初二数学勾股定理测试题

合集下载

八年级数学勾股定理测试题

八年级数学勾股定理测试题

图6八年级数学勾股定理测试题(1)一、填空题(每小题5分,共25分):1.已知一个直角三角形的两条直角边分别为6cm 、8cm ,那么这个直角三角形斜边上的高为_________________. 2..三角形的两边长分别为3和5,要使这个三角形是直角三角形,则第三条边长是_______. 3.△ABC 中,AB=10,BC=16,BC 边上的中线AD=6,则AC=___________.4.将一根长24cm 的筷子,置于底面直径为5cm ,高为12cm 的圆柱形水杯中(如图1),设筷子露在杯子外面的长度是为hcm ,则h 的取值范围是_____________.5.如图2所示,一个梯子AB 长2。

5米,顶端A 靠墙AC 上,这时梯子下端B 与墙角C 距离为1。

5米,梯子滑动后停在DE 上的位置上,如图3,测得DB 的长0.5米,则梯子顶端A 下落了________米.二、选择题(每小题5分,共25分):6.在下列长度的四组线段中,不能组成直角三角形的是( ). A .a=9 b=41 c=40 B .a=b=5 C=52C .a:b :c=3:4: 5D .a=11 b=12 c=157.若△ABC 中,AB=13,AC=15,高AD=12,则BC 的长是( ). A .14 B .4 C .14或4 D .以上都不对 8. 2002年8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小小正方形拼成的一个大正方形(如图4所示),如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a ,较长直角边为b ,那么2)(b a +的值为( ).A .13B .19C .25D .1699. 如图5,四边形ABCD 中,AB=3cm ,BC=4cm ,CD=12cm ,DA=13cm,且∠ABC=900,则四边形ABCD 的面积是( ).A .84B .30C .251D .无法确定 10.如图6,已知矩形ABCD 沿着直线BD 折叠,使点C 落在C /处,B C /交AD 于E ,AD=8,AB=4,则DE 的长为( ).A .3B .4C .5D .6 三、解答题(此大题满分50分):11.(7分)在ABC Rt ∆中,∠C=900.(1)已知15,25==b c ,求a ;(2)已知060,12=∠=A a ,求b 、c .12.(7分)阅读下列解题过程:已知a 、b 、c 为△ABC 的三边,且满足442222b a c b c a -=-,试判定△ABC 的形状.解:∵ 442222b a c b c a -=-, ①∴ ))(()(2222222b a b a b a c -+=-, ② ∴ 222b a c +=, ③∴ △ABC 为直角三角形.问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号______;(2)错误的原因是___________________________;(3)本题正确的结论是_______________________________.13.(7分)细心观察图7,认真分析各式,然后解答问题: 21)1(2=+ 211=S 31)2(2=+ 222=S41)3(2=+ 233=S┉┉ ┉┉(1) 用含有n(n 是正整数)的等式表示上述变化规律;(2)推算出OA 10的长;(3)求出210232221S S S S ++++ 的值.图1图2图3图4图5图714.(7分)已知直角三角形的周长是62 ,斜边长2,求它的面积.15.(7分)小东拿着一根长竹杆进一个宽为3米的城门,他先横着拿不进去,又竖起来拿,结果杆比城门高1米,当他把杆斜着时,两端刚好顶着城门的对角,问杆长多少米?16.(7分)小明向西南方向走40米后,又走了50米,再走30米回到原地.小明又走了50米后向哪个方向走的?再画出图形表示17.(8分)如图8,公路MN和公路PQ在点P处交汇,且∠QPN=300,点A处有一所中学,AP=160米,假设拖拉机行驶时,周围100米以内会受到噪音的影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否回受到噪声的影响?说明理由.如果受影响,已知拖拉机的速度为18千米/时,那么学校受影响的时间为多少秒?八年级数学(勾股定理)自测题(2)一、选择题(共4小题,每小题4分,共16分.在四个选项中,只有一项是符合题目要求的,请把符合要求一项的字母代号填在题后括号内。

2023—2024年人教版初二数学勾股定理达标测试

2023—2024年人教版初二数学勾股定理达标测试

2023—2024年人教版初二数学勾股定理达标测试 班级 姓名 得分 一、单选题(本大题共12小题,每题3分,共36分) 1.下列二次根式中,不能与2合并的是( ) A .12 B .8 C .12 D .182.下列计算中,正确的是( )A .233255+=B .333236⨯=C .2733÷=D .2222-=3.估计13介于()A .1与2之间B .2与3之间C .3与4之间D .4与5之间 4.计算2(32)-的值为( )A .32-B .32+C .23-D .32--5.如图,在Rt ABC △中,90ABC ∠=︒,1BC =.将AB 边与数轴重合,点A ,点B 对应的数分别为1-,2.以点A 为圆心,AC 的长为半径画弧,交数轴于点D ,则点D 表示的数为( )A .3B .10C .101-D .101--6.实数a 、b 在数轴上的位置如图所示,那么化简2a b a --的结果是( )A .2a b -B .bC .b -D .2a b -+7.如图,小正方形边长为1,连接小正方形的三个顶点,可得ABC ,则AC 边上的高长度为( )第7题 第8题A .355 B .3510 C .55 D .5108.如图,一根长25m 的梯子,斜靠在一竖直的墙上,这时梯子的底端距墙底端7m .如果梯子的顶端下滑4m ,那么梯子的底端将向右滑动( )A .15mB .9mC .7mD .8m9.如图,所有阴影部分的四边形都是正方形,所有三角形都是直角三角形,已知正方形A 、B 、C 的面积依次为2、4、3,则正方形D 的面积为( )第9题 第10题 第11题A .7B .8C .9D .1010.如图,《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺,问折高者几何?意思是:一根竹子,原高一丈(一丈=十尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,则折断处离地面的高度为( )A .3尺B .3.2尺C .3.6尺D .4尺11.如图,长方体的长为2,宽为1,高为3,一只蚂蚁从点A 出发,沿长方体的外表面到点B 处觅食,则它爬行的最短路程为( )A 14B 18C 20D 2612222233+333388+=44441515+=55552424+=1010b b a a +则a b +的值为( )A .179B .109C .210D .104二、填空题(本大题共6小题,每题3分,共18分)138=_____.14.点()9,40P 到坐标原点的距离是__________.15.已知a 10b 是它的小数部分,则210a b +______.16.如图,有两棵树,一棵高8m ,另一棵高2m ,两树相距8m ,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少要飞______m .17.某会展期间,准备在高5BC =米、长13AC =米,宽2米的楼梯上铺地毯,则所铺地毯的面积为 __________平方米.18.如图,已知直角三角形ABC 的周长为24,且阴影部分的面积为24,则斜边AB 的长为______.三、解答题19.计算(每小题5分,共计25分). (1)32712+-. (2)()21122321+---. (3) 1013220223-⎛⎫-+-- ⎪⎝⎭ (4)()()()232233223223+⨯---.20.(7分)在平面直角坐标系中,ABC 的三个顶点位置如图所示.(1)请画出ABC 关于x 轴对称的A B C '''(其中A ',B ',C '分别是A ,B ,C 的对应点);(2)直接写出A B C '''三点的坐标:A '__________,B '__________,C '__________;(3)求AC '的长为__________.21.(8分)如图,Rt ABC △中,18,12,90AB BC B ==∠=︒,将ABC 折叠,使点A 与BC 的中点D 重合,折痕为MN ,求线段BN 的长.22.(8分)如图,海中有一小岛P ,它的周围12海里内有暗礁,渔船跟踪鱼群由西向东航行,在M 处测得小岛P 在北偏东60°方向上,航行16海里到N 处,这时测得小岛P 在北偏东30°方向上.(1)求M 点与小岛P 的距离;(2)如果渔船不改变航线继续向东航行,是否有触礁危险,并说明理由.23.(8分)如图,某电信公司计划在A ,B 两乡镇间的E 处修建一座5G 信号塔,且使C ,D 两个村庄到E 的距离相等.已知AD AB ⊥于点A ,BC AB ⊥于点B ,80km AB =,50km AD =,30km BC =,求5G 信号塔E 应该建在离A 乡镇多少千米的地方?24.(10分)勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理.在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了证明勾股定理,创制了一幅弦图”(如图1),后人称之为“赵爽弦图”,流传至今.(1)勾股定理的证明,人们已经找到了400多种方法,请从下列几种常见的证明方法中任选一种来证明该定理,图1与图2都是由四个全等的直角三角形构成,图3是由两个全等的直角三角形构成(以下图形均满足证明勾股定理所需的条件)(2)如图4,以直角三角形的三边为直径向外部作半圆,请写出1S 、2S 和3S 的数量关系:___________.。

初二数学《勾股定理》测试题

初二数学《勾股定理》测试题

学习好资料 欢迎下载勾股定理测试题一、选择题1. 三角形的三边分别为 a 、b 、 c ,下列各组数据中,不能组成直角三角形的是( ) A.a = 3, b = 4, c = 5 B.a = 5, b = 12, c = 13 C.a = 8, b = 15, c = 17 D.a = 13, b =16, c = 192. 在Rt △ABC 中 ,∠C= 90°, ∠B = 45°, AC = 1cm ,那么它的三边之比是( ) A.1 :3 : 2 B.1 : 1 :2 C.1 : 2 : 3 D.1 :2: 33. 一个直角三角形两边的长分别为 15、20,则第三边的长是( ) A.57 B.25 C. 57或 25 D.无法确定4. 边长为1的等边三角形的面积是( )A. 3B. 2C.D. 45. 如图,△ABC 中 ,∠ACB= 90°,AC = 12,CB = 5, AM =AC , BN =BC ,则 MN 的长是( )A.2B.2.6C.3D.46. 如图,在△ABC 中 ,CD ⊥AB 于D ,且 AD =BC = 5,DB = 3,则AC =( ) A.3 B.6 C.41 D.210 7. 一只蚂蚁沿棱长为a 的正方体表面从顶点A 爬到顶点B ,则它走过 的最短路程为( ) A.B. (1aC. 3aD.8. 一直角三角形两直角边长分别为8和15,则这个直角三角形斜边上的高为( ) A.8 B.15 C.17 D.120179. 分别以锐角三角形三边为直径作半圆,三个半圆面积分别为S 1,S 2,S 3, 如图,则S 1,S 2,S 3三者之间关系为( ) A.123S S S >+ B. 123S S S =+ C.123S S S <+ D. 无法确定10. 一只蚂蚁从圆柱体底面圆周上某点出发,绕柱一周到达这点的顶部,如果圆柱底面直径为8,柱高为6π,则蚂蚁行走的最短路径为( ) A.14π B.8π C.10π D.12π 二、填空题11. 在△ABC 中 ,∠C= 90°, a = 7, c = 25, 则 b =12. 在△ABC 中 ,∠C= 90°, ∠A = 30°, a = 2 , 则 c = b = 13. 在△ABC 中 ,∠C= 90°, a : b = 3 : 4 ,c = 10, 则 a = , b =14. 已知3,4,5是一个三角形的三边,那么 3m,4m,5m (m >0)为三边长的三角形是 三角形.15. 在平面直角坐标系中,点A (2,0)-与点B (2,4)-之间的距离为 .16. “直角三角形斜边上的中线等于斜边的一半”的逆命题是 . 17. 在直角三角形中,若两直角边a 、b 满足a+b=17,ab=60,则斜边长为 .18. 如图,在△ABC 中,AD ⊥BC 于D ,AB=13,AC=8,则22BD DC -= .第18题图 第19题图 第20题图 19. 如图,一架长2.5 m 的梯子,斜靠在一竖直的墙上,这时梯底距墙底端0.7m ,如果梯子的顶端沿墙下滑0.4m ,那么梯子的底端将滑出 m .20. 如图,在四边形ABCD 中,∠C=90°,若AB=12cm ,BC=4cm ,CD=3cm,AD=13cm,则这个四边形的面积为 .NMCBAC BA BAS 3S 2S 1DBA DCBA学习好资料 欢迎下载三、解答题21. 已知:如图,在Rt △ABC 中 ,∠C= 90°,∠A = 30°, D 在AC 上且∠BDC=60°, AD = 20,求 BC.22. 如图,在△DEF 中 ,DE=17cm ,EF=30cm ,EF 边上的中线DG=8cm ,说明△DEF 是等腰三角形.23、一架2.5米长的梯子AB ,斜靠在一竖直的墙AC 上,这时梯足B 到墙底端C 的距离为0.7米,如果梯子的顶端下滑0.4米,则梯足将向外移多少米?24. 如图,甲轮船以16海里/时的速度离开港口O 向东南方向航行,乙轮船在同时同地向西南方向航行,已知它们离开港口一个半小时后分别到达B 、A 两点,且知AB 长为30海里时,问乙轮船每小时航行多少海里?25. 若a 、b 、c 是△ABC 的三边长,且满足222244a c b c a b -=-,试判定这个三角形的形状.26、如图所示的一块地,90ADC ∠=︒,12AD m =,9CD m =,39AB m =,36BC m =,求这块地的面积S .DCBA G FE D。

初二数学勾股定理试题答案及解析

初二数学勾股定理试题答案及解析

初二数学勾股定理试题答案及解析1.如图是用硬纸板做成的四个全等的直角三角形(两直角边长分别是a、b,斜边长为c)和一个正方形(边长为c).请你将它们拼成一个能验证勾股定理的图形.(1)画出拼成的这个图形的示意图;(2)用(1)中画出的图形验证勾股定理.【答案】见解析【解析】(1)(答案不唯一)如图.(2)验证:∵大正方形的面积可表示为(a+b)2,又大正方形的面积也可表示为,∴,即a2+b2+2ab=c2+2ab.∴a2+b2=c2.即直角三角形两直角边的平方和等于斜边的平方.2.如图所示,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为( )A.米B.米C.米D.3米【答案】C【解析】树干垂直于地面,于是可构造一个直角三角形,运用勾股定理可以计算出(米),所以树高为米.3.如图所示是一段楼梯,高BC是3米,斜边AB长是5米,现打算在楼梯上铺地毯,至少需要地毯的长为________.【答案】7米【解析】(米).利用平移,得至少需要地毯的长为AC+BC=4+3=7(米).4.如图,AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,则AE的长为( )A.1B.C.D.2【答案】D【解析】在Rt△ABC中,由勾股定理得.在Rt△ADC中,由勾股定理得.在Rt△ADE中,由勾股定理得.5.如图所示,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,且AB=4,BD=5,则点D到BC的距离是( )A.3B.4C.5D.9【答案】A【解析】在Rt△ABD中,由勾股定理得.又点D是∠ABC的平分线上的点,它到BA,BC边的距离相等,所以点D到BC的距离等于DA之长3.6.图甲是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.在Rt△ABC中,若直角边AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图乙所示的“数学风车”,则这个风车的外围周长(图乙中的实线)是________.【答案】76【解析】在题图乙的四个大直角三角形中,两直角边长分别为5,12,所以斜边长为13,所以这个风车的外围周长为4×13+4×6=76.7. (2014四川甘孜州)如图,点D在△ABC的边AC上,将△ABC沿BD翻折后,点A恰好与点C重合.若BC=5,CD=3,则BD的长为( )A.1B.2C.3D.4【答案】D【解析】由题意得△ABD≌△CBD,所以∠ADB=∠CDB,而∠ADB+∠CDB=180°,所以∠BDC=90°,即BD⊥AC.在Rt△BCD中,由勾股定理得BD2=BC2-CD2=52-32=16,所以.8.(2013四川资阳)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A.48B.60C.76D.80【答案】C【解析】在Rt△ABE中,由勾股定理得,所以阴影部分的面积为.9. (2012吉林)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点A为圆心,AC长为半径画弧,交AB 于点D ,则BD =________.【答案】2【解析】∵AC =3,BC =4,∠ACB =90°,∴.∵以点A 为圆心,AC 长为半径画弧,交AB 于点D ,∴AD =AC =3,∴BD =AB -AD =5-3=2.10. [问题情境]勾股定理是一条古老的数学定理,它有很多种证明方法,我国汉代数学家赵爽根据弦图,利用面积法进行证明.著名数学家华罗庚曾提出把“数形关系(勾股定理)”带到其他星球,作为地球人与其他星球“人”进行第一次“谈话”的语言.[定理表述]请你根据图(1)中的直角三角形叙述勾股定理(用文字及符号语言叙述).[尝试证明]以图(1)中的直角三角形为基础,可以构造出以a 、b 为底,以a +b 为高的直角梯形(如图(2)),请你利用图(2)验证勾股定理.[知识拓展]利用图(2)中的直角梯形,我们可以证明.其证明步骤如下:∵BC =a +b ,AD =________,又∵在直角梯形ABCD 中,有BC________AD(填大小关系),即________,∴.【答案】见解析【解析】[定理表述]如果直角三角形的两条直角边长分别为a 、b ,斜边长为c ,那么a 2+b 2=c 2.[尝试证明]∵Rt △ABE ≌Rt △ECD ,∴∠AEB =∠EDC .又∵∠EDC +∠DEC =90°,∴∠AEB +∠DEC =90°,∴∠AED =90°. ∵S 梯形ABCD =S Rt △ABE +S Rt △DEC +S Rt △AED ,∴,整理,得a 2+b 2=c 2.[知识拓展];<;11. 在△ABC 中,角A ,B ,C 所对的边的长分别为a ,b ,c ,∠C =90°.(1)若a =6,b =8,则c =________;(2)若a =5,c =13,则b =________;(3)若c =34,a ︰b =8︰15,则a =________,b =________.【答案】(1)10 (2)12 (3)16;30【解析】(1)已知两直角边长a 、b ,由c 2=a 2+b 2=62+82=100,得c =10.(2)已知直角三角形的斜边长c 和一条直角边长a ,则由b 2=c 2-a 2=132-52=144,得b =12.(3)因为a︰b=8︰15,所以可设a=8k,b=15k(k>0),又因为∠C=90°,c=34,所以c2=a2+b2,即342=(8k)2+(15k)2.所以k=2.所以a=16,b=30.12.(2013鞍山)△ABC中,∠C=90°,AB=8,AC=6,则BC的长为________.【答案】【解析】利用勾股定理即可求得BC的长.∵∠C=90°,∴AB为斜边,∴.13.在Rt△ABC中,∠C=90°,AC=8,BC=6,CD⊥AB,垂足为D,求DB的长.【答案】在Rt△ABC中,AB2=AC2+BC2,∴AB2=82+62=100,∴AB=10.由三角形的面积公式得,∴.在Rt△BCD中,DB2=BC2-CD2,∴DB2=62-4.82=12.96.∴DB=3.6.所以DB的长为3.6.【解析】用勾股定理求AB的长,再利用面积求CD,在Rt△BCD中,用勾股定理求DB.14.如图,∠A=∠D=90°,AC与BD相交于点O,AB=CD=4,AO=3,则BD的长为()A.6B.7C.8D.10【答案】C【解析】由题意知△ABO≌△DCO,∴OA=OD.在Rt△ABO中,,∴BD=BO+OD=5+3=8.故选C.15.如图,在锐角△ABC中,已知AB=25cm,AC=30cm,BC边上的高AD=24cm,则△ABC的面积为________.【答案】300cm2【解析】在Rt△ABD中,.在Rt△ACD中,.所以BC=BD+DC=7+18=25,所以.16.(2013吉林)如图,在平面直角坐标系中,点A,B的坐标分别为(-6,0)、(0,8).以点A为圆心,以AB长为半径画弧,交x轴正半轴于点C,则点C的坐标为________.【答案】(4,0)【解析】∵A(-6,0),B(0,8),∴OA=6,OB=8,∴AB=10.∵以点A为圆心,以AB长为半径画弧,交x轴正半轴于点C,∴AC=AB=10,∴OC=4,∴C(4,0).17.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C与欲到达地点B偏离50米,结果他在水中实际游的路程比河的宽度多10米,求:该河的宽度AB为多少米?【答案】根据题意可知BC=50米,AC=(AB+10)米,设AB=x米,由勾股定理,得AC2=AB2+BC2,即(x+10)2=x2+502,解得x=120.即该河的宽度AB为120米.【解析】根据题意可知△ABC为直角三角形,根据勾股定理可求出直角边AB的长度.18.(2013资阳)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48B.60C.76D.80【答案】C【解析】利用勾股定理求出AB,然后用正方形的面积减去三角形的面积即可.19.在一张直角三角形纸片中,分别沿两直角边上一点与斜边中点的连线剪去两个三角形,得到如图所示的直角梯形,则原直角三角形纸片的斜边长是________.【答案】或连接EF,则.∵E为AB的中点,∴.【解析】先根据题意画出图形.此题要分两种情况,再根据勾股定理求出斜边上的中线,最后根据直角三角形中,斜边上的中线等于斜边的一半即可求出斜边的长.①如图所示:连接CD,则.∵D为AB的中点,∴.②如图所示:20.如图,以数轴的单位长为边长作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点A处,则点A表示的数是( )A.B.1.4C.D.【答案】D【解析】由勾股定理求得正方形的对角线长为,由作图得,所以点A表示的数是.。

初二勾股定律试题及答案

初二勾股定律试题及答案

初二勾股定律试题及答案
一、选择题
1. 直角三角形的两条直角边分别为3cm和4cm,那么斜边的长度是()。

A. 5cm
B. 7cm
C. 8cm
D. 9cm
答案:A
2. 如果一个三角形的三边长分别为3cm、4cm和5cm,那么这个三角形是()。

A. 直角三角形
B. 等腰三角形
C. 不是三角形
D. 等边三角形
答案:A
二、填空题
1. 一个直角三角形的两条直角边长分别为6cm和8cm,那么斜边的长度是_______cm。

答案:10cm
2. 已知直角三角形的一条直角边长为9cm,斜边长为15cm,求另一条直角边的长度。

答案:12cm
三、解答题
1. 一个梯子的底端离墙5米,顶端离地面8米,求梯子的长度。

答案:梯子的长度为 \sqrt{5^2 + 8^2} = \sqrt{89} 米。

2. 一块直角三角形的木板,其中一条直角边长为12cm,斜边长为
13cm,求另一条直角边的长度。

答案:另一条直角边的长度为 \sqrt{13^2 - 12^2} = 5cm。

四、应用题
1. 一个直角三角形的两条直角边长分别为a和b,斜边长为c。

已知a=9cm,b=12cm,求斜边c的长度。

答案:斜边c的长度为 \sqrt{9^2 + 12^2} = \sqrt{225} = 15cm。

2. 一个直角三角形的斜边长为17cm,其中一条直角边长为8cm,求另一条直角边的长度。

答案:另一条直角边的长度为 \sqrt{17^2 - 8^2} = \sqrt{225} = 15cm。

初二数学勾股定理试题及参考答案

初二数学勾股定理试题及参考答案

一.选择题(共18小题)1.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为()A.B.C.D.2.如图,在△ABD中,∠D=90°,CD=6,AD=8,∠ACD=2∠B,则BD的长是()A.12 B.14 C.16 D.183.如图,直线l1∥l2,等腰Rt△ABC的直角顶点C在l1上,顶点A在l2上,若∠β=14°,则∠α=()A.31°B.45°C.30°D.59°4.如图所示,AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,则AE=()A.1 B.C.D.25.如图,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的面积为()A.4 B.8 C.16 D.646.2的算术平方根是()A.B.C.D.27.9的平方根为()A.3 B.﹣3 C.±3 D.8.81的平方根是()A.﹣9 B.9 C.±9 D.±39.若2m﹣4与3m﹣1是同一个数的平方根,则m的值是()A.﹣3 B.﹣1 C.1 D.﹣3或110.下列说法正确的是()A.任何非负数都有两个平方根B.一个正数的平方根仍然是正数C.只有正数才有平方根D.负数没有平方根11.5的平方根是()A.±2.5 B.﹣C.D.±12.在平面直角坐标系中,点P(﹣2,x2+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限13.在平面直角坐标系中,点P(m﹣3,4﹣2m)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限14.在平面直角坐标系中.点P(1,﹣2)关于x轴对称的点的坐标是()A.(1,2) B.(﹣1,﹣2)C.(﹣1,2)D.(﹣2,1)15.点P(1,﹣2)关于y轴对称的点的坐标是()A.(1,2) B.(﹣1,2)C.(﹣1,﹣2)D.(﹣2,1)16.点A(﹣3,2)关于y轴对称的点的坐标为()A.(3,﹣2)B.(3,2) C.(﹣3,﹣2)D.(2,﹣3)17.在平面直角坐标系中,点A,点B关于y轴对称,点A的坐标是(2,﹣8),则点B的坐标是()A.(﹣2,﹣8)B.(2,8) C.(﹣2,8)D.(8,2)18.在平面直角坐标系xOy中,线段AB的两个端点坐标分别为A(﹣1,﹣1),B(1,2),平移线段AB,得到线段A′B′,已知A′的坐标为(3,﹣1),则点B′的坐标为()A.(4,2) B.(5,2) C.(6,2) D.(5,3)二.填空题(共12小题)19.如图,在高3米,坡面线段距离AB为5米的楼梯表面铺地毯,则地毯长度至少需米.20.已知△ABC的三边长为a、b、c,满足a+b=10,ab=18,c=8,则此三角形为三角形.21.若线段a、b、c满足b2=a2﹣c2,则以a、b、c为边的三角形是三角形.22.在△ABC中,AB=2k,AC=2k+1,BC=3,当整数k=时,∠B=90°.23.如图,已知OB=1,以OB为直角边作等腰直角三角形A1BO,再以OA1为直角边作等腰直角三角形A2A1O,如此下去,则线段OA n的长度为.24.如图,在△ABC中,AB=AC,AD是△ABC的角平分线,若BC=10,AD=12,则AC=.。

初二勾股定理测试题及答案

初二勾股定理测试题及答案

初二勾股定理测试题及答案一、选择题1. 在直角三角形中,如果直角边长分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 82. 已知一个三角形的两边长分别为5和12,且这两边构成直角,那么第三边的长度是多少?A. 10B. 13C. 15D. 17二、填空题3. 如果一个直角三角形的直角边长分别为6和8,那么斜边的长度是_________。

4. 直角三角形的斜边长为13,一条直角边长为5,另一条直角边的长度是_________。

三、计算题5. 在一个直角三角形中,如果已知斜边长为10,一条直角边长为6,求另一条直角边的长度。

6. 一个直角三角形的两条直角边长分别为x和y,斜边长为z。

已知x=9,y=12,求z的值。

四、解答题7. 一个梯形的两底边长分别为3和5,高为4,求梯形的对角线长度。

8. 一个长方体的长、宽、高分别为3米、4米和5米,求这个长方体的对角线长度。

答案:一、选择题1. A(根据勾股定理:3² + 4² = 5²)2. B(根据勾股定理:5² + 12² = 13²)二、填空题3. 10(根据勾股定理:6² + 8² = 10²)4. 12(根据勾股定理:5² + 12² = 13²)三、计算题5. 另一条直角边的长度为8(根据勾股定理:6² + 8² = 10²)6. z的值为15(根据勾股定理:9² + 12² = 15²)四、解答题7. 梯形的对角线长度为5(根据勾股定理:(3+5)² + 4² = 5²)8. 长方体的对角线长度为5(根据勾股定理:3² + 4² + 5² = 50,再开方得5)结束语:通过本次测试,我们复习了勾股定理的应用,希望同学们能够熟练掌握并灵活运用勾股定理解决实际问题。

八年级勾股定理练习题

八年级勾股定理练习题

勾股定理练习题:练习一:(基础)1.等腰三角形的腰长为13,底边长为10,则顶角的平分线为__12_.2.一个三角形的三边之比为5∶12∶13,它的周长为60,则它的面积是__240_.3.已知a ,b ,c 为△三边,且满足(a 2-b 2)(a 22-c 2)=0,则它的形状为( D )A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形4.如图,一圆柱高8,底面半径2,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程( 取3)是( B ).(A )20 (B )10 (C )14 (D )无法确定5. 在△中,斜边2,则2+2+28.6.△一直角边的长为11,另两边为自然数,则△的周长为( C )A 、121B 、120C 、132D 、不能确定7.如图,正方形网格中的△,若小方格边长为1,则△是 (A )A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对8.如果△的两直角边长分别为n 2-1,2n (n >1),则它的斜边长是( D )A 、2nB 、1C 、n 2-1D 、n 2+1ABC9.在△中,,90︒=∠C 若,7=+b a △的面积等于6,则边长 5 10.如图△中,BC BM AC AN BC AC ACB ====︒=∠,,5,12,90则 611.一个直角三角形的三边长的平方和为200,则斜边长为 1012.若△是直角三角形,两直角边都是6,在三角形斜边上有一点P ,到两直角边的距离相等,则这个距离等于 313.如图,一个牧童在小河的南4的A 处牧马,而他正位于他的小屋B 的西8北7处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?1714、有一个直角三角形纸片,两直角边68,现将直角边沿∠的角平分线折叠,使它落在斜边上,且与重合,你能求出的长吗?3AB 小河北牧童 小屋AEC DB15.校园里有一块三角形空地,现准备在这块空地上种植草皮以美化环境,已经测量出它的三边长分别是13、14、15米,若这种草皮每平方米售价120元,则购买这种草皮至少需要支出多少?因为高相等,底边15上的一条直角边长为X 1322=142-(15)26.6高为 132-6.62=11.2211.2 15*11.2*0.5=84 84*120=1008016、如图,在△中,∠ 90,6,把△进行折叠,使点A 与点D 重合,1:2,折痕为,点E 在上,点F 在上,求的长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.在下列以线段a、b、c的长为三边的三角形中,不能构成
直角三角形的是 ()
(A)a=9、b=41、c=40(B)a=11、b=12、c=15(C)a∶b∶c=3∶4∶5(D)a=b=5、c=
7、△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为( )
A.42B.32C.42或32D.37或33
(A) (B)
(C) (D)
4.若等边△ABC的边长为2cm,那么△ABC的面积为().
(A) cm2(B) cm2(C) cm2(D)4cm2
5.5.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则
△ABE的面积为( )
A、6cm2B、8cm2C、10cm2D、12cm2
8.如图,已知矩形A/交AD于E,AD=8,AB=4,则DE的长为()
A 3 B 4 C 5 D 6
9、锐角三角形的三边长分别是2、3、x,则x的取值范围是()
(A) <x< (B) <x<5(C)1<x< (D)1<x<5
10.已知直角三角形中30°角所对的直角边长是 cm,则另一条直角边的长
是()A.4cm B. cm C.6cm D. cm
二、填空题
1.等腰△ABC的底边BC为16,底边上的高AD为6,则腰长AB的长为____________。
2.已知一个直角三角形的两条直角边分别为6cm、8cm,那么这个直角三角形斜边上的高为。
3.若正方形的面积为18cm2,则正方形对角线长为__________cm。
9.命题“全等三角形的面积相等”的逆命题是:,它是(填入“真”或“假”)命题。
10.在△ABC中,∠C=90°,AB=5,则 + + =_______.
三、解答题
1.如图,△ABC中,CD是AB边上的高,且CD2=AD·BD,求证:△ABC是直角三角形。
2.细心观察图,认真分析各式,然后解答问题:
;
5.如图,在△ABC中,∠ACB=90º,AC=BC,P是△ABC内的一点,且PB=1,PC=2,PA=3,求∠BPC的度数.
6.如图,有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿∠CAB的角平分线AD折叠,使它落在斜边AB上,且与AE重合,你能求出CD的长吗
7.如图,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.5米,求梯子顶端A下落了多少米?
8.如图,铁路上A、B两点相距25km,C、D为两村庄,若DA=10km,CB=15km,DA⊥AB于A,CB⊥AB于B,现要在AB上建一个中转站E,使得C、D两村到E站的距离相等.求E应建在距A多远处?
9.如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?
润之教育阶段练习卷
一、选择题
1.已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是( )
A、24cm2B、36cm2C、48cm2D、60cm2
2.一直角三角形的一直角边长为6,斜边长比另一直角边长大2,则斜边的长为()
(A)4(B)8(C)10(D)12
3.如图,直角三边形三边上的半圆面积从小到大依次记为 、 、 ,则 、 、 的关系是()
;
;
(1)用含有n(n是正整数)的等式表示上述变化规律;
(2)推算出OA10的长;(3)求出S12+ S22+ S32+…+ S102的值。
4. 3.如图,在△ABC中,AB=AC,P为BC上任意一点,求证:
4.小东拿着一根长竹竿进一个宽为3米的城门,他先横着拿不进去,又竖起来拿,结果竹竿比城门高1米,当他把竹竿斜着时,两端刚好顶着城门的对角,问竹竿长多少米?
4.一个直角三角形的两边长分别为3cm和4cm,则第三边的长为。
5.如图在Rt 中,CD是AB边上的高,若AD=8,BD=2,则CD=
6.一个直角三角形的三边为三个连续偶数,则它的三边长分别为.
7.如下图,已知OA=OB,那么数轴上点A所表示的数是____________.
8.若一个三角形的三边之比为5:12:13,且周长为60cm,则它的面积为.
相关文档
最新文档