。见此情形,司机也没说什么,这样, 我也就心安理得地和大家一样坐了一次免费的公交车。
本题在当年的高考中,出错最多的就是将第(1)题 的 a=4 用到第(2)题中,从而避免讨论,当然这是错误的.
【互动探究】 1.(2011 届广东台州中学联考)设 f′(x)是函数 f(x)的导函数,
将 y=f(x)和 y=f′(x)的图象画在同一直角坐标系中,不可能正确 的是( D )
考点2 导数与函数的极值和最大(小)值
高考数学一轮复习导数在函数中的应用-教学课件
第2讲 导数在函数中的应用
考纲要求
考纲研读
1.了解函数单调性和导数的关系;能利用 1.用导数可求函数的单 导数研究函数的单调性,会求函数的单调 调区间或以单调区间为 区间(对多项式函数一般不超过三次). 载体求参数的范围.

2006年高考第一轮复习数学:13.2 导数的应用

2006年高考第一轮复习数学:13.2  导数的应用

13.2 导数的应用●知识梳理1.利用导数研究多项式函数单调性的一般步骤.(1)求f'(x).(2)确定f'(x)在(a,b)内符号.(3)若f'(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数;若f'(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是减函数.2.用导数求多项式函数单调区间的一般步骤.(1)求f'(x).(2)f'(x)>0的解集与定义域的交集的对应区间为增区间;f'(x)<0的解集与定义域的交集的对应区间为减区间.●点击双基1.函数y=x2(x-3)的减区间是A.(-∞,0)B.(2,+∞)C.(0,2)D.(-2,2)解析:y′=3x2-6x,由y′<0,得0<x<2.答案:C2.函数f(x)=ax2-b在(-∞,0)内是减函数,则a、b应满足A.a<0且b=0B.a>0且b∈RC.a<0且b≠0D.a<0且b∈R解析:f'(x)=2ax,x<0且f'(x)<0,∴a>0且b∈R.答案:B3.已知f(x)=(x-1)2+2,g(x)=x2-1,则f[g(x)]A.在(-2,0)上递增B.在(0,2)上递增C.在(-2,0)上递增D.在(0,2)上递增解析:F(x)=f[g(x)]=x4-4x2+6,F'(x)=4x3-8x,令F'(x)>0,得-2<x<0或x>2,∴F(x)在(-2,0)上递增.答案:C4.在(a,b)内f'(x)>0是f(x)在(a,b)内单调递增的________条件.解析:∵在(a,b)内,f(x)>0,∴f(x)在(a,b)内单调递增.答案:充分●典例剖析【例1】设f(x)=x3-3ax2+2bx在x=1处有极小值-1,试求a、b的值,并求出f(x)的单调区间.剖析:由已知x =1处有极小值-1,点(1,-1)在函数f (x )上,得方程组解之可得a 、b .解: f '(x )=3x 2-6ax +2b ,由题意知⎪⎩⎪⎨⎧-=⨯+⨯-=+⨯-⨯,112131,021613232b a b a 即⎩⎨⎧=+-=+-.0232,0263b a b a解之得a =31,b =-21.此时f (x )=x 3-x 2-x ,f '(x )=3x 2-2x -1=3(x +31)(x -1).当f '(x )>0时,x >1或x <-31,当f '(x )<0时,-31<x <1.∴函数f (x )的单调增区间为(-∞,-31)和(1,+∞),减区间为(-31,1).评述:极值点、最值点这些是原函数图象上常用的点.【例2】 (2004年全国,19)已知函数f (x )=ax 3+3x 2-x +1在R 上是减函数,求实数a 的取值范围.剖析:在R 上为减函数,则导函数在R 上恒负. 解:f '(x )=3ax 2+6x -1.(1)当f '(x )<0时,f (x )为减函数.3ax 2+6x -1<0(x ∈R ),a <0时,Δ=36+12a <0,∴a <-3.∴a <-3时,f '(x )<0,f (x )在R 上是减函数. (2)当a =-3时,f (x )=-3(x -31)3+98.由y =x 3在R 上的单调性知:a =-3时,f (x )在R 上是减函数,综上,a ≤-3.评述:f (x )在R 上为减函数⇒f '(x )≤0(x ∈R ).【例3】 (2004年全国,21)若函数y =31x 3-21ax 2+(a -1)x +1在区间(1,4)内为减函数,在区间(6,+∞)内为增函数,试求实数a 的取值范围.剖析:用导数研究函数单调性,考查综合运用数学知识解决问题的能力. 解: f '(x )=x 2-ax +a -1=0得x =1或x =a -1,当a -1≤1,即a ≤2时,函数f (x )在(1,+∞)上为增函数,不合题意. 当a -1>1,即a >2时,函数f (x )在(-∞,1)上为增函数,在(1,a -1)上为减函数,在(a -1,+∞)上为增函数.依题意,当x ∈(1,4)时,f '(x )<0,当x ∈(6,+∞)时,f '(x )>0,∴4≤a -1≤6.∴5≤a ≤7.∴a 的取值范围为[5,7].评述:若本题是“函数f (x )在(1,4)上为减函数,在(4,+∞)上为增函数.”我们便知x =4两侧使函数f '(x )变号,因而需要讨论、探索,属于探索性问题.●闯关训练夯实基础1.已知a>0,函数f(x)=x3-ax在[1,+∞)上是单调增函数,则a的最大值是A.0B.1C.2D.3解析:f'(x)=3x2-a在[1,+∞)上,f'(x)≥0恒成立,即a≤3x2在[1,+∞)上恒成立,∴a≤3.答案:D2.已知函数f(x)=x4-4x3+10x2,则方程f(x)=0在区间[1,2]上的根有A.3个B.2个C.1个D.0个解析:f'(x)=4x(x2-3x+5)在[1,2]上,f'(x)>0,∴f(x)在[1,2]上单调递增.∴f(x)≥f(1)=7.∴f(x)=0在[1,2]上无根.答案:D3.函数f(x)的导函数y=f'(x)的图象如下图,则函数f(x)的单调递增区间为________.解析:在[-1,0]和[2,+∞)上,f'(x)≥0.答案:[-1,0]和[2,+∞)4.若函数y=-34x3+bx有三个单调区间,则b的取值范围是________.解析:y′=-4x2+b,若y′值有正、有负,则b>0.答案:b>05.设函数f(x)=x3-21ax2+3x+5(a>0),求f(x)的单调区间.解:(1)f'(x)=3x2-ax+3,判别式Δ=a2-36=(a-6)(a+6).1°0<a<6时,Δ<0,f'(x)>0对x∈R恒成立.∴当0<a<6时,f'(x)在R上单调递增.2°a=6时,y=x3-3x2+3x+5=(x-1)3+4.∴在R上单调递增.3°a>6时,Δ>0,由f'(x)>0⇒x>6362-+aa或x<6362--aa.f'(x)<0⇒6362-+aa<x<6362--aa.∴在(63622-+a a ,+∞)和(-∞,6362--a a )内单调递增,在(6362--a a ,6362-+a a )内单调递减.6.设f (x )=x 3-22x -2x +5.(1)求f (x )的单调区间;(2)当x ∈[1,2]时,f (x )<m 恒成立,求实数m 的取值范围. 解:(1)f '(x )=3x 2-x -2=0,得x =1,-32.在(-∞,-32)和[1,+∞)上f '(x )>0,f (x )为增函数;在[-32,1]上f '(x )<0,f (x )为减函数.所以所求f (x )的单调增区间为(-∞,-32]和[1,+∞),单调减区间为[-32,1].(2)当x ∈[1,2]时,显然f '(x )>0,f (x )为增函数,f (x )≤f (2)=7.∴m >7. 培养能力7.已知函数f (x )=x 3-ax -1.(1)若f (x )在实数集R 上单调递增,求实数a 的取值范围;(2)是否存在实数a ,使f (x )在(-1,1)上单调递减?若存在,求出a 的取值范围,若不存在,请说明理由;(3)证明f (x )=x 3-ax -1的图象不可能总在直线y =a 的上方.解:f '(x )=3x 2-a ,(1)3x 2-a >0在R 上恒成立,∴a <0. 又a =0时,f (x )=x 3-1在R 上单调递增,∴a ≤0.(2)3x 2-a <0在(-1,1)上恒成立,即a >3x 2在(-1,1)上恒成立,即a >3.又a =3,f (x )=x 3-3x -1,f '(x )=3(x 2-1)在(-1,1)上,f '(x )<0恒成立,即f (x )在(-1,1)上单调递减,∴a ≥3.(3)当x =-1时,f (-1)=a -2<a ,因此f (x )的图象不可能总在直线y =a 的上方.8.已知函数f (x )=ax 4+bx 2+c 的图象经过点(0,1),且在x =1处的切线方程是y =x -2.(1)求y =f (x )的解析式; (2)求y =f (x )的单调递增区间.解:(1)由题意知f (0)=1,f '(1)=1,f (1)=-1.∴⎪⎩⎪⎨⎧-=++=+=.1,124,1c b a b a c ∴c =1,a =25,b =-29,f (x )=25x 4-29x 2+1. (2)∵f '(x )=10x 3-9x ,由10x 3-9x >0,得x ∈(-10103,0)∪(10103,+∞), 则f (x )的单调递增区间为(-10103,0)和(10103,+∞). 9.已知函数f (x )=2ax -x 3,a >0,若f (x )在x ∈(0,1]上是增函数,求a 的取值范围.解:f '(x )=2a -3x 2在(0,1]上恒为正, ∴2a >3x 2,即a >23x 2. ∵x ∈(0,1], ∴23x 2∈(0,23].∴a >23.当a =23时也成立.∴a ≥23. 探究创新 10.有点难度哟!证明方程x 3-3x +c =0在[0,1]上至多有一实根.证明:设f (x )=x 3-3x +c ,则f '(x )=3x 2-3=3(x 2-1). 当x ∈(0,1)时,f '(x )<0恒成立. ∴f (x )在(0,1)上单调递减. ∴f (x )的图象与x 轴最多有一个交点.因此方程x 3-3x +c =0在[0,1)上至多有一实根. ●思悟小结1.f'(x)>0⇒f(x)为增函数(f'(x)<0⇒f(x)为减函数).2.f(x)是增函数⇒f'(x)≥0(f(x)为减函数⇒f'(x)≤0).●教师下载中心教学点睛1.可导函数f(x)在极值点的导数为0,但是导数为0的点不一定是极值点.如果f(x)在x0处连续,在x0两侧的导数异号,那么点x0是函数f(x)的极值点.2.求可导函数f(x)的极值的步骤如下:(1)求f(x)的定义域,求f'(x);(2)由f'(x)=0,求其稳定点;(3)检查f'(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取极大值;如果左负右正,那么f(x)在这个根处取极小值;如果左右同号,那么f(x)在这个根处不取极值.3.求可导函数f(x)的最值的方法:(1)求f(x)在给定区间内的极值;(2)将f(x)的各极值与端点值比较,其中最大的一个是最大值,最小的一个是最小值.拓展题例精品文档实用文档 【例1】 若函数f (x )=ax 3-x 2+x -5在(-∞,+∞)上单调递增,求a 的取值范围.解: f '(x )=3ax 2-2x +1>0恒成立.∴⎩⎨⎧<>,0,0Δa 即⎩⎨⎧<->.0124,0a a ∴a >31.当a =31时,f (x )在(-∞,+∞)上单调递增.∴a ≥31.【例2】 求证:x >1时,2x 3>x 2+1.证明:令f (x )=2x 3-x 2-1,则f '(x )=6x 2-2x =2x (3x -1). 当x >1时,f '(x )>0恒成立.∴f (x )在(1,+∞)上单调递增.又∵f (1)=0,∴f (x )在(1,+∞)上恒大于零,即当x >1时,2x 3>x 2+1.。

高三数学一轮总结复习目录

高三数学一轮总结复习目录

高三数学一轮总结复习目录理科数学 -模拟试题分类目录1第一章会合与常用逻辑用语1.1 会合的观点与运算专题 1 会合的含义与表示、会合间的基本关系专题 2 会合的基本运算专题 3 与会合有关的新观点问题1.2 命题及其关系、充要条件专题 1 四种命题及其关系、命题真假的判断专题 2 充足条件和必需条件专题 3 充足、必需条件的应用与研究(利用关系或条件求解参数范围问题)1.3 简单的逻辑联络词、全称量词与存在量词专题 1 含有简单逻辑联络词的命题的真假专题 2 全称命题、特称命题的真假判断专题 3 含有一个量词的命题的否认专题 4 利用逻辑联络词求参数范围第二章函数2.1 函数及其表示专题 1 函数的定义域专题 2 函数的值域专题 3 函数的分析式专题 4 分段函数2.2 函数的单一性与最值专题 1 确立函数的单一性(或单一区间)专题 2 函数的最值专题 3 单一性的应用2.3 函数的奇偶性与周期性专题 1 奇偶性的判断专题 2 奇偶性的应用专题 3 周期性及其应用2.4 指数与指数函数专题 1 指数幂的运算专题 2 指数函数的图象及应用专题 3 指数函数的性质及应用2.5 对数与对数函数专题 1 对数的运算专题 2 对数函数的图象及应用专题 3 对数函数的性质及应用2.6 幂函数与二次函数专题 1 幂函数的图象与性质专题 2 二次函数的图象与性质2.7 函数的图像专题 1 函数图象的辨别专题 2 函数图象的变换专题 3 函数图象的应用2.8 函数与方程专题 1 函数零点所在区间的判断专题 2 函数零点、方程根的个数专题 3 函数零点的综合应用2.9 函数的应用专题 1 一次函数与二次函数模型专题 2 分段函数模型2专题 3 指数型、对数型函数模型第三章导数及其应用3.1 导数的观点及运算专题 1 导数的观点与几何意义专题 2 导数的运算3.2 导数与函数的单一性、极值、最值专题 1 导数与函数的单一性专题 2 导数与函数的极值专题 3 导数与函数的最值3.3 导数的综合应用专题 1 利用导数解决生活中的优化问题专题 2 利用导数研究函数的零点或方程的根专题 3 利用导数解决不等式的有关问题3.4 定积分与微积分基本定理专题 1 定积分的计算专题 2 利用定积分求平面图形的面积专题 4 定积分在物理中的应用第四章三角函数、解三角形4.1 三角函数的观点、同角三角函数的基本关系及引诱公式专题 1 三角函数的观点专题 2 同角三角函数的基本关系专题 3 引诱公式4.2 三角函数的图像与性质专题 1 三角函数的定义域、值域、最值专题 2 三角函数的单一性专题 3 三角函数的奇偶性、周期性和对称性4.3 函数 y = A sin(wx +j ) 的图像及应用专题 1 三角函数的图象与变换专题 2 函数 y=Asin( ωx+φ ) 图象及性质的应用4.4 两角和与差的正弦、余弦与正切公式专题 1 非特别角的三角函数式的化简、求值专题 2 含条件的求值、求角问题专题 3 两角和与差公式的应用4.5 三角恒等变换专题 1 三角函数式的化简、求值专题 2 给角求值与给值求角专题 3 三角变换的综合问题4.6 解三角形专题 1 利用正弦定理、余弦定理解三角形专题 2 判断三角形的形状专题 3 丈量距离、高度及角度问题专题 4 与平面向量、不等式等综合的三角形问题第五章平面向量5.1 平面向量的观点及线性运算专题 1 平面向量的线性运算及几何意义专题 2 向量共线定理及应用专题 3 平面向量基本定理的应用5.2 平面向量基本定理及向量的坐标表示专题 1 平面向量基本定理的应用3专题 2 平面向量的坐标运算专题 3 平面向量共线的坐标表示5.3 平面向量的数目积专题 1 平面向量数目积的运算专题 2 平面向量数目积的性质专题 3 平面向量数目积的应用5.4 平面向量的应用专题 1 平面向量在几何中的应用专题 2 平面向量在物理中的应用专题 3 平面向量在三角函数中的应用专题 4 平面向量在分析几何中的应用第六章数列6.1 数列的观点与表示专题 1 数列的观点专题 2 数列的通项公式6.2 等差数列及其前 n 项和专题 1 等差数列的观点与运算专题 2 等差数列的性质专题 3 等差数列前 n 项和公式与最值6.3 等比数列及其前 n 项和专题 1 等比数列的观点与运算专题 2 等比数列的性质专题 3 等比数列前 n 项和公式6.4 数列乞降专题 1 分组乞降与并项乞降专题 2 错位相减乞降专题 3 裂项相消乞降6.5 数列的综合应用专题 1 数列与不等式相联合问题专题 2 数列与函数相联合问题专题 3 数列中的研究性问题第七章不等式推理与证明7.1 不等关系与一元二次不等式专题 1 不等式的性质及应用专题 2 一元二次不等式的解法专题 3 一元二次不等式恒建立问题7.2 二元一次不等式(组)与简单的线性规划问题专题 1 二元一次不等式(组)表示的平面地区问题专题 2 与目标函数有关的最值问题专题 3 线性规划的实质应用7.3 基本不等式及其应用专题 1 利用基本不等式求最值专题 2 利用基本不等式证明不等式专题 3 基本不等式的实质应用7.4 合情推理与演绎推理专题 1 概括推理专题 2 类比推理专题 3 演绎推理7.5 直接证明与间接证明专题 1 综合法4专题 2 剖析法专题 3 反证法7.6 数学概括法专题 1 用数学概括法证明等式专题 2 用数学概括法证明不等式专题 3 概括-猜想-证明第八章立体几何8.1 空间几何体的构造及其三视图和直观图专题 1 空间几何体的构造专题 2 三视图与直观图8.2 空间几何体的表面积与体积专题 1 空间几何体的表面积专题 2 空间几何体的体积专题 3 组合体的“接”“切”综合问题8.3 空间点、直线、平面之间的地点关系专题 1 平面的基天性质及应用专题 2 空间两条直线的地点关系专题 3 异面直线所成的角8.4 直线、平面平行的判断与性质专题 1 线面平行、面面平行基本问题专题 2 直线与平面平行的判断与性质专题 3 平面与平面平行的判断与性质8.5 直线、平面垂直的判断与性质专题 1 垂直关系的基本问题专题 2 直线与平面垂直的判断与性质专题 3 平面与平面垂直的判断与性质专题 4 空间中的距离问题专题 5 平行与垂直的综合问题(折叠、研究类)8.6 空间向量及其运算专题 1 空间向量的线性运算专题 2 共线定理、共面定理的应用专题 3 空间向量的数目积及其应用8.7 空间几何中的向量方法专题 1 利用空间向量证明平行、垂直专题 2 利用空间向量解决研究性问题专题 3 利用空间向量求空间角第九章分析几何9.1 直线的倾斜角、斜率与直线的方程专题 1 直线的倾斜角与斜率专题 2 直线的方程9.2 点与直线、两条直线的地点关系专题 1 两条直线的平行与垂直专题 2 直线的交点问题专题 3 距离公式专题 4 对称问题9.3 圆的方程专题 1 求圆的方程专题 2 与圆有关的轨迹问题专题 3 与圆有关的最值问题59.4 直线与圆、圆与圆的地点关系专题 1 直线与圆的地点关系专题 2 圆与圆的地点关系专题 3 圆的切线与弦长问题专题 4 空间直角坐标系9.5 椭圆专题 1 椭圆的定义及标准方程专题 2 椭圆的几何性质专题 3 直线与椭圆的地点关系9.6 双曲线专题 1 双曲线的定义与标准方程专题 2 双曲线的几何性质9.7 抛物线专题 1 抛物线的定义与标准方程专题 2 抛物线的几何性质专题 3 直线与抛物线的地点关系9.8 直线与圆锥曲线专题 1 轨迹与轨迹方程专题 2 圆锥曲线中的范围、最值问题专题 3 圆锥曲线中的定值、定点问题专题 4 圆锥曲线中的存在、研究性问题第十章统计与统计事例10.1 随机抽样专题 1 简单随机抽样专题 2 系统抽样专题 3 分层抽样10.2 用样本预计整体专题 1 频次散布直方图专题 2 茎叶图专题 3 样本的数字特点专题 4 用样本预计整体10.3 变量间的有关关系、统计事例专题 1 有关关系的判断专题 2 回归方程的求法及回归剖析专题 3 独立性查验第十一章计数原理11.1 分类加法计数原理与分步乘法计数原理专题 1 分类加法计数原理专题 2 分步乘法计数原理专题 3 两个计数原理的综合应用11.2 摆列与组合专题 1 摆列问题专题 2 组合问题专题 3 摆列、组合的综合应用11.3 二项式定理专题 1 通项及其应用专题 2 二项式系数的性质与各项系数和专题 3 二项式定理的应用第十二章概率与统计612.1 随机事件的概率专题 1 事件的关系专题 2 随机事件的频次与概率专题 3 互斥事件、对峙事件12.2 古典概型与几何概型专题 1 古典概型的概率专题 2 古典概型与其余知识的交汇(平面向量、直线、圆、函数等)专题 3 几何概型在不一样测度中的概率专题 4 生活中的几何概型问题12.3 失散型随机变量及其散布列专题 1 失散型随机变量的散布列的性质专题 2 求失散型随机变量的散布列专题 3 超几何散布12.4 失散型随机变量的均值与方差专题 1 简单的均值、方差问题专题 2 失散型随机变量的均值与方差专题 3 均值与方差在决议中的应用12.5 二项散布与正态散布专题 1 条件概率专题 2 互相独立事件同时发生的概率专题 3 独立重复试验与二项散布专题 4 正态散布下的概率第十三章算法初步、复数13.1 算法与程序框图专题 1 次序构造专题 2 条件构造专题 3 循环构造13.2 基本算法语句专题 1 输入、输出和赋值语句专题 2 条件语句专题 3 循环语句13.3 复数专题 1 复数的有关观点专题 2 复数的几何意义专题 3 复数的代数运算第十四章选修模块14.1 几何证明选讲专题 1 平行线分线段成比率定理专题 2 相像三角形的判断与性质专题 3 直角三角形的射影定理专题 4 圆周角、弦切角及圆的切线专题 5 圆内接四边形的判断及性质专题 6 圆的切线的性质与判断专题 7 与圆有关的比率线段14.2 坐标系与参数方程专题 1 极坐标与直角坐标的互化专题 2 直角坐标方程与极坐标方程的互化专题 3 曲线的极坐标方程的求解专题 4 曲线的参数方程的求解专题 5 参数方程与一般方程的互化7专题 6 极坐标方程与参数方程的应用14.3 不等式选讲专题 1 含绝对值不等式的解法专题 2 绝对值三角不等式的应用专题 3 含绝对值不等式的问题专题 4 不等式的证明8。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

14.2 导数的应用●知识梳理1.函数的单调性(1)设函数y=f(x)在某个区间内可导,若f′(x)>0,则f(x)为增函数;若f′(x)<0,则f(x)为减函数.(2)求可导函数单调区间的一般步骤和方法.①确定函数f(x)的定义区间.②求f′(x),令f′(x)=0,解此方程,求出它在定义区间内的一切实根.③把函数f(x)的间断点〔即包括f(x)的无定义点〕的横坐标和上面的各实根按由小到大的顺序排列起来,然后用这些点把函数f(x)的定义区间分成若干个小区间.④确定f′(x)在各小开区间内的符号,根据f′(x)的符号判定函数f(x)在每个相应小开区间内的增减性.2.可导函数的极值(1)极值的概念设函数f(x)在点x0附近有定义,且若对x0附近所有的点都有f(x)<f(x0)(或f(x)>f(x0)),则称f(x0)为函数的一个极大(小)值,称x0为极大(小)值点.(2)求可导函数f(x)极值的步骤.①求导数f′(x).②求方程f′(x)=0的根.③检验f′(x)在方程f′(x)=0的根的左右的符号,如果在根的左侧附近为正,右侧附近为负,那么函数y=f(x)在这个根处取得极大值;如果在根的左侧附近为负,右侧附近为正,那么函数y=f(x)在这个根处取得极小值.3.函数的最大值与最小值(1)设y=f(x)是定义在区间[a,b]上的函数,y=f(x)在(a,b)内有导数,求函数y=f (x)在[a,b]上的最大值与最小值,可分两步进行.①求y=f(x)在(a,b)内的极值.②将y=f(x)在各极值点的极值与f(a)、f(b)比较,其中最大的一个为最大值,最小的一个为最小值.(2)若函数f(x)在[a,b]上单调增加,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(a)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.特别提示我们把使导函数f′(x)取值为0的点称为函数f(x)的驻点,那么(1)可导函数的极值点一定是它的驻点,注意这句话中的“可导”两字是必不可少的.例如函数y=|x|在点x=0处有极小值f(0)=0,可是我们在前面已说明过,f′(0)根本不存在,所以点x=0不是f(x)的驻点.(2)可导函数的驻点可能是极值点,也可能不是极值点.例如函数f(x)=x3的导数是f′(x)=3x2,在点x=0处有f′(0)=0,即点x=0是f(x)=x3的驻点,但从f(x)在(-∞, +∞)上为增函数可知,点x=0不是f(x)的极值点.●点击双基1.(2005年海淀区高三第一学期期末模拟)函数y =x sin x +cos x 在下面哪个区间内是增函数A.(2π,2π3) B.(π,2π) C.(2π3, 2π5) D.(2π,3π)解析:y ′=(x sin x +cos x )′=sin x +x cos x -sin x =x cos x , 当x ∈(2π3,2π5)时,恒有x cos x >0. 答案:C2.函数y =1+3x -x 3有 A.极小值-2,极大值2 B.极小值-2,极大值3 C.极小值-1,极大值1 D.极小值-1,极大值3解析:y ′=3-3x 2=3(1+x )(1-x ).令y ′=0得x 1=-1,x 2=1.当x <-1时,y ′<0,函数y =1+3x -x 3是减函数;当-1<x <1时, y ′>0,函数y =1+3x -x 3是增函数;当x >1时,y ′<0,函数y =1+3x -x 3是减函数.∴当x =-1时,函数y =1+3x -x 3有极小值-1;当x =1时,函数y =1+3x -x 3有极大值3. 答案:D3.设f (x )在(a ,b )内有定义,x 0∈(a ,b ),当x <x 0时,f ′(x )>0;当x >x 0时,f ′(x )<0.则x 0是A.间断点B.极小值点C.极大值点D.不一定是极值点 解析:f (x )在x 0处不一定连续. 答案:D4.函数f (x )=ex +e-x 在(0,+∞)上的单调性是__________.解析:∵f ′(x )=e x -e -x =e -x (e 2x -1),∴当x ∈(0,+∞)时,f ′(x )>0. ∴f (x )在(0,+∞)上是增函数. 答案:增函数 5.若函数f (x )=x 3+x 2+mx +1是R 上的单调递增函数,则m 的取值范围是______________ _____________________.解析:f ′(x )=3x 2+2x +m .∵f (x )在R 上是单调递增函数, ∴f ′(x )>0在R 上恒成立, 即3x 2+2x +m >0.由Δ=4-4×3m <0,得m >31. 答案:m >31 ●典例剖析【例1】 求函数y =342+-+x x 的值域.剖析:求函数值域是中学数学中的难点,一般可以通过图象观察或利用不等式性质来求解,也可以利用函数的单调性求出值域.本题形式结构复杂,可采用求导的方法求解.解:函数的定义域由⎩⎨⎧≥+≥+03042x x 求得x ≥-2.求导得y ′=421+x -321+x=34224232+⋅++-+x x x x .由y ′>0得23+x >42+x ,即⎪⎩⎪⎨⎧+>+>+>+,42)3(403042x x x x 解得x >-2,即函数y =42+x -3+x 在(-2,+∞)上是增函数.又此函数在x =-2处连续,∴在[-2,+∞)上是增函数,而f (-2)=-1. ∴函数y =42+x -3+x 的值域是[-1,+∞).评述:函数y =f (x )在(a ,b )上为单调函数,当在[a ,b ]上连续时,y =f (x )在[a ,b ]上也是单调函数.【例2】 已知f (x )=ax 3+bx 2+cx (a ≠0)在x =±1时取得极值,且f (1)=-1, (1)试求常数a 、b 、c 的值;(2)试判断x =±1是函数的极大值还是极小值,并说明理由.剖析:考查函数f (x )是实数域上的可导函数,可先求导确定可能的极值点,再通过极值点与导数的关系,即极值点必为f ′(x )=0的根建立起由极值点x =±1所确定的相关等式,运用待定系数法确定a 、b 、c 的值.(1)解法一:f ′(x )=3ax 2+2bx +c ,∵x =±1是函数的极值点, ∴x =±1是方程3ax 2+2bx +c =0的两根. 由根与系数的关系知⎪⎪⎩⎪⎪⎨⎧-==-②①13,032ac a b 又f (1)=-1,∴a +b +c =-1.③ 由①②③解得a =21,b =0,c =-23. 解法二:由f ′(1)=f ′(-1)=0,得3a +2b +c =0,①3a -2b +c =0.②又f (1)=-1,∴a +b +c =-1. ③由①②③解得a =21,b =0,c =-23. (2)解:f (x )=21x 3-23x ,∴f ′(x )=23 x 2-23=23(x -1)(x +1).当x <-1或x >1时,f ′(x )>0;当-1<x <1时,f ′(x )<0.∴x =-1时,f (x )有极大值;x =1时,f (x )有极小值.【例3】 已知函数f (x )=2ax -21x,x ∈(0,1].(1)若f (x )在x ∈(0,1]上是增函数,求a 的取值范围; (2)求f (x )在区间(0,1]上的最大值.剖析:(1)要使f (x )在(0,1]上为增函数,需f ′(x )>0,x ∈(0,1). (2)利用函数的单调性求最大值.解:(1)由已知可得f ′(x )=2a +32x,∵f (x )在(0,1)上是增函数,∴f ′(x )>0,即a >-31x, x ∈(0,1].∴a >-1.当a =-1时,f ′(x )=-2+32x对x ∈(0,1)也有f ′(x )>0,满足f (x )在(0,1]上为增函数,∴a ≥-1.(2)由(1)知,当a ≥-1时,f (x )在(0,1]上为增函数, ∴[f (x )]max =f (1)=2a -1.当a <-1时,令f ′(x )=0得x =31a-,∵0<31a-<1,∴0<x <31a-时,f ′(x )>0;31a-<x ≤1时,f ′(x )<0.∴f (x )在(0,31a-)上是增函数,在(31a-,1]减函数.∴[f (x )]max =f (31a-)=-332a .评述:求参数的取值范围,凡涉及函数的单调性、最值问题时,用导数的知识解决较简单.深化拓展(1)也可用函数单调性的定义求解.思考讨论函数f (x )在区间D 上的极值与最值有什么联系? ●闯关训练 夯实基础1.下列各式正确的是A.x -63x >sin x (x >0)B.sin x <x (x >0)C.π2x >sin x (0<x <2π) D.以上各式都不对解析:令F (x )=x -sin x ,则F ′(x )=1-cos x >0(当x >0,x ≠2n π,n =1,2,…). 故F (x )在x >0时单调递增.因此当x >0时,有F (x )>F (0)=0. 答案:B2.函数f (x )=sin (3x -6π)在点(6π,23)处的切线方程是 A.3x +2y +3-2π=0 B.3x -2y +3-2π=0C.3x -2y -3-2π=0D.3x +2y -3-2π=0解析:因为f ′(x )=3cos (3x -6π),所以所求切线的斜率为f ′(6π)=23,切线方程为y -23=23 (x -6π),即3x -2y +3-2π=0.答案:B3.函数y =x -2x (x ≥0)的最大值为_____________. 解析:y ′=x21-2,当0<x <161时,y ′>0,∴y =x -2x 在(0,161)上为增函数. 当x >161时,y ′<0,∴y =x -2x 在(161,+∞)上是减函数.∴y =x -2x 在(0,+∞)上的最大值为161-162=81. 答案:81 4.(2005年北京东城区模拟题)如果函数y =f (x )的导函数的图象如下图所示,给出下列判断:①函数y =f (x )在区间(-3,-21)内单调递增; ②函数y =f (x )在区间(-21,3)内单调递减; ③函数y =f (x )在区间(4,5)内单调递增; ④当x =2时,函数y =f (x )有极小值; ⑤当x =-21时,函数y =f (x )有极大值. 则上述判断中正确的是_____________ 解析:当x ∈(4,5)时,恒有f ′(x )>0. 答案:③5.已知f (x )=2ax -x b +ln x 在x =-1,x =21处取得极值. (1)求a 、b 的值;(2)若对x ∈[41,4]时,f (x )>c 恒成立,求c 的取值范围. 解:(1)∵f (x )=2ax -xb+ln x ,∴f ′(x )=2a +2x b +x1.∵f (x )在x =-1与x =21处取得极值,∴f ′(-1)=0,f ′(21)=0,即⎩⎨⎧=++=-+.0242,012b a b a 解得⎩⎨⎧-==.1,1b a∴所求a 、b 的值分别为1、-1.(2)由(1)得f ′(x )=2-21x +x 1=21x (2x 2+x -1)=21x (2x -1)(x +1).∴当x ∈[41,21]时,f ′(x )<0;当x ∈[21,4]时,f ′(x )>0.∴f (21)是f (x )在[41,4]上的极小值.又∵只有一个极小值, ∴f (x )min =f (21)=3-ln2.∵f (x )>c 恒成立,∴c <f (x )min =3-ln2. ∴c 的取值范围为c <3-ln2.6.(2004年全国Ⅰ,理19)已知a ∈R ,求函数f (x )=x 2e ax 的单调区间.解:f ′(x )=2x e ax +ax 2e ax =(2x +ax 2)e ax .①当a =0时,若x <0,则f ′(x )<0,若x >0,则f ′(x )>0.所以当a =0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,+∞)内为增 函数.②当a >0时,由2x +ax 2>0,解得x <-a 2或x >0;由2x +ax 2<0,得-a2<x <0. 所以当a >0时,函数f (x )在区间(-∞,-a 2)内为增函数,在区间(-a2,0)内为减函数,在区间(0,+∞)内为增函数.③当a <0时,由2x +ax 2>0,得0<x <-a2. 由2x +ax 2<0,得x <0或x >-a2. 所以当a <0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,-a2)内为增函数,在区间(-a2,+∞)内为减函数. 培养能力7.已知x ∈R ,求证:e x ≥x +1.证明:设f (x )=e x -x -1,则f ′(x )=e x -1. ∴当x =0时,f ′(x )=0,f (x )=0.当x >0时,f ′(x )>0,∴f (x )在(0,+∞)上是增函数.∴f (x )>f (0)=0. 当x <0时,f ′(x )<0,f (x )在(-∞,0)上是减函数,∴f (x )>f (0)=0. ∴对x ∈R 都有f (x )≥0.∴e x ≥x +1. 8.(2004年全国Ⅱ,文21)若函数f (x )=31x 3-21ax 2+(a -1)x +1在区间(1,4)内为减函数,在区间(6,+∞)上为增函数,试求实数a 的取值范围.解:函数f (x )的导数f ′(x )=x 2-ax +a -1. 令f ′(x )=0,解得x =1或x =a -1.当a -1≤1,即a ≤2时,函数f (x )在(1,+∞)上为增函数,不合题意.当a -1>1,即a >2时,函数f (x )在(-∞,1)上为增函数,在(1,a -1)内为减函数,在(a -1,+∞)上为增函数.依题意应有当x ∈(1,4)时,f ′(x )<0, 当x ∈(6,+∞)时,f ′(x )>0. 所以4≤a -1≤6,解得5≤a ≤7. 所以a 的取值范围是[5,7]. 探究创新9.已知函数f (x )的图象与函数h (x )=x +x1+2的图象关于点A (0,1)对称. (1)求f (x )的解析式; (2)若g (x )=f (x )+xa,且g (x )在区间(0,2]上为减函数,求实数a 的取值范围.解:(1)设f (x )图象上任一点坐标为(x ,y ),点(x ,y )关于点A (0,1)的对称点(-x ,2-y )在h (x )图象上.∴2-y =-x +x-1+2. ∴y =x +x 1,即f (x )=x +x1. (2)g (x )=x + x a 1+,∵g ′(x )=1-21xa +,g (x )在(0,2]上递减,∴1-21xa +≤0在x ∈(0,2]时恒成立,即a ≥x 2-1在x ∈(0,2)时恒成立. ∵x ∈(0,2]时,(x 2-1) max =3,∴a ≥3. ●思悟小结1.函数单调性的充分条件,若f ′(x )>0(或<0),则f (x )为增函数(或减函数).2.函数单调性的必要条件,设f (x )在(a ,b )内可导,若f (x )在(a ,b )上单调递增(或递减),则f ′(x )≥0(或f ′(x )≤0)且f ′(x )在(a ,b )的任意子区间上都不恒为零.3.可以用单调性求函数的极值、最值. ●教师下载中心 教学点睛利用导数解有关函数的单调性、极值、最值的问题是本节的主要题型,也是高考考查的重点,复习时应引起足够的重视.解单调性的题目时要注意判断端点能否取到,用导数求单调函数的最值时要注意由极值到最值的过渡.拓展题例【例题】 设函数y =f (x )=ax 3+bx 2+cx +d 图象与y 轴的交点为P ,且曲线在P 点处的切线方程为24x +y -12=0,若函数在x =2处取得极值-16,试求函数解析式,并确定函数的单调递减区间.错因点评:有的同学不知道P 点处的斜率为y ′|p x ,即y ′|x =0为已知切线方程的斜率 -24.又当x =2时有极值,且极值为-16,找不到与a 、b 、c 、d 的关系,从而无法求出a 、b 、c 、d ,导致错解.正确思路:由y ′=3ax 2+2bx +c ⇒f ′(0)=c , ∵切线24x +y -12=0的斜率k =-24,∴c =-24,把x =0代入24x +y -12=0得y =12.得P 点的坐标为(0,12),由此得d =12,f (x )即可写成f (x )=ax 3+bx 2-24x +12. 由函数f (x )在x =2处取得极值-16,则得⎩⎨⎧-+=-+=-,244120,364816b a b a 解得⎩⎨⎧==.3,1b a ∴f (x )=x 3+3x 2-24x +12,f ′(x )=3x 2+6x -24.令f ′(x )<0,得-4<x <2. ∴递减区间为(-4,2).。

相关文档
最新文档