初二数学 八年级数学 下 勾股定理 单元测试题(带答案)

合集下载

八年级下册数学第17章《勾股定理》单元测试题(含答案)

八年级下册数学第17章《勾股定理》单元测试题(含答案)

⼋年级下册数学第17章《勾股定理》单元测试题(含答案)⼋年级下册数学第17章《勾股定理》单元测试题(含答案)⼀、选择题(共10⼩题)1.下列各组数中,不是勾股数的是()A.3,4,6B.7,24,25C.6,8,10D.9,12,152.在△ABC中,BC=6,AC=8,AB=10,则该三⾓形为()A.锐⾓三⾓形B.直⾓三⾓形C.纯⾓三⾓形D.等腰直⾓三⾓形3.如图,在边长为1个单位长度的⼩正⽅形⽹格中,点A、B都是格点(即⽹格线的交点),则线段AB的长度为()A.3B.5C.6D.44.我国汉代数学家赵爽为了证明勾股定理,创制了⼀副“弦图”,后⼈称其为“赵爽弦图如图,由弦图变化得到,它是由⼋个全等的直⾓三⾓形拼接⽽成.记图中正⽅形ABCD,正⽅形EFGH,正⽅形MNKT的⾯积分别为S1,S2,S3,若S1+S2+S3=21,则S2的值是()A.9.5B.9C.7.5D.75.如图,是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直⾓三⾓形,四边形ABCD和EFGH都是正⽅形,如果EF=4,AH=12,那么AB等于()A.30B.25C.20D.156.在我国古代数学著作《九章算术》“勾股”章有⼀题:“今有开门去阃(kǔn)⼀尺,不合⼆⼨,问门⼴⼏何.”⼤意是说:如图,推开双门(AD和BC),门边缘D、C两点到门槛AB距离为1尺(1尺=10⼨),双门间的缝隙CD为2⼨,那么门的宽度(两扇门的和)AB 为()A.100⼨B.101⼨C.102⼨D.103⼨7.2019年10⽉1⽇,中华⼈民共和国70年华诞之际,王梓涵和学校国旗护卫队的其他同学们赶到学校举⾏了简朴⽽降重的升旗仪式.倾听着雄壮的国歌声,⽬送着五星红旗级缓升起,不禁⼼潮澎湃,爱国之情油然⽽⽣.爱动脑筋的王梓涵设计了⼀个⽅案来测量学校旗杆的⾼度.将升旗的绳⼦拉直到末端刚好接触地⾯,测得此时绳⼦末端距旗杆底端2⽶,然后将绳⼦末端拉直到距离旗杆5m处,测得此时绳⼦末端距离地⾯⾼度为1m,最后根据刚刚学习的勾股定理就能算出旗杆的⾼度为()A.10mB.11mC.12mD.13m8.如图,笑笑将⼀张A4纸(A4纸的尺⼨为210mm×297mm,AC>AB)剪去了⼀个⾓,量得CF =90mm,BE=137mm,则剪去的直⾓三⾓形的斜边长为()A.50mmB.120mmC.160mmD.200mm9.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O点240⽶.如果⽕车⾏驶时,周围200⽶以内会受到噪⾳的影响.那么⽕车在铁路MN上沿ON⽅向以10⽶/秒的速度⾏驶时,A处受噪⾳影响的时间为()A.32秒B.36秒C.40秒D.44秒10.如图,⼩明(视为⼩⿊点)站在⼀个⾼为10⽶的⾼台A上,利⽤旗杆OM顶部的绳索,划过90°到达与⾼台A⽔平距离为17⽶,⾼为3⽶的矮台B.那么⼩明在荡绳索的过程中离地⾯的最低点的⾼度MN是()A.2⽶B.2.2⽶C.2.5⽶D.2.7⽶⼆、填空题(共8⼩题)11.在Rt△ABC中,∠C=90°,AB=15,BC:AC=3:4,则BC=.12.直⾓三⾓形的两边长为3cm,4cm,则第三边边长为.13.如图,以Rt△ABC的三边向外作正⽅形,其⾯积分别为S1,S2,S3,且S1=6,S3=15,则S2=.14.中国古代三国时期的数学家赵爽,创作了⼀幅“勾股弦⽅图”,通过数形结合,给出了勾股定理的详细证明如图,在“勾股弦⽅图”中,以弦为边长得到的正⽅形ABCD是由4个全等的直⾓三⾓形和中间的⼩正⽅形组成,这⼀图形被称作“赵爽弦图”张天同学要⽤细塑料棒制作“赵爽弦图”,若正⽅形ABCD与正⽅形EFCH的⾯积分别为169和49,则所⽤细塑料棒的长度为.15.已知三⾓形三边长分别为5,12,13,则此三⾓形的最⼤边上的⾼等于.16.如图所⽰的⽹格是正⽅形⽹格,则∠PAB+∠PBA=°(点A,B,P是⽹格线交点).17.勘测队按实际需要构建了平⾯直⾓坐标系,并标⽰了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为km;(2)计划修⼀条从C到铁路AB的最短公路l,并在l上建⼀个维修站D,使D到A,C的距离相等,则C,D间的距离为km.18.如图,在离⽔⾯⾼度为8⽶的岸上,有⼈⽤绳⼦拉船靠岸,开始时绳⼦BC的长为17⽶,此⼈以1⽶每秒的速度收绳,7秒后船移动到点D的位置,问船向岸边移动了⽶.(假设绳⼦是直的)三、解答题(共4⼩题)19.如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,DE垂直平分AB,分别交AB、BC于点D、E,AP平分∠BAC,与DE的延长线交于点P.(1)求PD的长度;(2)连结PC,求PC的长度.20.如图,将直⾓三⾓形分割成⼀个正⽅形和两对全等的直⾓三⾓形,直⾓三⾓形ABC中,∠ACB=90°,BC=a,AC=b,AB=c,正⽅形IECF中,IE=EC=CF=FI=x(1)⼩明发明了求正⽅形边长的⽅法:由题意可得BD=BE=a﹣x,AD=AF=b﹣x因为AB=BD+AD,所以a﹣x+b﹣x=c,解得x=(2)⼩亮也发现了另⼀种求正⽅形边长的⽅法:=S△AIB+S△AIC+S△BIC可以得到x与a、b、c的关系,请根据⼩亮的思路完成他的求利⽤S△ABC解过程:(3)请结合⼩明和⼩亮得到的结论验证勾股定理.21.为了积极响应国家新农村建设,遂宁市某镇政府采⽤了移动宣讲的形式进⾏宣传动员.如图,笔直公路MN的⼀侧点A处有⼀村庄,村庄A到公路MN的距离为600⽶,假使宣讲车P周围1000⽶以内能听到⼴播宣传,宣讲车P在公路MN上沿PN⽅向⾏驶时:(1)请问村庄能否听到宣传,请说明理由;(2)如果能听到,已知宣讲车的速度是200⽶/分钟,那么村庄总共能听到多长时间的宣传?22.有⼀架秋千,当它静⽌时,踏板离地的垂直⾼度DE=1m,将它往前推送6m(⽔平距离BC=6m)时,秋千的踏板离地的垂直⾼度BF=4m,秋千的绳索始终拉得很直,求绳索AD 的长度.参考答案⼀、选择题(共10⼩题)1.下列各组数中,不是勾股数的是()A.3,4,6B.7,24,25C.6,8,10D.9,12,15【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需满⾜两⼩边的平⽅和等于最长边的平⽅.【解答】解:A、32+42≠62,不是勾股数,此选项正确;B、72+242=252,是勾股数,此选项错误;C、62+82=102,是勾股数,此选项错误;D、92+122=152,是勾股数,此选项错误.故选:A.2.在△ABC中,BC=6,AC=8,AB=10,则该三⾓形为()A.锐⾓三⾓形B.直⾓三⾓形C.纯⾓三⾓形D.等腰直⾓三⾓形【分析】根据勾股定理的逆定理解答即可.【解答】解:∵在△ABC中,BC=6,AC=8,AB=10,∵BC2+AC2=AB2,∴△ABC是直⾓三⾓形,故选:B.3.如图,在边长为1个单位长度的⼩正⽅形⽹格中,点A、B都是格点(即⽹格线的交点),则线段AB的长度为()A.3B.5C.6D.4【分析】由勾股定理即可得出线段AB的长.【解答】解:由勾股定理得:AB==5;故选:B.4.我国汉代数学家赵爽为了证明勾股定理,创制了⼀副“弦图”,后⼈称其为“赵爽弦图如图,由弦图变化得到,它是由⼋个全等的直⾓三⾓形拼接⽽成.记图中正⽅形ABCD,正⽅形EFGH,正⽅形MNKT的⾯积分别为S1,S2,S3,若S1+S2+S3=21,则S2的值是()A.9.5B.9C.7.5D.7【分析】根据正⽅形的⾯积和勾股定理即可求解.【解答】解:设全等的直⾓三⾓形的两条直⾓边为a、b且a>b,由题意可知:S1=(a+b)2,S2=a2+b2,S3=(a﹣b)2,因为S1+S2+S3=21,即(a+b)2+a2+b2+(a﹣b)2=213(a2+b2)=21,所以3S2=21,S2的值是7.故选:D.5.如图,是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直⾓三⾓形,四边形ABCD和EFGH都是正⽅形,如果EF=4,AH=12,那么AB等于()A.30B.25C.20D.15【分析】在直⾓三⾓形AHB中,利⽤勾股定理进⾏解答即可.【解答】解:∵△ABH≌△BCG,∴BG=AH=12,∵四边形EFGH都是正⽅形,∴HG=EF=4,∴BH=16,∴在直⾓三⾓形AHB中,由勾股定理得到:AB===20.故选:C.6.在我国古代数学著作《九章算术》“勾股”章有⼀题:“今有开门去阃(kǔn)⼀尺,不合⼆⼨,问门⼴⼏何.”⼤意是说:如图,推开双门(AD和BC),门边缘D、C两点到门槛AB距离为1尺(1尺=10⼨),双门间的缝隙CD为2⼨,那么门的宽度(两扇门的和)AB 为()A.100⼨B.101⼨C.102⼨D.103⼨【分析】画出直⾓三⾓形,根据勾股定理即可得到结论.【解答】解:设OA=OB=AD=BC=r,过D作DE⊥AB于E,则DE=10,OE=CD=1,AE=r﹣1.在Rt△ADE中,AE2+DE2=AD2,即(r﹣1)2+102=r2,解得2r=101.故门的宽度(两扇门的和)AB为101⼨.故选:B.7.2019年10⽉1⽇,中华⼈民共和国70年华诞之际,王梓涵和学校国旗护卫队的其他同学们赶到学校举⾏了简朴⽽降重的升旗仪式.倾听着雄壮的国歌声,⽬送着五星红旗级缓升起,不禁⼼潮澎湃,爱国之情油然⽽⽣.爱动脑筋的王梓涵设计了⼀个⽅案来测量学校旗杆的⾼度.将升旗的绳⼦拉直到末端刚好接触地⾯,测得此时绳⼦末端距旗杆底端2⽶,然后将绳⼦末端拉直到距离旗杆5m处,测得此时绳⼦末端距离地⾯⾼度为1m,最后根据刚刚学习的勾股定理就能算出旗杆的⾼度为()A.10mB.11mC.12mD.13m【分析】根据题意画出⽰意图,设旗杆⾼度为x,可得AC=AD=x,AB=(x﹣1)m,BC=5m,在Rt△ABC中利⽤勾股定理可求出x.【解答】解:设旗杆⾼度为x,可得AC=AD=x,AB=(x﹣1)m,BC=5m根据勾股定理得,绳长的平⽅=x2+12,右图,根据勾股定理得,绳长的平⽅=(x﹣1)2+52,∴x2+22=(x﹣1)2+52,解得x=11.故选:B.8.如图,笑笑将⼀张A4纸(A4纸的尺⼨为210mm×297mm,AC>AB)剪去了⼀个⾓,量得CF =90mm,BE=137mm,则剪去的直⾓三⾓形的斜边长为()A.50mmB.120mmC.160mmD.200mm【分析】解答此题只要把原来的图形补全,构造出直⾓三⾓形解答.【解答】解:延长BE、CF相交于D,则EFD构成直⾓三⾓形,运⽤勾股定理得:EF2=(210﹣90)2+(297﹣137)2=1202+1602=40000,所以EF=200.则剪去的直⾓三⾓形的斜边长为200mm.故选:D.9.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O点240⽶.如果⽕车⾏驶时,周围200⽶以内会受到噪⾳的影响.那么⽕车在铁路MN上沿ON⽅向以10⽶/秒的速度⾏驶时,A处受噪⾳影响的时间为()A.32秒B.36秒C.40秒D.44秒【分析】过点A作AC⊥ON,利⽤锐⾓三⾓函数的定义求出AC的长与200m相⽐较,发现受到影响,然后过点A作AD=AB=200m,求出BD的长即可得出居民楼受噪⾳影响的时间.【解答】解:如图:过点A作AC⊥ON,AB=AD=200⽶,∵∠QON=30°,OA=240⽶,∴AC=120⽶,当⽕车到B点时对A处产⽣噪⾳影响,此时AB=200⽶,∵AB=200⽶,AC=120⽶,∴由勾股定理得:BC=160⽶,CD=160⽶,即BD=320⽶,∵⽕车在铁路MN上沿ON⽅向以10⽶/秒的速度⾏驶,∴影响时间应是:320÷10=32秒.故选:A.10.如图,⼩明(视为⼩⿊点)站在⼀个⾼为10⽶的⾼台A上,利⽤旗杆OM顶部的绳索,划过90°到达与⾼台A⽔平距离为17⽶,⾼为3⽶的矮台B.那么⼩明在荡绳索的过程中离地⾯的最低点的⾼度MN是()A.2⽶B.2.2⽶C.2.5⽶D.2.7⽶【分析】⾸先得出△AOE≌△OBF(AAS),得出OE=BF,AE=OF,求出OE+OF=AE+BF =CD=17⽶,得出EF=EM﹣FM =AC﹣BD=7⽶,求出BF=OE=5⽶,OF=12⽶,得出CM=CD﹣DM=CD﹣BF=12⽶,OM=OF+FM=15⽶,由勾股定理求出ON=OA=13⽶,进⽽求出MN的长即可.【解答】解:作AE⊥OM于E,BF⊥OM于F,如图所⽰:则∠OEA=∠BFO=90°,∵∠AOE+∠BOF=∠BOF+∠OBF=90°∴∠AOE=∠OBF在△AOE和△OBF中,,∴△AOE≌△OBF(AAS),∴OE=BF,AE=OF,∴OE+OF=AE+BF=CD=17(⽶)∵EF=EM﹣FM=AC﹣BD=10﹣3=7(⽶),∵OE+OF=2EO+EF=17⽶,∴2OE=17﹣7=10(⽶),∴BF=OE=5⽶,OF=12⽶,∴CM=CD﹣DM=CD﹣BF=17﹣5=12(⽶),OM=OF+FM=12+3=15(⽶),由勾股定理得:ON=OA===13(⽶),∴MN=OM﹣OF=15﹣13=2(⽶).故选:A.⼆、填空题(共8⼩题)11.在Rt△ABC中,∠C=90°,AB=15,BC:AC=3:4,则BC=9.【分析】设BC=3x,AC=4x,⼜其斜边AB=15,再根据勾股定理即可得出答案.【解答】解:设BC=3x,AC=4x,⼜其斜边AB=15,∴9x2+16x2=152,解得:x=3或﹣3(舍去),∴BC=3x=9.故答案为:9.12.直⾓三⾓形的两边长为3cm,4cm,则第三边边长为5或.【分析】根据勾股定理分两种情况解答,⼀是把两边长都看作直⾓边,⼆是把4cm长边看作斜边,根据勾股定理计算即可.【解答】解:(1)若把两边都看作是直⾓边,那么据已知和勾股定理,设第三边长为xcm,则:x2=32+42=25,∴x=5;(2)若把4cm长的边看作斜边,设第三边长为xcm,则:x2+32=42,x2=42﹣32=7,∴x=.故答案为:5或.13.如图,以Rt△ABC的三边向外作正⽅形,其⾯积分别为S1,S2,S3,且S1=6,S3=15,则S2=9.【分析】由三⾓形ABC为直⾓三⾓形,利⽤勾股定理列出关系式,结合正⽅形⾯积公式得到S3=S1+S2,即可求出S2的值.【解答】解:∵△ABC为直⾓三⾓形,∴AB2=AC2+BC2,∵以Rt△ABC的三边向外作正⽅形,其⾯积分别为S1,S2,S3,且S1=6,S3=15,∴S3=S1+S2,则S2=S3﹣S1=15﹣6=9,故答案为:914.中国古代三国时期的数学家赵爽,创作了⼀幅“勾股弦⽅图”,通过数形结合,给出了勾股定理的详细证明如图,在“勾股弦⽅图”中,以弦为边长得到的正⽅形ABCD是由4个全等的直⾓三⾓形和中间的⼩正⽅形组成,这⼀图形被称作“赵爽弦图”张天同学要⽤细塑料棒制作“赵爽弦图”,若正⽅形ABCD与正⽅形EFCH的⾯积分别为169和49,则所⽤细塑料棒的长度为100.【分析】根据正⽅形的⾯积可得两个正⽅形的边长分别为13和7,再根据勾股定理可求得直⾓三⾓形的两条直⾓边长,进⽽求解.【解答】解:∵正⽅形ABCD是由4个全等的直⾓三⾓形和中间的⼩正⽅形组成,∴AE=BF,∠AEB=90°,∵正⽅形ABCD与正⽅形EFCH的⾯积分别为169和49,∴AB=13,EF=7,在Rt△ABE中,BE=BF﹣EF=AE﹣7根据勾股定理,得AE2+BE2=AB2,即AE2+(AE﹣7)2=132解得,AE=12,所以BE=12﹣7=5,所以所⽤细塑料棒的长度为:4(AB+AE)=4(13+12)=100.故答案为100.15.已知三⾓形三边长分别为5,12,13,则此三⾓形的最⼤边上的⾼等于.【分析】根据勾股定理的逆定理,△ABC是直⾓三⾓形,利⽤它的⾯积:斜边×⾼÷2=短边×短边÷2,就可以求出最长边的⾼.【解答】解:∵52+122=132,∴根据勾股定理的逆定理,△ABC是直⾓三⾓形,最长边是13,设斜边上的⾼为h,则S△ABC=×5×12=×13h,解得:h=,故答案为.16.如图所⽰的⽹格是正⽅形⽹格,则∠PAB+∠PBA=45°(点A,B,P是⽹格线交点).【分析】延长AP交格点于D,连接BD,根据勾股定理得到PD2=BD2=1+22=5,PB2=12+32=10,求得PD2+DB2=PB2,于是得到∠PDB=90°,根据三⾓形外⾓的性质即可得到结论.【解答】解:延长AP交格点于D,连接BD,则PD2=BD2=1+22=5,PB2=12+32=10,∴PD2+DB2=PB2,∴∠PDB=90°,∴∠DPB=∠PAB+∠PBA=45°,故答案为:45.17.勘测队按实际需要构建了平⾯直⾓坐标系,并标⽰了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为20km;(2)计划修⼀条从C到铁路AB的最短公路l,并在l上建⼀个维修站D,使D到A,C的距离相等,则C,D间的距离为13km.【分析】(1)由垂线段最短以及根据两点的纵坐标相同即可求出AB的长度;(2)根据A、B、C三点的坐标可求出CE与AE的长度,设CD=x,根据勾股定理即可求出x 的值.【解答】解:(1)由A、B两点的纵坐标相同可知:AB∥x轴,∴AB=12﹣(﹣8)=20;(2)过点C作l⊥AB于点E,连接AC,作AC的垂直平分线交直线l于点D,由(1)可知:CE=1﹣(﹣17)=18,AE=12,设CD=x,∴AD=CD=x,由勾股定理可知:x2=(18﹣x)2+122,∴解得:x=13,∴CD=13,故答案为:(1)20;(2)13;18.如图,在离⽔⾯⾼度为8⽶的岸上,有⼈⽤绳⼦拉船靠岸,开始时绳⼦BC的长为17⽶,此⼈以1⽶每秒的速度收绳,7秒后船移动到点D的位置,问船向岸边移动了9⽶.(假设绳⼦是直的)【分析】在Rt△ABC中,利⽤勾股定理计算出AB长,再根据题意可得CD长,然后再次利⽤勾股定理计算出AD长,再利⽤BD =AB﹣AD可得BD长.【解答】解:在Rt△ABC中:∵∠CAB=90°,BC=17⽶,AC=8⽶,∴AB===15(⽶),∵此⼈以1⽶每秒的速度收绳,7秒后船移动到点D的位置,∴CD=17﹣1×7=10(⽶),∴AD===6(⽶),∴BD=AB﹣AD=15﹣6=9(⽶),答:船向岸边移动了9⽶.故答案为:9.三、解答题(共4⼩题)19.如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,DE垂直平分AB,分别交AB、BC 于点D、E,AP平分∠BAC,与DE的延长线交于点P.(1)求PD的长度;(2)连结PC,求PC的长度.【分析】(1)根据等腰直⾓三⾓形的性质解答;(2)作PF⊥AC于F,根据⾓平分线的性质定理求出PF,根据勾股定理计算即可.【解答】解:(1)∵DE垂直平分AB,∴AD=AB=2,∵AP平分∠BAC,∴∠PAD=∠BAC=45°,∴DP=AD=2;(2)作PF⊥AC于F,∵AP平分∠BAC,PD⊥AB,PF⊥AC,∴PF=PD=2,∠PAC=45°,∴AF=PF=2,∴FC=AC﹣AF=1,在Rt△PFC中,PC==.20.如图,将直⾓三⾓形分割成⼀个正⽅形和两对全等的直⾓三⾓形,直⾓三⾓形ABC中,∠ACB=90°,BC=a,AC=b,AB=c,正⽅形IECF中,IE=EC=CF=FI=x(1)⼩明发明了求正⽅形边长的⽅法:由题意可得BD=BE=a﹣x,AD=AF=b﹣x因为AB=BD+AD,所以a﹣x+b﹣x=c,解得x=(2)⼩亮也发现了另⼀种求正⽅形边长的⽅法:=S△AIB+S△AIC+S△BIC可以得到x与a、b、c的关系,请根据⼩亮的思路完成他的求利⽤S△ABC解过程:(3)请结合⼩明和⼩亮得到的结论验证勾股定理.【分析】(1)根据全等三⾓形的性质和线段的和差即得结论;(2)根据⼤三⾓形的⾯积等于三个⼩三⾓形的⾯积和即可求解;(3)综合(1)和(2)的结论进⾏推导即可得结论.=S△ABI+S△BIC+S△AIC【解答】解:(2)因为S△ABC=cx+ax+bx所以x=.答:x与a、b、c的关系为x=.(3)根据(1)和(2)得:x==.即2ab=(a+b+c)(a+b﹣c)化简得a2+b2=c2.21.为了积极响应国家新农村建设,遂宁市某镇政府采⽤了移动宣讲的形式进⾏宣传动员.如图,笔直公路MN的⼀侧点A处有⼀村庄,村庄A到公路MN的距离为600⽶,假使宣讲车P周围1000⽶以内能听到⼴播宣传,宣讲车P在公路MN上沿PN⽅向⾏驶时:(1)请问村庄能否听到宣传,请说明理由;(2)如果能听到,已知宣讲车的速度是200⽶/分钟,那么村庄总共能听到多长时间的宣传?【分析】(1)根据村庄A到公路MN的距离为600⽶<1000⽶,于是得到结论;(2)根据勾股定理得到BP=BQ=800⽶,求得PQ=1600⽶,于是得到结论.【解答】解:(1)村庄能否听到宣传,理由:∵村庄A到公路MN的距离为600⽶<1000⽶,∴村庄能听到宣传;(2)如图:假设当宣讲车⾏驶到P点开始影响村庄,⾏驶QD点结束对村庄的影响,则AP=AQ=1000⽶,AB=600⽶,∴BP=BQ=⽶,∴PQ=1600⽶,∴影响村庄的时间为:1600÷200=8分钟,∴村庄总共能听到8分钟的宣传.22.有⼀架秋千,当它静⽌时,踏板离地的垂直⾼度DE=1m,将它往前推送6m(⽔平距离BC=6m)时,秋千的踏板离地的垂直⾼度BF=4m,秋千的绳索始终拉得很直,求绳索AD。

八年级数学下勾股定理_单元测试题(带答案)

八年级数学下勾股定理_单元测试题(带答案)

(第6题)AB D C(第12题)307米5米八年级下勾股定理测试题一、耐心填一填每小题3分,共36分1、在Rt △ABC 中,∠C=90°,AC=3,BC=4,则AB=___________;2、如图,小明的爸爸在院子的门板上钉了一个加固板,从数学的角度看, 这样做的道理是 .3、小明同学要做一个直角三角形小铁架,他现有4根长度分别为4cm 、6cm 、8cm 、10cm 的铁棒,可用于制作成直角三角形铁架的三条铁棒分别是________________________;4、若三角形三条边的长分别为7,24,25,则这个三角形的最大内角是 度.5、在△ABC 中,∠C =90°,若c =10,a ∶b =3∶4,则ab = .6、如图,在等腰△ABC 中,AB=AC=10,BC=12,则高AD=________;7、等腰△ABC 的面积为12cm 2,底上的高AD =3cm, 则它的周长为________.8、在Rt △ABC 中,斜边AB =2,则AB 2+BC 2+CA 2=________.9、有一个三角形的两边长是4和5,要使这个三角形成为直角三角形,则第三边长为 ;10、有两棵树,一棵高6米,另一棵高3米,两树相距4米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了________米.11、一个三角形的三边的比为5∶12∶13,它的周长为60cm,则它的面积是________. 12、如图,今年第8号台风“桑美”是50多年以来登陆我国大陆地区 最大的一次台风,一棵大树受“桑美”袭击于离地面5米 处折断倒下,倒下部分的树梢到树的距离为7米, 则这棵大树折断前有__________米保留到0.1米; 二、精心选一选每小题4分,共24分13、下列各组数据为边的三角形中,是直角三角形的是A 、 错误!、错误!、7B 、5、4、8C 、错误!、2、1D 、错误!、3、错误! 14、正方形ABCD 中,AC=4,则正方形ABCD 面积为A 、 4B 、8C 、 16D 、32 15、已知Rt △ABC 中,∠A,∠B,∠C 的对边分别为a,b,c,若∠B=90○,则 A 、b2= a2+ c2;B 、c2= a2+ b2;C 、a2+b2=c2;D 、a +b =c16、三角形的三边长a,b,c满足2ab=a+b2-c2,则此三角形是 . A 、钝角三角形 B 、锐角三角形 C 、直角三角形 D 、等边三角形 17、将Rt △ABC 的三边都扩大为原来的2倍,得△A ’B ’C ’,则△A ’B ’C ’为 A 、 直角三角形 B 、锐角三角形 C 、钝角三角形 D 、无法确定AB D CdabD CB A N O MAM O N B 图图图18、一座建筑物发生了火灾,消防车到达现场后,发现最多只能靠近建筑物底端5米,消防车的云梯最大升长为13米,则云梯可以达该建筑物的最大高度是 A 、 12米 B 、 13米 C 、 14米 D 、15米 三、决心试一试19、12分如右图,等边△ABC 的边长6cm; ①求高AD ②求△ABC 的面积 20、12分如图,ABC ∆中,3590,12,,22CCD BD ∠=︒∠=∠==,求AC 的长;21、12分某菜农要修建一个塑料大棚,如图所示,若棚宽a=4m,高b=3m,长d=40m;求覆盖在顶上如右图阴影部分的逆料薄膜的面积;22、12分如图3-2,在△ABD 中,∠A 是直角,AB=3,AD=4,BC=12,DC=13,求四边形ABCD 的面积. 23、12分如图,一架长为5米的梯子AB 斜靠在与地面OM 垂直的墙ON 上,梯子底端距离墙ON 有3米;①求梯子顶端与地面的距离OA 的长; ②若梯子顶点A 下滑1米到C 点, 求梯子的底端向右滑到D 的距离;24、15分如图,A 、B 两个小集镇在河流CD 的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A 、B 两镇供水,铺设水管的费用为每千米3万,请你在河流CD 上选择水厂的位置M,使铺设水管的费用最节省,并求出总费用是多少25、15分如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形涂上阴影.⑴在图1中,画一个三角形,使它的三边长都是有理数;⑵在图2、图3中,分别画一个直角三角形,使它的三边长都是无理数.两个三角形不全等答案一、1. 5 2. 三角形的稳定性意思对就可以了 3. 6cm 、8cm 、10cm 4. 90 5. 48 6. 87. 18 8.8 cm9. 34111. 120 cm 212. 13.6 二、13-18 CBACAA三、19`. ①3错误!或 ②9错误!或15.59cm220. AC=3ABCDL21. 200m222. 3623. ①AO=错误! =4②OD=错误! =4 BD=OD-OB=4-3=1米24. 作A关于CD的对称点A’,连接A’B与CD的交点为M点为所求点可求得AM+BM=A’B=50千米,总费用为50×3=150万元25. 仅供参考每个5分。

人教版八年级数学下册第十七章《勾股定理》单元测试卷附答案

人教版八年级数学下册第十七章《勾股定理》单元测试卷附答案

第十七章《勾股定理》单元测试卷(共23题,满分120分,考试用时90分钟)学校班级姓名学号一、选择题(共10小题,每小题3分,共30分)1.如图,一根垂直于地面的旗杆在离地面5 m的B处撕裂折断,旗杆顶部落在离旗杆底部12 m的A处,则旗杆折断部分AB的高度是()A.5 mB.12 mC.13 mD.18 m第1题图第3题图第5题图2.下列各组数据中,不能作为直角三角形的三边长的是()A.3,4,6B.7,24,25C.6,8,10D.9,12,153.如图,在Rt△ABC中,∠ACB=90°.若AB=10,则正方形ADEC和正方形BCFG的面积和为()A.100B.120C.140D.1604.若直角三角形的两条直角边长分别是3和4,则斜边长为()A.2.4B.5C.√7D.75.如图,以数轴的单位长线段为边作一个正方形,数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A,则点A表示的数是()A.1B.1.4C.√2D.√36.在Rt△ABC中,a,b,c为三边长,则下列关系中正确的是()A.a2+b2=c2B.a2+c2=b2C.b2+c2=a2D.以上都有可能7.若一个直角三角形中,斜边的长为13,一条直角边长为5,则这个三角形的面积是()A.60B.30C.20D.328.如图,将风筝放至高30 m,牵引线与水平面夹角约为45°的高空中,则牵引线AB的长约是()A.30 mB.45 mC.20√3 mD.30√2 m第8题图第9题图第10题图9.(跨学科融合)如图,在物理实验课上,小明将长为8 cm的橡皮筋放置在水平面上,固定两端A和B,然后把中点C垂直向上拉升3 cm至点D,则橡皮筋被拉长了()A.3 cmB.2 cmC.6 cmD.4 cm10.如图所示的一块地,已知∠ADC=90°,AD=12 m,CD=9 m,AB=25 m,BC=20 m,则这块地的面积为()A.96 m2B.204 m2C.196 m2D.304 m2二、填空题(共5小题,每小题3分,共15分)11.如图,两个正方形的面积分别是100和36,则字母B所代表的正方形的面积是.第11题图第13题图12.若△ABC的三边长满足a2=b2+c2,则△ABC是直角三角形且∠=90°.13.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了步路(假设2步为1米),却踩伤了花草.14.如图,∠C=∠ABD=90°,AC=4,BC=3,BD=12,则AD的长等于.第14题图第15题图15.(数学文化)如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AH=6,EF=2,那么AB的长等于.三、解答题(一)(共3小题,每小题8分,共24分)16.如图,根据所给条件,求BC的长.17.如果三角形的三边长分别为√2,√6,2,那么这个三角形是直角三角形吗?。

八年级数学下册《勾股定理》单元测试卷(带答案解析)

八年级数学下册《勾股定理》单元测试卷(带答案解析)

八年级数学下册《勾股定理》单元测试卷(带答案解析)一、单选题1.如图,在△ABC中,∠C=90°,AC=3,点D在BC上,∠ADC=2∠B,AD=√10,则BC的长为()A. 3√3B. √5+1C. √10−1D. √10+12.下列长度的线段中,能组成直角三角形的一组是()A. 1,√3,2B. 2,3,4C. 4,5,6D. 5,6,73.如图,在ΔABC中,三边a,b,c的大小关系是()A. a<b<cB. c<a<bC. c<b<aD. b<a<c4.下列各组数中,能成为直角三角形的三条边长的是()A. 3,5,7B. 5,7,8C. 4,6,7D. 1,√3,2,则AC的长为()5.如图,点A,B都在格点上,点C在线段AB上,每个小格长度为1,若BC=2√133A. √13B. 4√13C. 2√13D. 3√1336.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB、BD于M、N两点.若AM=√2,则线段BN的长为()B. √2C. 1D. 2−√2A. √227.在平面直角坐标系中,点A、B的坐标分别是(0,3)、(−4,0),则原点到直线AB的距离是()A. 2B. 2.4C. 2.5D. 38.等腰三角形的一边长为4,另一边长为6,则这个等腰三角形的面积是()A. 3√7B. 8√2C. 6√7D. 3√7或8√29.如图,一只蚂蚁从长宽高分别是3,2,6的长方体纸箱的A点沿纸箱表面爬到B点,那么它所行的最短路线的长是()A. √61B. 11C. 7D. 810.若一个三角形的三边长分别为a,b,c,满足(a−3)2+√b−4+|c−5|=0,则这个三角形的形状是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定二、填空题11.如图,直角三角形的两直角边长分别为6 cm和8 cm,分别以三边为直径作半圆,则阴影部分的面积为_______________.12.已知直角三角形的三边长分别为6,7,x,则x2=_______________.13.△ABC中,∠C=90°,AB=8,BC=6,则AC的长是 ______.14.如图,在△ABC 中,点D 是BC 上一点,已知:AB =15,AD =12,AC =13,CD =5,则BC 的长为 ______.15.如图,学校有一块长方形花圈,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,踩伤了花草,则他们仅仅少走了 ______步路.(假设2步为1米)16.ΔABC 中,∠ACB =90°,∠BAC =30°,BC =3.以BC 为边作等边ΔBCD ,连接AD ,则AD 的长为____.17.如图,P 是∠AOB 的平分线OC 上一点,PD ⊥OB ,PE ⊥OA ,垂足分别为D ,E ,若PD =3,则PE 的长是 ______.18.如图,等腰ΔABC 的底边BC =20,面积为120,点F 在边BC 上,且BF =3FC ,EG 是腰AC 的垂直平分线,若点D 在EG 上运动,则ΔCDF 周长的最小值为______.三 、解答题19.在数轴上表示下列各数,并用“<”连接.−12,0,√3,√−83,(−1)2.20.如果三角形有一边上的中线恰好等于这边的长,那么我们称这个三角形为“奇妙三角形”.(1)如图,在△ABC中,AB=AC=2√5,BC=4,求证:△ABC是“奇妙三角形”;(2)在Rt△ABC中,∠C=90°,AC=2√3,若△ABC是“奇妙三角形”,求BC的长.21.如图,在正方形网格中,每个小正方形的边长都是1,点A、B、C、D都在格点上.(1)线段AB的长是______;(2)在图中画出一条线段EF,使EF的长为√13,并判断AB、CD、EF三条线段的长能否成为一个直角三角形三边的长?说明理由.22.如图,某工人在两墙AB,CD之间施工(两墙与地面垂直),架了一架长为2.5m的梯子DE,此时梯子底端E距离墙角C点O.7m,由于E点没有固定好,向后滑动到墙角B处,使梯子顶端D沿墙下滑了0.4m到F处,求梯子底端E向后滑动的距离BE的长.23.如图,在Rt△ABC中,∠ACB=90°,AB=10,BC=6.BE平分∠ABC交AC于点E.求CE的长.24.如图,矩形ABCD是一个底部直径BC为12cm的杯子的示意图,在它的正中间竖直放一根筷子EG,筷子漏出杯子外2cm,当筷子倒向杯壁时(筷子底端E不动),筷子顶端正好触到杯口,求筷子EG的长度.25.请阅读下列材料:已知:如图(1)在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,若∠DAE= 45°.探究线段BD、DE、EC三条线段之间的数量关系.小明的思路是:把△AEC绕点A顺时针旋转90°,得到△ABE′,连接E′D,使问题得到解决.请你参考小明的思路探究并解决下列问题:(1)猜想BD、DE、EC三条线段之间存在的数量关系式,直接写出你的猜想;(2)当动点E在线段BC上,动点D运动在线段CB延长线上时,如图(2),其它条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明;(3)已知:如图(3),等边三角形ABC中,点D、E在边AB上,且∠DCE=30°,请你找出一个条件,使线段DE、AD、EB能构成一个等腰三角形,并求出此时等腰三角形顶角的度数.参考答案与解析1.【答案】D;【解析】解:在Rt△ACD中,由勾股定理得:CD=√AD2−AC2=√10−9=1,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD,∵∠ADC=2∠B,∴∠B=∠BAD,∴BD=AD=√10,∴BC=√10+1.故选:D.由勾股定理求出CD=1,再根据∠ADC是△ABD的外角,证出∠B=∠BAD,从而有BD=AD,即可求出BC的长.此题主要考查了勾股定理、三角形外角的性质等知识,利用外角证出∠B=∠BAD是解答该题的关键.2.【答案】A;【解析】解:A、∵12+(√3)2=22,∴能构成直角三角形,故本选项符合题意;B、∵22+32≠42,∴不能构成直角三角形,故本选项不符合题意;C、∵42+52≠62,∴不能构成直角三角形,故本选项不符合题意;D、∵52+62≠72,∴不能构成直角三角形,故本选项不符合题意.故选:A.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.此题主要考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答该题的关键.3.【答案】D;【解析】解:根据勾股定理,得a=√1+9=√10;b=√1+4=√5;c=√4+9=√13.∵5<10<13,∴b<a<c.故选:D.先分析出a、b、c三边所在的直角三角形,再根据勾股定理求出三边的长,进行比较即可.此题主要考查了勾股定理及比较无理数的大小,属中学阶段的基础题目.4.【答案】D;【解析】解:A、因为32+52≠72,所以不能构成直角三角形,此选项错误;B、因为52+72≠82,所以不能构成直角三角形,此选项错误;C、因为42+62≠72,所以不能构成直角三角形,此选项错误;D、因为12+(√3)2=22,能构成直角三角形,此选项正确.故选D.分别计算每一组中,较小两数的平方和,看是否等于最大数的平方,若等于就是直角三角形,否则就不是直角三角形.此题主要考查了勾股定理的逆定理,已知三条线段的长,判断是否能构成直角三角形的三边,判断的方法是:判断两个较小的数的平方和是否等于最大数的平方即可判断.5.【答案】B;【解析】解:∵点A,B都在格点上,点C在线段AB上,每个小格长度为1,∴AB=√62+42=2√13,∵BC=2√133,∴AC=AB−BC=2√13−2√133=4√133,即AC的长为4√133,故选:B.由勾股定理求出AB的长,即可得出结论.此题主要考查了勾股定理,由勾股定理求出AB的长是解答该题的关键.6.【答案】C;【解析】解:过M点作MH⊥AC于H点,∵四边形ABCD是正方形,∴∠HAM=45°.∴ΔHAM是等腰直角三角形,∴HM=√22AM=1.∵CM平分∠ACB,MH⊥AC,MB⊥CB,∴BM=HM=1,∠ACM=∠BCN.∵∠BMN=45°+∠ACM,∠BNM=45°+∠BCM,∴∠BMN=∠BNM.∴BN=BM=1.故选:C.过M点作MH⊥AC于H点,在等腰直角ΔHAM中可求HM=√22AM=1,根据角平分线的性质可得BM=MH=1,再证明BN=BM即可.这道题主要考查了正方形的性质、角平分线的性质,解决这类问题一般会利用到正方形对角线平分90°得到等腰直角三角形,涉及角平分线时作角两边的垂线段是常见辅助线.7.【答案】B;【解析】解:∵点A、B的坐标分别是(0,3)、(−4,0),∴OA=3,OB=4,∴AB=5,ΔAOB是直角三角形,∴O到AB的距离为3×45=125;故选:B.由ΔAOB是直角三角形,利用直角三角形面积相等,将O到AB的距离转化为直角三角形OAB斜边上的高求解;该题考查坐标平面内点的特征;将将O到AB的距离转化为直角三角形OAB斜边上的高是解答该题的关键;8.【答案】D;【解析】该题考查了勾股定理,等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解答该题的关键.因为已知长度为4和6两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论.解:①当4为底时,其它两边都为6,4、6、6可以构成三角形,底边上的高为√62−22=4√2,∴等腰三角形的面积=12×4×4√2=8√2;②当4为腰时,其它两边为4和6,∵4+4>6,∴4、4、6能构成三角形.∴底边上的高为=√42−32=√7,∴等腰三角形的面积=1×√7×6=3√7.2故选D.9.【答案】A;【解析】解:因为平面展开图不唯一,故分情况分别计算,进行大、小比较,再从各个路线中确定最短的路线.(1)展开前面右面由勾股定理得AB2=(3+2)2+62=61;(2)展开前面上面由勾股定理得AB2=(2+6)2+32=73;(3)展开左面上面由勾股定理得AB2=(3+6)2+22=85.所以最短路径的长为AB=√61(cm).故选:A.把此长方体的一面展开,然后在平面内,利用勾股定理求点A和B点间的线段长,即可得到蚂蚁爬行的最短距离.在直角三角形中,一条直角边长等于长方体的高,另一条直角边长等于长方体的长宽之和,利用勾股定理可求得.此题主要考查了平面展开−最短路径问题及勾股定理的拓展应用.“化曲面为平面”是解决“怎样爬行最近”这类问题的关键.10.【答案】B;【解析】解:∵(a−3)2+√b−4+|c−5|=0,∴a−3=0,b−4=0,c−5=0,解得:a=3,b=4,c=5,则a2+b2=c2,故这个三角形的形状是直角三角形;故选:B.利用绝对值以及偶次方的性质和二次根式的性质得出a,b,c的值,进而判断出三角形的形状即可.此题主要考查了勾股定理逆定理,关键是掌握两边的平方和等于第三边的平方,这个三角形是直角三角形.11.【答案】24cm2;【解析】略12.【答案】85或13;【解析】略13.【答案】2√7;【解析】解:在Rt△ABC中,∠C=90°,AB=8,BC=6,则AC=√AB2−BC2=√82−62=2√7,故答案为:2√7.根据勾股定理计算即可.此题主要考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.14.【答案】14;【解析】解:∵AD=12,AC=13,CD=5,∴AC2=169,AD2+CD2=144+25=169,即AD2+CD2=AC2,∴△ADC为直角三角形,且∠ADC=90°,∴∠ADB=90°,∵AB=15,AD=12,∴BD=√AB2−AD2=√152−122=9,∴BC=BD+CD=9+5=14.故答案为:14.在△ADC中,由三边长,利用勾股定理的逆定理判断出△ADC为直角三角形,可得出AD与BC垂直,在直角三角形ABD中,由勾股定理求出BD,再根据线段的和差关系即可求解.此题主要考查了勾股定理,以及勾股定理的逆定理;熟练掌握勾股定理及逆定理是解本题的关键.15.【答案】4;【解析】解:由勾股定理,得路长=√32+42=5(m),少走(3+4−5)×2=4步,故答案为:4.根据勾股定理,可得答案.此题主要考查了勾股定理,利用勾股定理得出路的长是解题关键.16.【答案】3或3√7;【解析】该题考查了勾股定理、等边三角形的性质、全等三角形的判定与性质、含30°角的直角三角形的性质;熟练掌握等边三角形的性质、全等三角形的判定与性质、含30°角的直角三角形的性质是解答的关键.本题分两种情况,①D在AB边上,由直角三角形的性质解答即可;②D在三角形外面,由等边三角形的性质得出三角形ΔBCE和ΔDCA全等的条件,得出ΔBCE≌ΔDCA,推出BE=AD,由勾股定理得出BE,也就得出AD 了.解:分两种情况:①如图所示:D在AB边上,∵∠ACB=90°,∠BAC=30°,BC=3,∴AD=CD=BC=3;②D在三角形外面,以AC为边做等边ΔACE,连接BE,如图所示:∵ΔBCD和ΔACE是等边三角形,∴BC=DC,CE=CA,∠BCD=∠ACE=60°,∴∠BCE=∠DCA=60°+90°=150°,∴ΔBCE≌ΔDCA,∴BE=AD,∵在RtΔABC中,∠ACB=90°,∠BAC=30°,BC=3,∴AB=2BC=6,AC=√AB2−BC2=3√3,∵ΔACE为等边三角形,∴∠CAE=60°,AE=3√3,∴∠BAE=∠BAC+∠CAE=30°+60°=90°,∴BE=√AB2+AE2=√62+(3√3)2=3√7,∴AD=BE=3√7,综上所述,AD=3或3√7.故答案为3或3√7.17.【答案】3;【解析】解:∵P是∠AOB的平分线OC上一点,PD⊥OB,PE⊥OA,∴PE=PD,∵PD=3,∴PE=3.故答案为:3.根据角平分线的性质定理可得答案.此题主要考查角平分线的性质定理,熟练掌握角平分线的性质是解题关键.18.【答案】18;【解析】解:如图作AH⊥BC于H,连接AD.∵EG垂直平分线段AC,∴DA=DC,∴DF+DC=AD+DF,∴当A、D、F共线时,DF+DC的值最小,最小值就是线段AF的长,∵1⋅BC⋅AH=120,2∴AH=12,∵AB=AC,AH⊥BC,∴BH=CH=10,∵BF=3FC,∴CF=FH=5,∴AF=√AH2+HF2=√122+52=13,∴DF+DC的最小值为13.∴ΔCDF周长的最小值为13+5=18;故答案为18.如图作AH⊥BC于H,连接AD.由EG垂直平分线段AC,推出DA=DC,推出DF+DC=AD+DF,可得当A、D、F共线时,DF+DC的值最小,最小值就是线段AF的长;该题考查轴对称−最短问题、线段的垂直平分线的性质、等腰三角形的性质等知识,解答该题的关键是学会利用轴对称,解决最短问题,属于中考常考题型.19.【答案】解:√3≈1.73,√−83=-2,(-1)2=1,在数轴上表示如下:∴√−83<-12<0<(-1)2<√3.; 【解析】根据实数的符号和绝对值,在数轴上表示即可;依据数轴表示数的特征,右边的数总比左边的大,比较大小.此题主要考查数轴表示数的意义和方法,理解符号和绝对值是确定实数的两个必要条件.20.【答案】(1)证明:过点A 作AD ⊥BC 于D ,∵AB=AC ,AD ⊥BC ,∴BD=12BC=2,由勾股定理得,AD=√AB 2−BD 2=4,∴AD=BC ,即△ABC 是“奇妙三角形”;(2)解:当AC 边上的中线BD 等于AC 时,BC=√BD 2−CD 2=3,当BC 边上的中线AE 等于BC 时,AC 2=AE 2-CE 2,即BC 2-(12BC )2=(2√3)2, 解得BC=4.综上所述,BC 的长是3或4.;【解析】(1)过点A 作AD ⊥BC 于D ,根据等腰三角形的性质求出BD ,根据勾股定理求出AD ,根据“奇妙三角形”的定义证明;(2)分AC 边上的中线BD 等于AC ,BC 边上的中线AE 等于BC 两种情况,根据勾股定理计算.此题主要考查的是勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.21.【答案】null;【解析】解:(1)线段AB的长是:√12+22=√5;故答案为:√5;(2)如图所示:EF即为所求,AB、CD、EF三条线段的长能成为一个直角三角形三边的长理由:∵AB2=(√5)2=5,DC2=8,EF2=13,∴AB2+DC2=EF2,∴AB、CD、EF三条线段的长能成为一个直角三角形三边的长.(1)直接利用勾股定理得出AB的长;(2)直接利用勾股定理以及勾股定理逆定理分析得出答案.此题主要考查了勾股定理以及勾股定理逆定理,正确结合网格分析是解题关键.22.【答案】解:由题意得:∠DCE=90°,BF=DE=2.5m,CE=0.7m,DF=0.4m,在Rt△DCE中,由勾股定理得:DC=√DE2−CE2=√2.52−0.72=2.4(m),∴CF=DC-DF=2.4-0.4=2(m)在Rt△BCF中,由勾股定理得:CF=√BF2−CF2=√2.52−22=1.5(m),∴BE=BC-CE=1.5-0.7=0.8(m),答:梯子底端E向后滑动的距离BE的长为0.8m.;【解析】由勾股定理得DC=2.4m,再由勾股定理得BC=1.5m,即可得出结论.此题主要考查了勾股定理的应用,解答本题的关键是两次运用勾股定理.23.【答案】解:如图,过E作ED⊥AB于D,∵∠ACB=90°,AB=10,BC=6,∴EC⊥BC,AC=√AB2−BC2=√102−62=8,∵BE平分∠ABC,ED⊥AB,∴CE=DE,在Rt△BDE和Rt△BCE中,{DE=CEBE=BE,∴Rt△BDE≌Rt△BCE(HL),∴BD=BC=6,∴AD=AB-BD=10-6=4,设CE=DE=x,则AE=AC-CE=8-x,在Rt△ADE中,由勾股定理得:42+x2=(8-x)2,解得:x=3,即CE的长为3.;【解析】过E作ED⊥AB于D,由勾股定理得AC=8,再证Rt△BDE≌Rt△BCE(HL),得BD=BC=6,则AD= AB−BD=10−6=4,设CE=DE=x,则AE=AC−CE=8−x,然后在Rt△ADE中,由勾股定理得出方程,解方程即可.此题主要考查了勾股定理、全等三角形的判定与性质以及角平分线的性质等知识,熟练掌握全等三角形的判定与性质,由勾股定理得出方程是解答该题的关键.24.【答案】解:设杯子的高度是x cm,则筷子的高度为(x+2)cm,∵杯子的直径为12cm,∴DF=6cm,在Rt△DEF中,由勾股定理得:x2+62=(x+2)2,解得x=8,∴筷子EG=8+2=10cm.;【解析】设杯子的高度是xcm,则筷子的高度为(x+2)cm,在RtΔDEF中,利用勾股定理列出方程:x2+62=(x+ 2)2,解方程即可.此题主要考查了勾股定理的应用,运用方程思想是解答该题的关键,属于常考题.25.【答案】解:(1)DE2=BD2+EC2;(2)关系式DE2=BD2+EC2仍然成立.证明:将△ADB沿直线AD对折,得△AFD,连FE∴△AFD≌△ABD,∴AF=AB,FD=DB,∠FAD=∠BAD,∠AFD=∠ABD,又∵AB=AC,∴AF=AC,∵∠FAE=∠FAD+∠DAE=∠FAD+45°,∠EAC=∠BAC-∠BAE=90°-(∠DAE-∠DAB)=45°+∠DAB,∴∠FAE=∠EAC,又∵AE=AE,∴△AFE≌△ACE,∴FE=EC,∠AFE=∠ACE=45°,∠AFD=∠ABD=180°-∠ABC=135°∴∠DFE=∠AFD-∠AFE=135°-45°=90°,∴在Rt△DFE中,DF2+FE2=DE2,即DE2=BD2+EC2;解法二:将△EAC绕点A顺时针旋转90°得到△TAB.连接DT.∴∠ABT=∠C=45°,AT=AE,∠TAE=90°,∵∠ABC=45°,∴∠TBC=∠TBD=90°,∵∠DAE=45°,∴∠DAT=∠DAE,∵AD=AD,∴△DAT≌△DAE(SAS),∴DT=DE,∵DT2=DB2+EC2,∴DE2=BD2+EC2;(3)当AD=BE时,线段DE、AD、EB能构成一个等腰三角形.如图,与(2)类似,以CE为一边,作∠ECF=∠ECB,在CF上截取CF=CB,可得△CFE≌△CBE,△DCF≌△DCA.∴AD=DF,EF=BE.∴∠DFE=∠1+∠2=∠A+∠B=120°.若使△DFE为等腰三角形,只需DF=EF,即AD=BE,∴当AD=BE时,线段DE、AD、EB能构成一个等腰三角形,且顶角∠DFE为120°.;【解析】(1)DE2=BD2+EC2,将△ADB沿直线AD对折,得△AFD,连FE,容易证明△AFD≌△ABD,然后可以得到AF=AB,FD=DB,∠FAD=∠BAD,∠AFD=∠ABD,再利用已知条件可以证明△AFE≌△ACE,从而可以得到∠DFE=∠AFD−∠AFE=135°−45°=90°,根据勾股定理即可证明猜想的结论;(2)根据(1)的思路一样可以解决问题;(3)当AD=BE时,线段DE、AD、EB能构成一个等腰三角形.如图,与(1)类似,以CE为一边,作∠ECF=∠ECB,在CF上截取CF=CB,可得△CFE≌△CBE,△DCF≌△DCA,然后可以得到AD=DF,EF=BE.由此可以得到∠DFE=∠1+∠2=∠A+∠B=120°,这样就可以解决问题.此题比较复杂,考查了全等三角形的性质与判定、等腰三角形的性质、勾股定理的应用等知识点,此题关键是正确找出辅助线,通过辅助线构造全等三角形解决问题,要掌握辅助线的作图根据.。

八年级数学下册《第十七章-勾股定理》单元测试卷及答案(人教版)

八年级数学下册《第十七章-勾股定理》单元测试卷及答案(人教版)

八年级数学下册《第十七章-勾股定理》单元测试卷及答案(人教版)一 选择题(每小题3分 共30分)1. 如果下列各组数是三角形的三边长,那么不能组成直角三角形的一组数是( )A. √2 √3 √5B. 1.5C. 32 42 52D. 1 22. 点A(−3,−4)到原点的距离为( )A. 3B. 4C. 5D. 73. 有一个直角三角形的两边长分别为3和4,则第三边的长为( )A. 5B. √7C. √5D. 5或√74.如果直角三角形两直角边的比为5∶12, 则斜边上的高与斜边的比为( ) A 60∶13B 5∶12C 12∶13D 60∶1695. 若一直角三角形两边长分别为12和5 则第三边长为( ) A .13 B .13或C .13或15D .156.一个圆桶底面直径为24cm ,高32cm ,则桶内所能容下的最长木棒为( )A .20cmB .50cmC .40cmD .45cm7.如图 小明准备测量一段水渠的深度 他把一根竹竿AB 竖直插到水底 此时竹竿AB 离岸边点C 处的距离米.竹竿高出水面的部分AD 长0.5米 如果把竹竿的顶端A 拉向岸边点C 处 竿顶和岸边的水面刚好相齐 则水渠的深度BD 为( )A .2米B .2.5米C .2.25米D .3米1.5CD8.如图, “赵爽弦图”是用四个相同的直角三角形与一个小正方形无缝隙地铺成一个大正方形 已知大正方形面积为25 (x +y)2=49 用x y 表示直角三角形的两直角边(x >y) 下列选项中正确的是( )A. 小正方形面积为4B. x 2+y 2=5C. x 2−y 2=7D. xy =249.如图,在△ABC 中 ∠C =90° AC =4 BC =2.以AB 为一条边向三角形外部作正方形 则正方形的面积是( )A. 8B. 12C. 18D. 2010.如图 在Rt △ABC 中 ∠ACB =90° AC =3 BC =4 BE 平分∠ABC CD ⊥AB 于D BE 与CD 相交于F 则CF 的长是( )A. 1B. 43C. 53D. 2二 填空题(每题3分 共24分)11.若一个三角形的三边之比为5:12:13 且周长为60cm 则它的面积为_____cm 2. 12.如图所示 所有的四边形都是正方形 所有的三角形都是直角三角形 其中最大的正方形的边长为7cm 正方形A B C 的面积分别是28cm 210cm 214cm 则正方形D 的面积是___________2cm .13.在ABC中90C∠=︒AB=5 则222AB AC BC++=______.14.如图在△ABC中∠ABC=90° 分别以BC AB AC为边向外作正方形面积分别记为S1S2,S3若S2=4 S3=6则S1=__________.15.方程思想如图在Rt△ABC中∠C=90° BC=6cm AC=8cm 按图中所示方法将△BCD沿BD折叠使点C落在AB边的点C’处那么△ADC’的面积是_____cm2. 16.如图一架秋千静止时踏板离地的垂直高度DE=0.5m将它往前推送1.5m(水平距离BC=1.5m)时秋千的踏板离地的垂直高度BF=1m秋千的绳索始终拉直则绳索AD的长是m.17.如图小明利用升旗用的绳子测量学校旗杆BC的高度他发现绳子刚好比旗杆长11米若把绳子往外拉直绳子接触地面A点并与地面形成30°角时绳子末端D距A点还有1米那么旗杆BC的高度为米.18.在△ABC中AB=AC=5 BC=6.若点P在边AC上移动则BP的最小值是.三、解答题(满分46分,19题6分20 21 22 23 24题每题8分)19.小明将一副三角板如图所示摆放在一起发现只要知道其中一边的长就可以求出其它各边的长若已知CD=2求AC的长.20.如图折叠长方形的一边AD使点D落在边BC的点F处已知AB=8cm BC=10cm求(1)FC的长.(2)EF的长.21 (8分)如图已知∠ADC=90°AD=8 CD=6 AB=26 BC=24.(1)证明:△ABC是直角三角形.(2)请求图中阴影部分的面积.22.如图 在长方形中 点在边上 把长方形沿直线折叠 点落在边上的点处。

八年级数学下册第十七章《勾股定理》单元测试卷-人教版(含答案)

八年级数学下册第十七章《勾股定理》单元测试卷-人教版(含答案)

八年级数学下册第十七章《勾股定理》单元测试卷-人教版(含答案)一、单选题(本大题共12小题,每小题3分,共36分)1.如图是我国汉代数学家赵爽在注解《周髀算经》时给出的“勾股方圆图”(又称赵爽弦图),它是由四个全等的直角三角形(直角边分别为a ,b ,斜边为c )与中间的一个小正方形拼成的一个大正方形.如果大正方形的面积为11,小正方形的面积为3,则44a b +的值为( )A .68B .89C .119D .1302.如图,ABC 中,90,8,6ACB AC BC ∠=︒==,将ADE 沿DE 翻折,使点A 与点B 重合,则CE 的长为()A .198 B .2 C .254 D .743.已知点M 的坐标为()3,4-,则下列说法正确的是( )A .点M 在第二象限内B .点M 到x 轴的距离为3C .点M 关于y 轴对称的点的坐标为()3,4D .点M 到原点的距离为54.如图,点A 表示的实数是( )AB C D5.如图,圆柱的底面周长为12cm ,AB 是底面圆的直径,在圆柱表面的高BC 上有一点D ,且10cm BC =,2cm DC =.一只蚂蚁从点A 出发,沿着圆柱体的表面爬行到点D 的最短路程是( )cm .A .14B .12C .10D .86.△ABC 的三边长a ,b ,c (b ﹣12)2+|c ﹣13|=0,则△ABC 的面积是( )A .65B .60C .30D .267.如图,Rt ABC 中,90,4,6B AB BC ∠=︒==,将ABC 折叠,使点C 与AB 的中点D 重合,折痕交AC 于点M ,交BC 于点N ,则线段CN 的长为( ).A .73B .83C .3D .1038.如图,在ABC 中,△B =22.5°,△C =45°,若AC =2,则ABC 的面积是( )A B .C . D .9.我们知道,如果直角三角形的三边的长都是正整数,这样的三个正整数就叫做一组勾股数.如果一个正整数c 能表示为两个正整数a ,b 的平方和,即22c a b =+,那么称a ,b ,c 为一组广义勾股数,c 为广义斜边数,则下面的结论:△m 为正整数,则3m ,4m ,5m 为一组勾股数;△1,2,3是一组广义勾股数;△13是广义斜边数;△两个广义斜边数的和是广义斜边数;△若2222,12,221a k k b k c k k =+=+=++,其中k 为正整数,则a ,b ,c 为一组勾股数;△两个广义斜边数的积是广义斜边数.依次正确的是( )A .△△△B .△△△△C .△△△D .△△△10.为预防新冠疫情,民生大院入口的正上方 A 处装有红外线激光测温仪(如图所示),测温仪离地面的距离 AB =2.4 米,当人体进入感应范围内时,测温仪就会自动测温并报告人体体温.当身高为 1.8 米的市民 CD 正对门缓慢走到离门 0.8 米的地方时(即 BC =0.8 米),测温仪自动显示体温,则人头顶离测温仪的距离 AD 等于( )A .1.0 米B .1.2 米C .1.25 米D .1.5 米11.中国古代称直角三角形为勾股形,如果勾股形的三边长为三个正整数,则称三边长叫“勾股数”;如果勾股形的两直角边长为正整数,那么称斜边长的平方叫“整弦数”对于以下结论:△20是“整弦数”;△两个“整弦数”之和一定是“整弦数”;△若c 2为“整弦数”,则c 不可能为正整数;△若m =a 12+b 12,n =a 22+b 22,11a b ≠22a b ,且m ,n ,a 1,a 2,b 1,b 2均为正整数,则m 与n 之积为“整弦数”;△若一个正奇数(除1外)的平方等于两个连续正整数的和,则这个正奇数与这两个连续正整数是一组“勾股数”.其中结论正确的个数为( )A .1个B .2个C .3个D .4个12.如图,三角形纸片ABC 中,点D 是BC 边上一点,连接AD ,把△ABD 沿着直线AD 翻折,得到△AED ,DE 交AC 于点G ,连接BE 交AD 于点F .若DG =EG ,AF =4,AB =5,△AEG 的面积为92,则2BD 的值为( )A .13B .12C .11D .10二、填空题(本大题共8小题,每小题3分,共24分)13.无理数可以用数轴上的点表示.如图,数轴上点A 表示的数是______.14.我国古代数学名著《算法统宗)有一道“荡秋干”的问题,“平地秋千未起,踏板一尺离地.送行二步与人齐,5尺人高曾记,仕女家人争蹴.良工高士素好奇,算出索长有几?”此问题可理解为:如图,有一架秋千,当它静止时,踏板离地距离P A 的长为1尺,将它向前水平推送10尺时,即10P C '=尺,秋千踏板离地的距离P B '就和身高5尺的人一样高,秋千的绳索始终拉得很直,则秋千的绳索长为________尺.15.如图,在Rt ABC △中,9068C AC BC ∠=︒==,,,将ABC 按如图方式折叠,使点B 与点A 重合,折痕为DE ,则CD 的长为________.16.如图,一棵垂直于地面的大树在离地面3米处折断,树的顶端落在离树干底部4米处,那么这棵树折断之前的高度是____________米.17.如图,圆柱形容器的高为0.9m,底面周长为1.2m,在容器内壁离容器底部0.3m处的点B处有一蚊子.此时,一只壁虎正好在容器外壁,离容器上沿0.2m与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为_____ m.18.观察下列几组勾股数,并填空:△6,8,10,△8,15,17,△10,24,26,△12,35,37,则第△组勾股数为______.19.爱动脑筋的小明某天在家玩遥控游戏时遇到下面的问题:已知,如图一个棱长为8cm无盖的正方体铁盒,小明通过遥控器操控一只带有磁性的甲虫玩具,他先把甲虫放在正方体盒子外壁A处,然后遥控甲虫从A处出发沿外壁面正方形ABCD爬行,爬到边CD上后再在边CD上爬行3cm,最后在沿内壁面正方形ABCD上爬行,最终到达内壁BC的中点M,甲虫所走的最短路程是______cm20.如图,在△ABC中,AB=AC,BD△AC于点D,把线段AC绕点C旋转得到线段CE,点E恰好落在AB的延长线上,12BE CD,△BCD的面积是8,则BC的长为________.三、解答题(本大题共5小题,每小题8分,共40分)21.某海上有一小岛,为了测量小岛两端A,B的距离,测量人员设计了一种测量方法,如图,已知B是CD的中点,E是BA延长线上的一点,且△CED=90°,测得AE=16.6海里,DE=60海里,CE=80海里.(1)求小岛两端A,B的距离.(2)过点C作CF△AB交AB的延长线于点F,求BFBC值.22.阅读下列一段文字,然后回答下列问题.已知在平面内两点P1(x1,y1)、P2(x2,y2),其两点间的距离12PP=式可简化为|x2﹣x1|或|y2﹣y1|.(1)已知A(2,4)、B(﹣3,﹣8),试求A、B两点间的距离;(2)已知A、B在平行于y轴的直线上,点A的纵坐标为4,点B的纵坐标为﹣1,试求A、B两点间的距离;(3)已知一个三角形各顶点坐标为D(1,6)、E(﹣2,2)、F(4,2),你能判定此三角形的形状吗?说明理由.23.某天,暴雨突然来袭,两艘搜救艇接到消息,在海面上有遇险船只从A、B两地发出求救信号.于是,第一艘搜救艇以20海里/时的速度离开港口O沿北偏东40°的方向向A地出发,同时,第二艘搜救艇也从港口O出发,以15海里/时的速度向B地出发,2小时后,他们同时到达各自的目标位置.此时,他们相距50海里.的大小)(1)求第二艘搜救艇的航行方向是北偏西多少度?(求BOD(2)由于B地需要被援救的人数较多,故需要搭载人数较少的第一艘搜救艇改道去到B地支援,在从A地前往到B 地的过程中,与港口O最近的距离是多少?24.如图所示,一架云梯长25m,斜靠在一面墙上,梯子底端离墙7m,这个梯子的顶端距地面有多高?如果梯子顶端下滑了4m,那么梯子的底端在水平方向上也滑动了4m吗?25.【阅读思考】已知0<x<1分析:如图,我们可以构造边长为1的正方形ABCD,P为BC边上的动点.设BP=x,则PC=1-x,那么可以用含x的式子表示AP、DP,问题可以转化为AP与PD的和的最小值,用几何知识可以解答(1)AP+PD的最小值为________(2)的最小值,其中x、y为两正数,且x+y=6(3)参考答案1.B2.D3.D4.B5.C6.C7.D8.D9.D10.A11.C12.A13.214.14.515.7 416.817.118.16,63,6519.1620.1021.(1)33.4海里(2)72522.(1)AB=13(2)AB=5(3)△DEF是等腰三角形,23.(1)50度(2)24海里24.这个梯子的顶端距地面24m;梯子的底端在水平方向上不是滑动了4m,而是滑动了8m.25.5(2)(3)。

八年级下册数学第17章《勾股定理》单元测试卷(附答案)

八年级下册数学第17章《勾股定理》单元测试卷(附答案)

八下数学第17章《勾股定理》单元测试一、选择题(共10小题)1.下列各组数中,不是勾股数的是()A.3,4,6B.7,24,25C.6,8,10D.9,12,152.在△ABC中,BC=6,AC=8,AB=10,则该三角形为()A.锐角三角形B.直角三角形C.纯角三角形D.等腰直角三角形3.如图,在边长为1个单位长度的小正方形网格中,点A、B都是格点(即网格线的交点),则线段AB的长度为()A.3B.5C.6D.44.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图如图,由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=21,则S2的值是()A.9.5B.9C.7.5D.75.如图,是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果EF=4,AH=12,那么AB等于()A.30B.25C.20D.156.在我国古代数学著作《九章算术》“勾股”章有一题:“今有开门去阃(kǔn)一尺,不合二寸,问门广几何.”大意是说:如图,推开双门(AD和BC),门边缘D、C两点到门槛AB距离为1尺(1尺=10寸),双门间的缝隙CD为2寸,那么门的宽度(两扇门的和)AB为()A.100寸B.101寸C.102寸D.103寸7.2019年10月1日,中华人民共和国70年华诞之际,王梓涵和学校国旗护卫队的其他同学们赶到学校举行了简朴而降重的升旗仪式.倾听着雄壮的国歌声,目送着五星红旗级缓升起,不禁心潮澎湃,爱国之情油然而生.爱动脑筋的王梓涵设计了一个方案来测量学校旗杆的高度.将升旗的绳子拉直到末端刚好接触地面,测得此时绳子末端距旗杆底端2米,然后将绳子末端拉直到距离旗杆5m处,测得此时绳子末端距离地面高度为1m,最后根据刚刚学习的勾股定理就能算出旗杆的高度为()A.10mB.11mC.12mD.13m8.如图,笑笑将一张A4纸(A4纸的尺寸为210mm×297mm,AC>AB)剪去了一个角,量得CF =90mm,BE=137mm,则剪去的直角三角形的斜边长为()A.50mmB.120mmC.160mmD.200mm9.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON方向以10米/秒的速度行驶时,A处受噪音影响的时间为()A.32秒B.36秒C.40秒D.44秒10.如图,小明(视为小黑点)站在一个高为10米的高台A上,利用旗杆OM顶部的绳索,划过90°到达与高台A水平距离为17米,高为3米的矮台B.那么小明在荡绳索的过程中离地面的最低点的高度MN是()A.2米B.2.2米C.2.5米D.2.7米二、填空题(共8小题)11.在Rt△ABC中,∠C=90°,AB=15,BC:AC=3:4,则BC=.12.直角三角形的两边长为3cm,4cm,则第三边边长为.13.如图,以Rt△ABC的三边向外作正方形,其面积分别为S1,S2,S3,且S1=6,S3=15,则S2=.14.中国古代三国时期的数学家赵爽,创作了一幅“勾股弦方图”,通过数形结合,给出了勾股定理的详细证明如图,在“勾股弦方图”中,以弦为边长得到的正方形ABCD是由4个全等的直角三角形和中间的小正方形组成,这一图形被称作“赵爽弦图”张天同学要用细塑料棒制作“赵爽弦图”,若正方形ABCD与正方形EFCH的面积分别为169和49,则所用细塑料棒的长度为.15.已知三角形三边长分别为5,12,13,则此三角形的最大边上的高等于.16.如图所示的网格是正方形网格,则∠PAB+∠PBA=°(点A,B,P是网格线交点).17.勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C的距离相等,则C,D间的距离为km.18.如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为17米,此人以1米每秒的速度收绳,7秒后船移动到点D的位置,问船向岸边移动了米.(假设绳子是直的)三、解答题(共4小题)19.如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,DE垂直平分AB,分别交AB、BC于点D 、E ,AP 平分∠BAC ,与DE 的延长线交于点P .(1)求PD 的长度;(2)连结PC ,求PC 的长度.20.如图,将直角三角形分割成一个正方形和两对全等的直角三角形,直角三角形ABC 中,∠ACB =90°,BC =a ,AC =b ,AB =c ,正方形IECF 中,IE =EC =CF =FI =x(1)小明发明了求正方形边长的方法:由题意可得BD =BE =a ﹣x ,AD =AF =b ﹣x因为AB =BD +AD ,所以a ﹣x +b ﹣x =c ,解得x =(2)小亮也发现了另一种求正方形边长的方法:利用S △ABC =S △AIB +S △AIC +S △BIC 可以得到x 与a 、b 、c 的关系,请根据小亮的思路完成他的求解过程:(3)请结合小明和小亮得到的结论验证勾股定理.21.为了积极响应国家新农村建设,遂宁市某镇政府采用了移动宣讲的形式进行宣传动员.如图,笔直公路MN 的一侧点A 处有一村庄,村庄A 到公路MN 的距离为600米,假使宣讲车P 周围1000米以内能听到广播宣传,宣讲车P 在公路MN 上沿PN 方向行驶时:(1)请问村庄能否听到宣传,请说明理由;(2)如果能听到,已知宣讲车的速度是200米/分钟,那么村庄总共能听到多长时间的宣传?22.有一架秋千,当它静止时,踏板离地的垂直高度DE=1m,将它往前推送6m(水平距离BC=6m)时,秋千的踏板离地的垂直高度BF=4m,秋千的绳索始终拉得很直,求绳索AD 的长度.参考答案一、选择题(共10小题)1.下列各组数中,不是勾股数的是()A.3,4,6B.7,24,25C.6,8,10D.9,12,15【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需满足两小边的平方和等于最长边的平方.【解答】解:A、32+42≠62,不是勾股数,此选项正确;B、72+242=252,是勾股数,此选项错误;C、62+82=102,是勾股数,此选项错误;D、92+122=152,是勾股数,此选项错误.故选:A.2.在△ABC中,BC=6,AC=8,AB=10,则该三角形为()A.锐角三角形B.直角三角形C.纯角三角形D.等腰直角三角形【分析】根据勾股定理的逆定理解答即可.【解答】解:∵在△ABC中,BC=6,AC=8,AB=10,∵BC2+AC2=AB2,∴△ABC是直角三角形,故选:B.3.如图,在边长为1个单位长度的小正方形网格中,点A、B都是格点(即网格线的交点),则线段AB的长度为()A.3B.5C.6D.4【分析】由勾股定理即可得出线段AB的长.【解答】解:由勾股定理得:AB==5;故选:B.4.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图如图,由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=21,则S2的值是()A.9.5B.9C.7.5D.7【分析】根据正方形的面积和勾股定理即可求解.【解答】解:设全等的直角三角形的两条直角边为a、b且a>b,由题意可知:S1=(a+b)2,S2=a2+b2,S3=(a﹣b)2,因为S1+S2+S3=21,即(a+b)2+a2+b2+(a﹣b)2=213(a2+b2)=21,所以3S2=21,S2的值是7.故选:D.5.如图,是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果EF=4,AH=12,那么AB等于()A.30B.25C.20D.15【分析】在直角三角形AHB中,利用勾股定理进行解答即可.【解答】解:∵△ABH≌△BCG,∴BG=AH=12,∵四边形EFGH都是正方形,∴HG=EF=4,∴BH=16,∴在直角三角形AHB中,由勾股定理得到:AB===20.故选:C.6.在我国古代数学著作《九章算术》“勾股”章有一题:“今有开门去阃(kǔn)一尺,不合二寸,问门广几何.”大意是说:如图,推开双门(AD和BC),门边缘D、C两点到门槛AB距离为1尺(1尺=10寸),双门间的缝隙CD为2寸,那么门的宽度(两扇门的和)AB为()A.100寸B.101寸C.102寸D.103寸【分析】画出直角三角形,根据勾股定理即可得到结论.【解答】解:设OA=OB=AD=BC=r,过D作DE⊥AB于E,则DE=10,OE=CD=1,AE=r﹣1.在Rt△ADE中,AE2+DE2=AD2,即(r﹣1)2+102=r2,解得2r=101.故门的宽度(两扇门的和)AB为101寸.故选:B.7.2019年10月1日,中华人民共和国70年华诞之际,王梓涵和学校国旗护卫队的其他同学们赶到学校举行了简朴而降重的升旗仪式.倾听着雄壮的国歌声,目送着五星红旗级缓升起,不禁心潮澎湃,爱国之情油然而生.爱动脑筋的王梓涵设计了一个方案来测量学校旗杆的高度.将升旗的绳子拉直到末端刚好接触地面,测得此时绳子末端距旗杆底端2米,然后将绳子末端拉直到距离旗杆5m处,测得此时绳子末端距离地面高度为1m,最后根据刚刚学习的勾股定理就能算出旗杆的高度为()A.10mB.11mC.12mD.13m【分析】根据题意画出示意图,设旗杆高度为x,可得AC=AD=x,AB=(x﹣1)m,BC=5m,在Rt△ABC中利用勾股定理可求出x.【解答】解:设旗杆高度为x,可得AC=AD=x,AB=(x﹣1)m,BC=5m根据勾股定理得,绳长的平方=x2+12,右图,根据勾股定理得,绳长的平方=(x﹣1)2+52,∴x2+22=(x﹣1)2+52,解得x=11.故选:B.8.如图,笑笑将一张A4纸(A4纸的尺寸为210mm×297mm,AC>AB)剪去了一个角,量得CF =90mm,BE=137mm,则剪去的直角三角形的斜边长为()A.50mmB.120mmC.160mmD.200mm【分析】解答此题只要把原来的图形补全,构造出直角三角形解答.【解答】解:延长BE、CF相交于D,则EFD构成直角三角形,运用勾股定理得:EF2=(210﹣90)2+(297﹣137)2=1202+1602=40000,所以EF=200.则剪去的直角三角形的斜边长为200mm.故选:D.9.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON方向以10米/秒的速度行驶时,A处受噪音影响的时间为()A.32秒B.36秒C.40秒D.44秒【分析】过点A作AC⊥ON,利用锐角三角函数的定义求出AC的长与200m相比较,发现受到影响,然后过点A作AD=AB=200m,求出BD的长即可得出居民楼受噪音影响的时间.【解答】解:如图:过点A作AC⊥ON,AB=AD=200米,∵∠QON=30°,OA=240米,∴AC=120米,当火车到B点时对A处产生噪音影响,此时AB=200米,∵AB=200米,AC=120米,∴由勾股定理得:BC=160米,CD=160米,即BD=320米,∵火车在铁路MN上沿ON方向以10米/秒的速度行驶,∴影响时间应是:320÷10=32秒.故选:A.10.如图,小明(视为小黑点)站在一个高为10米的高台A上,利用旗杆OM顶部的绳索,划过90°到达与高台A水平距离为17米,高为3米的矮台B.那么小明在荡绳索的过程中离地面的最低点的高度MN是()A.2米B.2.2米C.2.5米D.2.7米【分析】首先得出△AOE≌△OBF(AAS),得出OE=BF,AE=OF,求出OE+OF=AE+BF =CD=17米,得出EF=EM﹣FM=AC﹣BD=7米,求出BF=OE=5米,OF=12米,得出CM=CD﹣DM=CD﹣BF=12米,OM=OF+FM=15米,由勾股定理求出ON=OA=13米,进而求出MN的长即可.【解答】解:作AE⊥OM于E,BF⊥OM于F,如图所示:则∠OEA=∠BFO=90°,∵∠AOE+∠BOF=∠BOF+∠OBF=90°∴∠AOE=∠OBF在△AOE和△OBF中,,∴△AOE≌△OBF(AAS),∴OE=BF,AE=OF,∴OE+OF=AE+BF=CD=17(米)∵EF=EM﹣FM=AC﹣BD=10﹣3=7(米),∵OE+OF=2EO+EF=17米,∴2OE=17﹣7=10(米),∴BF=OE=5米,OF=12米,∴CM=CD﹣DM=CD﹣BF=17﹣5=12(米),OM=OF+FM=12+3=15(米),由勾股定理得:ON=OA===13(米),∴MN=OM﹣OF=15﹣13=2(米).故选:A.二、填空题(共8小题)11.在Rt△ABC中,∠C=90°,AB=15,BC:AC=3:4,则BC=9.【分析】设BC=3x,AC=4x,又其斜边AB=15,再根据勾股定理即可得出答案.【解答】解:设BC=3x,AC=4x,又其斜边AB=15,∴9x2+16x2=152,解得:x=3或﹣3(舍去),∴BC=3x=9.故答案为:9.12.直角三角形的两边长为3cm,4cm,则第三边边长为5.【分析】根据勾股定理分两种情况解答,一是把两边长都看作直角边,二是把4cm长边看作斜边,根据勾股定理计算即可.【解答】解:(1)若把两边都看作是直角边,那么据已知和勾股定理,设第三边长为xcm,则:x2=32+42=25,∴x=5;(2)若把4cm长的边看作斜边,设第三边长为xcm,则:x2+32=42,x2=42﹣32=7,∴x=.故答案为:5或.13.如图,以Rt△ABC的三边向外作正方形,其面积分别为S1,S2,S3,且S1=6,S3=15,则S2=9.【分析】由三角形ABC为直角三角形,利用勾股定理列出关系式,结合正方形面积公式得到S3=S1+S2,即可求出S2的值.【解答】解:∵△ABC为直角三角形,∴AB2=AC2+BC2,∵以Rt△ABC的三边向外作正方形,其面积分别为S1,S2,S3,且S1=6,S3=15,∴S3=S1+S2,则S2=S3﹣S1=15﹣6=9,故答案为:914.中国古代三国时期的数学家赵爽,创作了一幅“勾股弦方图”,通过数形结合,给出了勾股定理的详细证明如图,在“勾股弦方图”中,以弦为边长得到的正方形ABCD是由4个全等的直角三角形和中间的小正方形组成,这一图形被称作“赵爽弦图”张天同学要用细塑料棒制作“赵爽弦图”,若正方形ABCD与正方形EFCH的面积分别为169和49,则所用细塑料棒的长度为100.【分析】根据正方形的面积可得两个正方形的边长分别为13和7,再根据勾股定理可求得直角三角形的两条直角边长,进而求解.【解答】解:∵正方形ABCD是由4个全等的直角三角形和中间的小正方形组成,∴AE=BF,∠AEB=90°,∵正方形ABCD与正方形EFCH的面积分别为169和49,∴AB=13,EF=7,在Rt△ABE中,BE=BF﹣EF=AE﹣7根据勾股定理,得AE2+BE2=AB2,即AE2+(AE﹣7)2=132解得,AE=12,所以BE=12﹣7=5,所以所用细塑料棒的长度为:4(AB+AE)=4(13+12)=100.故答案为100.15.已知三角形三边长分别为5,12,13,则此三角形的最大边上的高等于.【分析】根据勾股定理的逆定理,△ABC是直角三角形,利用它的面积:斜边×高÷2=短边×短边÷2,就可以求出最长边的高.【解答】解:∵52+122=132,∴根据勾股定理的逆定理,△ABC是直角三角形,最长边是13,设斜边上的高为h,则S△ABC=×5×12=×13h,解得:h=,故答案为.16.如图所示的网格是正方形网格,则∠PAB+∠PBA=45°(点A,B,P是网格线交点).【分析】延长AP交格点于D,连接BD,根据勾股定理得到PD2=BD2=1+22=5,PB2=12+32=10,求得PD2+DB2=PB2,于是得到∠PDB=90°,根据三角形外角的性质即可得到结论.【解答】解:延长AP交格点于D,连接BD,则PD2=BD2=1+22=5,PB2=12+32=10,∴PD2+DB2=PB2,∴∠PDB=90°,∴∠DPB=∠PAB+∠PBA=45°,故答案为:45.17.勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为20km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C的距离相等,则C,D间的距离为13km.【分析】(1)由垂线段最短以及根据两点的纵坐标相同即可求出AB的长度;(2)根据A、B、C三点的坐标可求出CE与AE的长度,设CD=x,根据勾股定理即可求出x 的值.【解答】解:(1)由A、B两点的纵坐标相同可知:AB∥x轴,∴AB=12﹣(﹣8)=20;(2)过点C作l⊥AB于点E,连接AC,作AC的垂直平分线交直线l于点D,由(1)可知:CE=1﹣(﹣17)=18,AE=12,设CD=x,∴AD=CD=x,由勾股定理可知:x2=(18﹣x)2+122,∴解得:x=13,∴CD=13,故答案为:(1)20;(2)13;18.如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为17米,此人以1米每秒的速度收绳,7秒后船移动到点D的位置,问船向岸边移动了9米.(假设绳子是直的)【分析】在Rt△ABC中,利用勾股定理计算出AB长,再根据题意可得CD长,然后再次利用勾股定理计算出AD长,再利用BD=AB﹣AD可得BD长.【解答】解:在Rt△ABC中:∵∠CAB=90°,BC=17米,AC=8米,∴AB===15(米),∵此人以1米每秒的速度收绳,7秒后船移动到点D的位置,∴CD=17﹣1×7=10(米),∴AD===6(米),∴BD=AB﹣AD=15﹣6=9(米),答:船向岸边移动了9米.故答案为:9.三、解答题(共4小题)19.如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,DE垂直平分AB,分别交AB、BC 于点D、E,AP平分∠BAC,与DE的延长线交于点P.(1)求PD的长度;(2)连结PC,求PC的长度.【分析】(1)根据等腰直角三角形的性质解答;(2)作PF⊥AC于F,根据角平分线的性质定理求出PF,根据勾股定理计算即可.【解答】解:(1)∵DE垂直平分AB,∴AD=AB=2,∵AP平分∠BAC,∴∠PAD=∠BAC=45°,∴DP=AD=2;(2)作PF⊥AC于F,∵AP平分∠BAC,PD⊥AB,PF⊥AC,∴PF=PD=2,∠PAC=45°,∴AF=PF=2,∴FC=AC﹣AF=1,在Rt△PFC中,PC==.20.如图,将直角三角形分割成一个正方形和两对全等的直角三角形,直角三角形ABC 中,∠ACB =90°,BC =a ,AC =b ,AB =c ,正方形IECF 中,IE =EC =CF =FI =x(1)小明发明了求正方形边长的方法:由题意可得BD =BE =a ﹣x ,AD =AF =b ﹣x因为AB =BD +AD ,所以a ﹣x +b ﹣x =c ,解得x =(2)小亮也发现了另一种求正方形边长的方法:利用S △ABC =S △AIB +S △AIC +S △BIC 可以得到x 与a 、b 、c 的关系,请根据小亮的思路完成他的求解过程:(3)请结合小明和小亮得到的结论验证勾股定理.【分析】(1)根据全等三角形的性质和线段的和差即得结论;(2)根据大三角形的面积等于三个小三角形的面积和即可求解;(3)综合(1)和(2)的结论进行推导即可得结论.【解答】解:(2)因为S △ABC =S △ABI +S △BIC +S △AIC=cx +ax +bx 所以x =.答:x 与a 、b 、c 的关系为x =.(3)根据(1)和(2)得:x==.即2ab=(a+b+c)(a+b﹣c)化简得a2+b2=c2.21.为了积极响应国家新农村建设,遂宁市某镇政府采用了移动宣讲的形式进行宣传动员.如图,笔直公路MN的一侧点A处有一村庄,村庄A到公路MN的距离为600米,假使宣讲车P周围1000米以内能听到广播宣传,宣讲车P在公路MN上沿PN方向行驶时:(1)请问村庄能否听到宣传,请说明理由;(2)如果能听到,已知宣讲车的速度是200米/分钟,那么村庄总共能听到多长时间的宣传?【分析】(1)根据村庄A到公路MN的距离为600米<1000米,于是得到结论;(2)根据勾股定理得到BP=BQ=800米,求得PQ=1600米,于是得到结论.【解答】解:(1)村庄能否听到宣传,理由:∵村庄A到公路MN的距离为600米<1000米,∴村庄能听到宣传;(2)如图:假设当宣讲车行驶到P点开始影响村庄,行驶QD点结束对村庄的影响,则AP=AQ=1000米,AB=600米,∴BP=BQ=米,∴PQ=1600米,∴影响村庄的时间为:1600÷200=8分钟,∴村庄总共能听到8分钟的宣传.22.有一架秋千,当它静止时,踏板离地的垂直高度DE=1m,将它往前推送6m(水平距离BC=6m)时,秋千的踏板离地的垂直高度BF=4m,秋千的绳索始终拉得很直,求绳索AD的长度.【分析】设秋千的绳索长为xm,根据题意可得AC=(x﹣3)m,利用勾股定理可得x2=62+(x ﹣3)2.【解答】解:在Rt△ACB中,AC2+BC2=AB2,设秋千的绳索长为xm,则AC=(x﹣3)m,故x2=62+(x﹣3)2,解得:x=7.5,答:绳索AD的长度是7.5m.。

人教版数学八年级下第十七章《勾股定理》单元检测题含答案

人教版数学八年级下第十七章《勾股定理》单元检测题含答案

1 / 6《勾股定理》单元检测题一、选择题(每小题只有一个正确答案)1.设直角三角形的两条直角边分别为a 和b ,斜边长为c ,已知1213b c ==,,则a=( )A. 1B. 5C. 10D. 252.在下列四组数中,不是勾股数的一组数是( )A. 15817a b c ===,,B. 91215a b c ===,,C. 72425a b c ===,,D. 357a b c ===,,3.一个三角形的三边长为15,20,25,则此三角形最大边上的高为( )A. 10B. 12C. 24D. 484.如图,有一个由传感器控制的灯A 装在门上方离地高4.5 m 的墙上,任何东西只要移至距该灯5 m 及5 m 以内时,灯就会自动发光,请问一个身高1.5 m 的学生要走到离墙多远的地方灯刚好发光?( )A. 4 mB. 3 mC. 5 mD. 7 m5.下列选项中,不能用来证明勾股定理的是( )A. B. C. D.6.若直角三角形的三边长分别为a b -、a 、a b +,且a 、b 都是正整数,则三角形其中一边的长可能为( )A. 22B. 32C. 62D. 827.如图,△ABC 中,AC =3,BC = 5,AD ⊥BC 交BC 于点D ,AD =125,延长BC 至E 使得CE =BC ,将△ABC 沿AC 翻折得到△AFC ,连接EF ,则线段EF 的长为( )A. 6B. 8C. 325D. 3238.如图,点P 是平面坐标系中一点,则点P 到原点的距离是( )A. 3B. 2C. 7D. 59.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm 2 ,则该半圆的半径为()A. (4+5)cmB. 9cmC. 45cm D. 62cm10.如图,长方体的底面边长分别为2cm和3cm,高为6cm. 如果用一根细线从点A开始经过4个侧面缠绕一圈达到点B,那么所用细线最短需要, ,A. 11cm 34 C. (8+10)cm D. (7+5二、填空题11.一个直角三角形的两条直角边长为6和8,则它的斜边上的高是________.12.如图所示,一段楼梯,高BC是3 m,斜边AC是5 m,如果在楼梯上铺地毯,那么至少需要地毯________.13.如图,在东西走向的铁路上有A,B两站(视为直线上的两点)相距36千米,在A,B 的正北分别有C,D两个蔬菜基地,其中C到A站的距离为24千米,D到B站的距离为12千米,现要在铁路AB上建一个蔬菜加工厂E,使蔬菜基地C,D到E的距离相等,则E站应建在距A站_____千米的地方.14.如图,在Rt△ABC中,∠BCA,90°,点D是BC上一点,AD,BD,若AB,8,BD,5,则CD,________,3 / 615.如图,点A 、B 、O 是单位为1的正方形网格上的三个格点,⊙O 的半径为OA ,点P 是优弧AmB 的中点,则△APB 的面积为_______.三、解答题16.如图,在四边形ABCD 中,AB =BC =1,CD 3,DA =1,且∠B =90°.求:(1)∠BAD 的度数;(2)四边形ABCD 的面积(结果保留根号),17.如图是“赵爽弦图”,其中ABH 、BCG 、CDF 和DAE 是四个全等的直角三角形,四边形ABCD 和EFGH 都是正方形,根据这个图形的面积关系,可以证明勾股定理.设AD c AE a DE b ===,,,取102c a b =-=,. ()1正方形EFGH 的面积为______,四个直角三角形的面积和为______;()2求2()a b +的值.18.如图,甲、乙两船从港口A 同时出发,甲船以30海里/时的速度向北偏东35°的方向航行,乙船以40海里/时的速度向另一方向航行,2小时后,甲船到达C 岛,乙船到达B 岛,若C,B 两岛相距100海里,则乙船航行的方向是南偏东多少度?19.如图,一架长2.5m 的梯子AB 斜靠在墙AC 上,,C =90°,此时,梯子的底端B 离墙底C 的距离BC 为0.7m .(1)求此时梯子的顶端A 距地面的高度AC ;(2)如果梯子的顶端A 下滑了0.9m ,那么梯子的顶端B 在水平方向上向右滑动了多远?1 / 6参考答案1.B2.D3.B4.A5.D6.B7.A8.A9.C10.B11.4.812.7m13.1214.1.415212+16.(1)135°;(2122+解析:(1)∵AB=BC=1,且∠B=90°,∴∠BAC=45°,22=2AB BC +, 而3DA=1,∴CD 2=AD 2+AC 2,∴△ACD 是直角三角形,即∠DAC=90°,∴∠BAD=∠BAC+∠DAC=135°;(2)∵S 四边形ABCD =S △ABC +S △ACD ,而S △ABC =12AB×BC=12, S △ACD =12AD×22, ∴S 四边形ABCD =S △ABC +S △ACD =12+12()17.4;96解:(1)∵HE =a ﹣b =2,∴S 正方形EFGH =HE 2=4.∵AD =c =10,∴S 正方形ABCD =AD 2=100,∴四个直角三角形的面积和=S 正方形ABCD ﹣S 正方形EFGH =100﹣4=96.故答案为:4;96;(2)由(1)可知四个直角三角形的面积和为96,∴4×12ab =96,解得:2ab =96.∵a 2+b 2=c 2=100,∴(a +b )2=a 2+b 2+2ab =100+96=196.18.乙船航行的方向为南偏东55°.解析:由题意可知,在△ABC 中,AC =30×2=60,AB =40×2=80,BC =100,∴AC 2=3600,AB 2=6400,BC 2=10000,∴AC 2+AB 2=BC 2,∴∠CAB =90°,又∵∠EAD=180°,∠EAC=35°,∴∠DAB =90°-∠CAE =90°-35°=55°,∴乙船航行的方向为南偏东55°.19.(1)此时梯顶A 距地面的高度AC 是2.4米;(2)梯子的底端B 在水平方向滑动了1.3m .解析:(1)∵∠C=90°,AB=2.5,BC=0.7∴22AB BC -222.50.7-(米), 答:此时梯顶A 距地面的高度AC 是2.4米;(2)∵梯子的顶端A 下滑了0.9米至点A′,∴A′C=AC﹣A′A=2.4﹣0.9=1.5(m ),在Rt△A′CB′中,由勾股定理得:A′C 2+B′C 2=A′B′2,即1.52+B′C 2=2.52,∴B′C=2(m )∴BB′=CB′﹣BC=2﹣0.7=1.3(m ),答:梯子的底端B 在水平方向滑动了1.3m .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图1
图2
图3
答案 一、1. 5 3. 6cm、8cm、10cm 5. 48 7. 18 9. 3 或 2. 三角形的稳定性(意思对就可以了) 4. 90 6. 8 8.8 cm
41
10. 5m 12. 13.6
11. 120 cm2 二、13-18 CBACAA 三、19`. ①3 3或 5.196
②9 3或 15.59cm2
20. AC=3 21. 200m 22. 36 23. ①AO= 52-32 =4 ②OD= 52-(4-1)2 =4 BD=OD-OB=4-3=1 米
2
24. 作 A 关于 CD 的对称点 A’ ,连接 A’B 与 CD 的交点为 M 点为所求点 可求得 AM+BM=A’B=50 千米,总费用为 50×3=150 万元 25. 仅供参考(每个 5 分)
B
D
C
20、 (12 分)如图, ABC 中, C
3 5 90, 1 2, CD , BD ,求 AC 的长。 2 2
21、 (12 分)某菜农要修建一个塑料大棚,如图所示,若棚宽 a=4m,高 b=3m,长 d=40m。 求覆盖在顶上(如右图阴影部分)的逆料薄膜的面积。
b a d
18、一座建筑物发生了火灾,消防车到达现场后,发现最多只能靠近建筑物底端 5 米,消防车的云梯最大 升长为 13 米,则云梯可以达该建筑物的最大高度是 A、 12 米 B、 13 米 C、 14 米 D、15 米 ( )
A
三、决心试一试 19、 (12 分)如右图,等边△ABC 的边长 6cm。 ①求高 AD ②求△ABC 的面积
勾股定理! ! 一、耐心填一填(每小题 3 分,共 36 分) 1、在 Rt△ABC 中,∠C=90°,AC=3,BC=4,则 AB=___________; 2、如图,小明的爸爸在院子的门板上钉了 一个加固板,从数学的角度看, 这样做的 道理是 .
3、小明同学要做一个直角三角形小铁架,他现有 4 根长度分别为 4cm、6cm、8cm、10cm 的铁棒,可用于制 作成直角三角形铁架的三条铁棒分别是________________________; 4、若三角形三条边的长分别为 7,24,25,则这个三角形的最大内角是 5、在△ABC 中,∠C=90° ,若 c=10,a∶b=3∶4,则 ab= 6、如图,在等腰△ABC 中,AB=AC=10,BC=12,则高 AD=________; 7、等腰△ABC 的面积为 12cm2,底上的高 AD=3cm, 则它的周长为________. 8、在 Rt△ABC 中,斜边 AB=2,则 AB2+BC2+CA2=________. 9、有一个三角形的两边长是 4 和 5,要使这个三角形成为直角三角形,则第三边长为 梢,至少飞了________米. 11、一个三角形的三边的比为 5∶12∶13,它的周长为 60cm,则它的面积是________. 12、如图,今年第 8 号台风“桑美”是 50 多年以来登陆我国大陆地区 最大的一次台风,一棵大树受“桑美”袭击于离地面 5 米 处折断倒下,倒下部分的树梢到树的距离为 7 米, 则这棵大树折断前有__________ 米(保留到 0.1 米) 。 二、精心选一选(每小题 4 分,共 24 分) 13、下列各组数据为边的三角形中,是直角三角形的是( A、 2、 3、7 B、5、4、8 C、 5、2、1 ) D、32

度.
A

B
D (第 6题 )
C

10、有两棵树,一棵高 6 米,另一棵高 3 米,两树相距 4 米.一只小鸟从一棵树的树梢飞到另一棵树的树
5米 30
0
7米 (第 12题)
) D、 2、3、 5
14、正方形 ABCD 中,AC=4,则正方形 ABCD 面积为( A、 4 B、8 C、 16
15、已知 Rt△ABC 中,∠A,∠B,∠C 的对边分别为 a,b,c,若∠B=90 ,则( A 、 b
2
) #43;
c
2
; B 、 c
2
=
a
2
2
+
2
b
2
; C 、 a
2
+ b
2
; D 、 a + b = c ( ).
16、三角形的三边长a,b,c满足 2ab=(a+b) -c ,则此三角形是 A、钝角三角形 B、锐角三角形 C、直角三角形
D、等边三角形 )
17、将 Rt△ABC 的三边都扩大为原来的 2 倍,得△A’B’C’,则△A’B’C’为( A、 直角三角形 B、锐角三角形 C、钝角三角形 D、无法确定
N A
N A C
O
B
M O
B
D
M
24、 (15 分)如图, A、 B 两个小集镇在河流 CD 的同侧, 分别到河的距离为 AC=10 千米, BD=30 千米, 且 CD=30 千米,现在要在河边建一自来水厂,向 A、B 两镇供水,铺设水管的费用为每千米 3 万,请你在河流 CD 上 选择水厂的位置 M,使铺设水管的费用最节省,并求出总费用是多少? B
22、(12 分)如图 3-2,在△ABD 中,∠A 是直角,AB=3,AD=4,BC=12,DC=13,求四边形 ABCD 的面 积.
23、 (12 分)如图,一架长为 5 米的梯子 AB 斜靠在与地面 OM 垂直的墙 ON 上,梯子底端距离墙 ON 有 3 米。 ①求梯子顶端与地面的距离 OA 的长。 ②若梯子顶点 A 下滑 1 米到 C 点, 求梯子的底端向右滑到 D 的距离。
A C D L
27、 (15 分)如图,正方形网格中的每个小正方形边长都是 1,每个小格的顶点叫做格点,以格点为顶点分 别按下列要求画三角形(涂上阴影) . ⑴在图 1 中,画一个三角形,使它的三边长都是有理数; ⑵在图 2、图 3 中,分别画一个直角三角形,使它的三边长都是无理数.(两个三角形不全等)
相关文档
最新文档