名师解析2011高等数学各章易混淆概念

合集下载

高中混淆知识点总结归纳

高中混淆知识点总结归纳

高中混淆知识点总结归纳一、数学知识点1.1函数和方程式函数和方程式是高中数学中常见的知识点,但是很多学生容易混淆它们的概念。

函数是两个集合之间的一种对应关系,而方程式是等号两边包含未知数的式子。

所以函数是一种抽象的数学概念,而方程式是用来描述具体问题的数学工具。

在解题时,要根据实际情况选择使用函数或者方程式。

1.2三角函数和三角方程三角函数是用来描述角的变化规律的数学函数,而三角方程是包含三角函数的方程式。

在学习三角函数和三角方程时,很多学生容易混淆它们的概念和运用方法。

要注意区分三角函数的定义域、值域和周期,以及掌握解三角方程的方法和技巧,这样才能更好地运用三角函数和三角方程解决实际问题。

1.3函数的导数和积分函数的导数和积分是微积分中的重要概念,但是很多学生容易混淆它们的含义和求解方法。

函数的导数描述了函数在某一点的变化率,而函数的积分描述了函数在某一区间上的累积变化量。

要注意理解导数和积分的几何意义和物理意义,以及掌握导数和积分的计算方法和运用技巧,这样才能更好地理解和运用微积分的知识。

二、物理知识点2.1力和压强力是物体之间相互作用的结果,而压强是单位面积上受力的大小。

在学习力和压强时,很多学生容易混淆它们的概念和应用方法。

要注意区分不同类型的力,理解受力分析的基本原理和方法,以及掌握压强的计算公式和应用技巧,这样才能更好地理解力和压强的知识。

2.2动能和势能动能是物体由于运动而具有的能量,而势能是物体由于位置而具有的能量。

在学习动能和势能时,很多学生容易混淆它们的概念和计算方法。

要注意区分动能和势能的物理意义,理解它们之间的转化关系和守恒定律,以及掌握动能和势能的计算公式和运用技巧,这样才能更好地理解动能和势能的知识。

2.3电流和电压电流是电荷在导体中的移动,而电压是导体中的电子在单位电荷上所具有的能量。

在学习电流和电压时,很多学生容易混淆它们的概念和测量方法。

要注意理解电流和电压的物理意义,掌握电流和电压的计算公式和测量技巧,以及理解电流和电压之间的关系和作用原理,这样才能更好地理解电流和电压的知识。

高考数学最易混淆知识点归纳

高考数学最易混淆知识点归纳

高考数学最易混淆知识点归纳高考数学作为高中数学的重要组成部分,在高考中占据着很重要的位置。

一些题目可能会涉及到一些知识点的混淆,因此我们必须要对这些混淆的知识点进行整合和分类,以便于我们更好地理解和掌握。

下面,我们来分析一下高考数学中最易混淆的知识点。

一、函数的分段定义在高考数学中,我们经常涉及到函数的分段定义。

如果我们没有认真地学习和理解分段函数的定义,就很容易在相关的题目中出现混淆。

另外,有些题目需要用到二次函数、三角函数等相关的知识点,如果我们没有对这些函数进行系统化的学习,也很容易出现混淆。

二、导数的概念和应用在高考数学中,导数的概念和应用也是很重要的一个知识点。

例如,在求解变化率、极值等相关的问题时,需要用到导数的概念和应用,如果我们对这些相关的知识点没有进行归纳和整理,就很容易出错。

三、立体图形的计算在高考数学中,我们还需要涉及到立体图形的计算。

例如,在计算长方体、圆柱体、圆锥体以及球体的面积和体积等问题时,如果我们没有将这些相关的知识点进行分类、整理,就很容易出现混淆。

四、复合函数的概念在高考数学中,复合函数的概念也是很重要的一个知识点。

例如,在单项式的运算、幂函数、指数函数和对数函数的运算中都用到了复合函数的概念。

如果我们没有对这些相关知识点进行整理和分类,也很容易出现混淆。

五、统计学问题与数学知识的结合在高考数学中,我们还经常遇到同样涉及到一些统计学问题与数学知识的结合。

例如,我们需要对数据进行分析和统计,同时需要运用到平均值、标准差、方差、概率等知识点。

如果我们没有对这些知识点进行系统化的学习和整理,那么也很容易出现混淆。

综上所述,高考数学中最易混淆的知识点包括函数的分段定义、导数的概念和应用、立体图形的计算、复合函数的概念以及统计学问题与数学知识的结合。

如果我们没有对这些相关的知识点进行整理和分类,那么在做相关的题目时就很容易出现混淆。

因此,在备考高考数学时,我们需要认真复习和整理这些知识点,以便于我们更好地掌握和理解。

高中数学最易混淆知识点

高中数学最易混淆知识点

高中数学最易混淆知识点高中数学课程始终是高考的必考科目,占有很高的教学地位。

高中数学始终是理科生眼中比较难的一门学科,其实高中数学有很多易混淆学问点,下面是我为大家细心推举高中数学最易混淆的一些学问点,盼望能够对您有所关心。

高中数学最易混淆学问点1.进行集合的交、并、补运算时,不要忘了全集和空集的特别状况,不要遗忘了借助数轴和文氏图进行求解.2.在应用条件时,易A忽视是空集的状况3.你会用补集的思想解决有关问题吗?4.简洁命题与复合命题有什么区分?四种命题之间的相互关系是什么?如何推断充分与必要条件?5.你知道“否命题”与“命题的否定形式”的区分.6.求解与函数有关的问题易忽视定义域优先的原则.7.推断函数奇偶性时,易忽视检验函数定义域是否关于原点对称.8.求一个函数的解析式和一个函数的反函数时,易忽视标注该函数的定义域.9.原函数在区间[-a,a]上单调递增,则肯定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不肯定单调.例如:.10.你娴熟地把握了函数单调性的证明(方法)吗?定义法(取值,作差,判正负)和导数法11.求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示.12.求函数的值域必需先求函数的定义域。

13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种基本应用你把握了吗?14.解对数函数问题时,你留意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需争论15.三个二次(哪三个二次?)的关系及应用把握了吗?如何利用二次函数求最值?16.用换元法解题时易忽视换元前后的等价性,易忽视参数的范围。

17.“实系数一元二次方程有实数解”转化时,你是否留意到:当时,“方程有解”不能转化为。

若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?18.利用均值不等式求最值时,你是否留意到:“一正;二定;三等”.19.肯定值不等式的解法及其几何意义是什么?20.解分式不等式应留意什么问题?用“根轴法”解整式(分式)不等式的留意事项是什么?21.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类争论是关键”,留意解完之后要写上:“综上,原不等式的解集是……”.22.在求不等式的解集、定义域及值域时,其结果肯定要用集合或区间表示;不能用不等式表示.23.两个不等式相乘时,必需留意同向同正时才能相乘,即同向同正可乘;同时要留意“同号可倒”即ab0,a0.24.解决一些等比数列的前项和问题,你留意到要对公比及两种状况进行争论了吗?25.在“已知,求”的问题中,你在利用公式时留意到了吗?(时,应有)需要验证,有些题目通项是分段函数。

2011届高考数学易错点与应试技巧总结4

2011届高考数学易错点与应试技巧总结4

概念、方法、题型、易误点及应试技巧总结基本概念、公式及方法是数学解题的基础工具和基本技能,为此作为临考前的高三学生,务必首先要掌握高中数学中的概念、公式及基本解题方法,其次要熟悉一些基本题型,明确解题中的易误点,还应了解一些常用结论,最后还要掌握一些的应试技巧。

本资料对高中数学所涉及到的概念、公式、常见题型、常用方法和结论及解题中的易误点,按章节进行了系统的整理,最后阐述了考试中的一些常用技巧,相信通过对本资料的认真研读,一定能大幅度地提升高考数学成绩。

集合与简易逻辑一、集合元素具有确定性、无序性和互异性。

在求有关集合问题时,尤其要注意元素的互异性,如(1)设P 、Q 为两个非空实数集合,定义集合P+Q={|,}a b a P b Q +∈∈,若{0,2,5}P =,}6,2,1{=Q ,则P+Q 中元素的有________个。

(答:8)(2)设{(,)|,}U x y x R y R =∈∈,{(,)|20}A x y x y m =-+>,{(,)|B x y x y n =+-0}≤,那么点)()3,2(B C A P u ∈的充要条件是________(答:5,1<->n m );(3)非空集合}5,4,3,2,1{⊆S ,且满足“若S a ∈,则S a ∈-6”,这样的S 共有_____个。

(答:7)二.遇到A B =∅ 时,你是否注意到“极端”情况:A =∅或B =∅;同样当A B ⊆时,你是否忘记∅=A 的情形?要注意到∅是任何集合的子集,是任何非空集合的真子集。

如集合{|10}A x ax =-=,{}2|320B x x x =-+=,且A B B = ,则实数a =___.(答:10,1,2a =) 三.对于含有n 个元素的有限集合M ,其子集、真子集、非空子集、非空真子集的个数依次为,n 2,12-n ,12-n .22-n如满足{1,2}{1,2,3,4,5}M ⊂⊆≠集合M 有______个。

高中数学容易混淆的知识点归纳总结

高中数学容易混淆的知识点归纳总结

高中数学容易混淆的知识点归纳总结高中数学是一门需要认真学习的科目,它不仅考察着学生们的记忆力和思维能力,还要求学生们在学习过程中要具备良好的思维方法和分析能力。

而在学习高中数学的过程中,会涉及很多的知识点,有些知识点非常相近,容易混淆。

下面我将对高中数学容易混淆的知识点进行归纳总结。

一、立体几何中的相似相似是立体几何中常见的一个概念,在高中数学的几何部分中也有相应的学习内容。

但是由于立体相似的特殊性质,往往容易和平面相似产生混淆。

需要注意的是,平面相似只是简单扩大或缩小,而立体相似必须是既相似又全等。

因此,在学习立体相似时,我们应该强调它与平面相似的不同之处,防止混淆。

二、杨辉三角与二项式展开杨辉三角和二项式展开在高中数学中都是需要掌握的知识点。

杨辉三角是一种数学图形,能快速的出计算组合数和二项式系数。

而二项式展开则是代数加法规则的运用,它是一种非常重要的方法,能够帮助我们快速计算代数表达式的值。

尽管两者在计算方法上有所不同,但是它们在实际应用中常常混淆。

因此,需要留心区分它们之间的差异。

三、排列组合与概率排列组合作为高中数学中的一个重要知识点,是很多其他学科中的基础知识,它能够帮助我们快速计算出各种可能的情况。

而概率则是我们在生活中广泛使用的一种数学计算方法,用来描述某个事情发生的可能性大小。

由于排列组合和概率往往都涉及到组合问题,所以很容易混淆。

需要注意的是,排列组合和概率虽然有相似之处,但是它们的核心计算方法是不同的,在学习时需要区分清楚。

四、导数和微分导数和微分是高中数学中的常见概念,在学习时经常出现混淆。

导数是刻画函数在某一点处的变化率,而微分则是刻画函数在某一点处的近似线性函数。

虽然它们的定义不同,但是它们之间的关系非常密切,很容易被忽略。

因此,在学习导数和微分时,需要将它们之间的关系联系起来,深入理解它们的本质。

五、三角函数中的正余弦与正切三角函数在高中数学中也是一个重要的知识点。

2011高考数学备考易错点汇总

2011高考数学备考易错点汇总

高中数学易错点汇总1.在应用条件A∪B=B,A∩B=A 时,易忽略A是空集Φ的情况。

2.求解与函数有关的问题易忽略定义域优先的原则,尤其是在与实际生活相联系的应用题中,判断两个函数是否是同一函数也要判断函数的定义域,求三角函数的周期时也应考虑定义域。

3.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称,优先考虑定义域对称。

4.解对数不等式时,易忽略真数大于0、底数大于0且不等于1这一条件。

5.用判别式法求最值(或值域)时,需要就二次项系数是否为零进行讨论,易忽略其使用的条件,应验证最值。

6.用判别式判定方程解的个数(或交点的个数)时,易忽略讨论二次项的系数是否为0。

尤其是直线与圆锥曲线相交时更易忽略。

7.用均值定理求最值(或值域)时,易忽略验证“一正(几个数或代数式均是正数)二定(几个数或代数式的和或者积是定值)三等(几个数或代数式相等)”这一条件。

8.用换元法解题时,易忽略换元前后的等价性。

9.求反函数时,易忽略求反函数的定义域。

10.求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示,而应用逗号连接多个区间。

11.用等比数列求和公式求和时,易忽略公比q=1的情况。

12.已知Sn求a n时, 易忽略n=1的情况。

13.用直线的点斜式、斜截式设直线的方程时, 易忽略斜率不存在的情况;题目告诉截距相等时,易忽略截距为0的情况。

14.求含系数的直线方程平行或者垂直的条件时,易忽略直线与x轴或者y轴平行的情况。

15.用到角公式时,易将直线L1、L2的斜率k1、k2的顺序弄颠倒;使用到角公式或者夹角公式时,分母为零不代表无解,而是两直线垂直。

16.在做应用题时, 运算后的单位要弄准,不要忘了“答”及变量的取值范围;在填写填空题中的应用题的答案时, 不要忘了单位。

应用题往往对答案的数值有特殊要求,如许多时候答案必须是正整数。

17.在分类讨论时,分类要做到“不重不漏、层次分明,进行总结”。

容易混淆的概念-数学一11页

容易混淆的概念-数学一11页

高等数学部分易混淆概念第一章:函数与极限一、数列极限大小的判断 例1:判断命题是否正确.若()n n x y n N <>,且序列,n n x y 的极限存在,lim ,lim ,n n n n x A y B A B →∞→∞==<则解答:不正确.在题设下只能保证A B ≤,不能保证A B <.例如:11,1n n x y n n ==+,,n n x y n <∀,而lim lim 0n n n n x y →∞→∞==. 例2.选择题设n n n x z y ≤≤,且lim()0,lim n n n n n y x z →∞→∞-=则( )A .存在且等于零 B. 存在但不一定等于零 C .不一定存在 D. 一定不存在 答:选项C 正确分析:若lim lim 0n n n n x y a →∞→∞==≠,由夹逼定理可得lim 0n n z a →∞=≠,故不选A 与D.取11(1),(1),(1)n n n n n n x y z n n=--=-+=-,则n n n x z y ≤≤,且lim()0n n n y x →∞-=,但lim n n z →∞不存在,所以B 选项不正确,因此选C .例3.设,n n x a y ≤≤且lim()0,{}{}n n n n n y x x y →∞-=则与( )A .都收敛于a B. 都收敛,但不一定收敛于a C .可能收敛,也可能发散 D. 都发散 答:选项A 正确.分析:由于,n n x a y ≤≤,得0n n n a x y x ≤-≤-,又由lim()0n n n y x →∞-=及夹逼定理得lim()0n n a x →∞-=因此,lim n n x a →∞=,再利用lim()0n n n y x →∞-=得lim n n y a →∞=.所以选项A .二、无界与无穷大无界:设函数()f x 的定义域为D ,如果存在正数M ,使得()f x Mx X D ≤∀∈⊂则称函数()f x 在X 上有界,如果这样的M 不存在,就成函数()f x 在X 上无界;也就是说如果对于任何正数M ,总存在1x X ∈,使1()f x M >,那么函数()f x 在X 上无界.无穷大:设函数()f x 在0x 的某一去心邻域内有定义(或x 大于某一正数时有定义).如果对于任意给定的正数M (不论它多么大),总存在正数δ(或正数X ),只要x 适合不等式00x x δ<-<(或x X >),对应的函数值()f x 总满足不等式()f x M >则称函数()f x 为当0x x →(或x →∞)时的无穷大. 例4:下列叙述正确的是: ②① 如果()f x 在0x 某邻域内无界,则0lim ()x xf x →=∞②如果0lim ()x xf x →=∞,则()f x 在0x 某邻域内无界解析:举反例说明.设11()sin f x x x=,令11,,22n n x y n n πππ==+,当n →+∞时,0,0n n x y →→,而lim ()lim (2)2n n n f x n ππ→+∞→+∞=+=+∞lim ()0n n f y →+∞=故()f x 在0x =邻域无界,但0x →时()f x 不是无穷大量,则①不正确.由定义,无穷大必无界,故②正确.结论:无穷大必无界,而无界未必无穷大. 三、函数极限不存在≠极限是无穷大当0x x →(或x →∞)时的无穷大的函数()f x ,按函数极限定义来说,极限是不存在的,但是为了便于叙述函数的性态,我们也说“函数的极限是无穷大”.但极限不存在并不代表其极限是无穷大.例5:函数10()0010x x f x x x x -<⎧⎪==⎨⎪+>⎩,当0x →时()f x 的极限不存在.四、如果0lim ()0x xf x →=不能退出01lim()x x f x →=∞ 例6:()0x x f x x ⎧=⎨⎩为有理数为无理数,则0lim ()0x x f x →=,但由于1()f x 在0x =的任一邻域的无理点均没有定义,故无法讨论1()f x 在0x =的极限. 结论:如果0lim ()0x xf x →=,且()f x 在0x 的某一去心邻域内满足()0f x ≠,则01lim()x xf x →=∞.反之,()f x 为无穷大,则1()f x 为无穷小。

名师讲解高考数学数列易混淆知识点-精选教学文档

名师讲解高考数学数列易混淆知识点-精选教学文档

名师讲解高考数学数列易混淆知识点学过的知识点要实时进行巩固复习,才能对学过的知识点不会生疏,查字典数学网一直在努力为更多人带来帮助,小编为大家整理了数学数列易混淆知识点,希望大家认真阅读做好复习!易错点用错基本公式致误错因分析:等差数列的首项为a1、公差为d,则其通项公式an=a1+(n-1)d,前n项和公式Sn=na1+n(n-1)d/2=(a1+an)d/2;等比数列的首项为a1、公比为q,则其通项公式an=a1pn-1,当公比q≠1时,前n项和公式Sn=a1(1-pn)/(1-q)=(a1-anq)/(1-q),当公比q=1时,前n 项和公式Sn=na1。

在数列的基础性试题中,等差数列、等比数列的这几个公式是解题的根本,用错了公式,解题就失去了方向。

易错点an,Sn关系不清致误错因分析:在数列问题中,数列的通项an与其前n项和Sn 之间存在关系:这个关系是对任意数列都成立的,但要注意的是这个关系式是分段的,在n=1和n≥2时这个关系式具有完全不同的表现形式,这也是解题中经常出错的一个地方,在使用这个关系式时要牢牢记住其“分段”的特点。

当题目中给出了数列{an}的an与Sn之间的关系时,这两者之间可以进行相互转换,知道了an的具体表达式可以通过数列求和的方法求出Sn,知道了Sn可以求出an,解题时要注意体会这种转换的相互性。

易错点对等差、等比数列的性质理解错误错因分析:等差数列的前n项和在公差不为0时是关于n的常数项为0的二次函数。

一般地,有结论“若数列{an}的前N项和Sn=an2+bn+c(a,b,c∈R),则数列{an}为等差数列的充要条件是c=0”;在等差数列中,Sm,S2m-Sm,S3m-S2m(m∈N*)是等差数列。

解决这类题目的一个基本出发点就是考虑问题要全面,把各种可能性都考虑进去,认为正确的命题给以证明,认为不正确的命题举出反例予以驳斥。

在等比数列中公比等于-1时是一个很特殊的情况,在解决有关问题时要注意这个特殊情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章:函数与极限一、数列极限大小的判断例1:判断命题是否正确.若()n n x y n N <>,且序列,n n x y 的极限存在,lim ,lim ,n n n n x A y B A B →∞→∞==<则解答:不正确.在题设下只能保证A B ≤,不能保证A B <.例如:11,1n n x y nn ==+,,n n x y n <∀,而lim lim 0n n n n x y →∞→∞==.例2.选择题设n n n x z y ≤≤,且lim ()0,lim n n n n n y x z →∞→∞-=则( )A .存在且等于零 B. 存在但不一定等于零 C .不一定存在 D. 一定不存在 答:选项C 正确分析:若lim lim 0n n n n x y a →∞→∞==≠,由夹逼定理可得lim 0n n z a →∞=≠,故不选A 与D.取11(1),(1),(1)n nnn n n x y z nn=--=-+=-,则n n n x z y ≤≤,且lim()0n n n y x →∞-=,但lim n n z →∞不存在,所以B 选项不正确,因此选C .例3.设,n n x a y ≤≤且lim ()0,{}{}n n n n n y x x y →∞-=则与( )A .都收敛于a B. 都收敛,但不一定收敛于a C .可能收敛,也可能发散 D. 都发散 答:选项A 正确.分析:由于,n n x a y ≤≤,得0n n n a x y x ≤-≤-,又由lim ()0n n n y x →∞-=及夹逼定理得lim ()0n n a x →∞-=因此,lim n n x a →∞=,再利用lim ()0n n n y x →∞-=得lim n n y a →∞=.所以选项A .二、无界与无穷大无界:设函数()f x 的定义域为D ,如果存在正数M ,使得()f x Mx X D ≤∀∈⊂则称函数()f x 在X 上有界,如果这样的M 不存在,就成函数()f x 在X 上无界;也就是说如果对于任何正数M ,总存在1x X ∈,使1()f x M >,那么函数()f x 在X 上无界.无穷大:设函数()f x 在0x 的某一去心邻域内有定义(或x 大于某一正数时有定义).如果对于任意给定的正数M (不论它多么大),总存在正数δ(或正数X ),只要x 适合不等式00x x δ<-<(或x X >),对应的函数值()f x 总满足不等式()f x M >则称函数()f x 为当0x x →(或x →∞)时的无穷大. 例4:下列叙述正确的是: ②① 如果()f x 在0x 某邻域内无界,则0lim ()x x f x →=∞② 如果0lim ()x x f x →=∞,则()f x 在0x 某邻域内无界解析:举反例说明.设11()sinf x xx=,令11,,22n n x y n n πππ==+,当n →+∞时,0,0n n x y →→,而lim ()lim (2)2n n n f x n ππ→+∞→+∞=+=+∞lim ()0n n f y →+∞=故()f x 在0x =邻域无界,但0x →时()f x 不是无穷大量,则①不正确. 由定义,无穷大必无界,故②正确.结论:无穷大必无界,而无界未必无穷大.三、函数极限不存在≠极限是无穷大当0x x →(或x →∞)时的无穷大的函数()f x ,按函数极限定义来说,极限是不存在的,但是为了便于叙述函数的性态,我们也说“函数的极限是无穷大”.但极限不存在并不代表其极限是无穷大.例5:函数10()0010x x f x x x x -<⎧⎪==⎨⎪+>⎩,当0x →时()f x 的极限不存在.四、如果0lim()0x x f x →=不能推出01lim()x x f x →=∞例6:()0x x f x x ⎧=⎨⎩为有理数为无理数,则0lim ()0x x f x →=,但由于1()f x 在0x =的任一邻域的无理点均没有定义,故无法讨论1()f x 在0x =的极限.结论:如果0lim ()0x x f x →=,且()f x 在0x 的某一去心邻域内满足()0f x ≠,则1l i m()x x f x →=∞.反之,()f x 为无穷大,则1()f x 为无穷小。

五、求函数在某点处极限时要注意其左右极限是否相等,求无穷大处极限要注意自变量取正无穷大和负无穷大时极限是否相等。

例7.求极限1lim ,lim xx x x e e →∞→解:lim ,lim 0xx x x e e →+∞→-∞=+∞=,因而x →∞时x e 极限不存在。

1100lim 0,lim xxx x e e →-→===+∞,因而0x →时1x e 极限不存在。

六、使用等价无穷小求极限时要注意:(1)乘除运算中可以使用等价无穷小因子替换,加减运算中由于用等价无穷小替换是有条件的,故统一不用。

这时,一般可以用泰勒公式来求极限。

(2)注意等价无穷小的条件,即在哪一点可以用等价无穷小因子替换 例8:求极限2112limx x x x→++--分析一:若将112x x ++--写成(11)(11)x x +-+--,再用等价无穷小替换就会导致错误。

分析二:用泰勒公式22222211()12211(1())22!11()122(1())222!1()4x x x x x x x x x x οοο-++-=+++-+-++-=-+原式2221()144x x xο-+==-。

例9:求极限sin limx xxπ→解:本题切忌将sin x 用x 等价代换,导致结果为1。

sin sin lim0x x xπππ→==七、函数连续性的判断(1)设()f x 在0x x =间断,()g x 在0x x =连续,则()()f x g x ±在0x x =间断。

而2()(),(),()f x g x f x f x ⋅在0x x =可能连续。

例10.设00()1x f x x ≠⎧=⎨=⎩,()sin g x x =,则()f x 在0x =间断,()g x 在0x =连续,()()()sin 0f x g x f x x ⋅=⋅=在0x =连续。

若设10()1x f x x ≥⎧=⎨-<⎩,()f x 在0x =间断,但2()()1f x f x =≡在0x =均连续。

(2)“()f x 在0x 点连续”是“()f x 在0x 点连续”的充分不必要条件。

分析:由“若0lim ()x x f x a →=,则0l i m ()x x f x a →=”可得“如果00lim ()()x x f x f x →=,则00l i m ()()x x f x f x →=”,因此,()f x 在0x 点连续,则()f x 在0x 点连续。

再由例10可得,()f x 在0x 点连续并不能推出()f x 在0x 点连续。

(3)()x ϕ在0x x =连续,()f u 在00()u u x ϕ==连续,则(())f x ϕ在0x x =连续。

其余结论均不一定成立。

第二章 导数与微分一、函数可导性与连续性的关系可导必连续,连续不一定可导。

例11.()f x x =在0x =连读,在0x =处不可导。

二、()f x 与()f x 可导性的关系(1)设0()0f x ≠,()f x 在0x x =连续,则()f x 在0x x =可导是()f x 在0x x =可导的充要条件。

(2)设0()0f x =,则0()0f x '=是()f x 在0x x =可导的充要条件。

三、一元函数可导函数与不可导函数乘积可导性的讨论设()()()F x g x x ϕ=,()x ϕ在x a =连续,但不可导,又()g a '存在,则()0g a =是()F x 在x a =可导的充要条件。

分析:若()0g a =,由定义()()()()()()()()()limlimlim()()()x ax ax aF x F a g x x g a a g x g a F a x g a a x ax ax aϕϕϕϕ→→→---''====--- 反之,若()F a '存在,则必有()0g a =。

用反证法,假设()0g a ≠,则由商的求导法则知()()()F x x g x ϕ=在x a =可导,与假设矛盾。

利用上述结论,我们可以判断函数中带有绝对值函数的可导性。

四、在某点存在左右导数时原函数的性质(1)设()f x 在0x x =处存在左、右导数,若相等则()f x 在0x x =处可导;若不等,则()f x 在0x x =连续。

(2)如果()f x 在(,)a b 内连续,0(,)x a b ∈,且设00lim ()lim (),x x x x f x f x m →+→-''==则()f x 在0x x =处必可导且0()f x m '=。

若没有如果()f x 在(,)a b 内连续的条件,即设00lim ()lim ()x x x x f x f x a →+→-''==,则得不到任何结论。

例11.20()0x x f x xx +>⎧=⎨≤⎩,显然设00lim ()lim ()1x x f x f x →+→-''==,但0lim ()2x f x →+=,0lim ()0x f x →-=,因此极限0lim ()x f x →不存在,从而()f x 在0x =处不连续不可导。

第三章 微分中值定理与导数的应用一、若lim (),(0,lim ()x x f x A A f x →+∞→+∞'=≠∞=∞可以取), 则若lim ()0x f x A →+∞'=≠,不妨设0A >,则0,()2A X x X f x '∃>≥>时,,再由微分中值定理()()()()(,(,))f x f X f x X x X X x ξξ'=+->∈()()()()lim ()2x A f x f X x X x X f x →+∞⇒≥+->⇒=+∞同理,当0A <时,lim ()x f x →+∞=-∞若lim (),0,()1x f x X x X f x →+∞''=+∞⇒∃>≥>时,,再由微分中值定理()()()()(,(,))f x f X f x X x X X x ξξ'=+->∈()()()()lim ()x f x f X x X x X f x →+∞⇒≥+->⇒=+∞同理可证lim ()x f x →+∞'=-∞时,必有lim ()x f x →+∞=-∞第八章 多元函数微分法及其应用8.1多元函数的基本概念1. 0ε∀ ,12,0δδ∃ ,使得当01x x δ- ,02y y δ- 且0,0(,)()x y x y ≠时,有(,)f x y A ε- ,那么00lim (,)x x y y f x y A →→=成立了吗?成立,与原来的极限差异只是描述动点(,)p x y 与定点000(,)p x y 的接近程度的方法不一样,这里采用的是点的矩形邻域, ,而不是常用的圆邻域,事实上这两种定义是等价的. 2. 若上题条件中0,0(,)()x y x y ≠的条件略去,函数(,)f x y 就在0,0()x y 连续吗?为什么? 如果0,0(,)()x y x y ≠条件没有,说明0,0()f x y 有定义,并且00(,)x y 包含在该点的任何邻域内,由此对0ε∀ ,都有(,)f x y A ε- ,从而0,0()A f x y =,因此我们得到0lim (,)x x y y f x y A →→=0,0()f x y =,即函数在0,0()x y 点连续.3. 多元函数的极限计算可以用洛必塔法则吗?为什么?不可以,因为洛必塔法则的理论基础是柯西中值定理.8.2 偏导数1. 已知2(,)y f x y e x y +=,求(,)f x y令x y u +=,y e v =那么解出x ,y 得ln ln y vx u v=⎧⎨=-⎩,所以22(,)(,).(,)(ln ).ln f u v x u v y u v u v v ==-或者2(,)(ln ).ln f u v u v y =-8.3全微分极其应用1.写出多元函数连续,偏导存在,可微之间的关系偏导数x f ', y f '连续⇒Z 可微⇒ (,)Z f x y =连续⇒ (,)f x y 极限存在 偏导数x f ', y f '连续⇒偏导数x f ', y f '存在2. 判断二元函数(,)f x y =0,02230,0(,)()0(,)()xy x y x y x yx y x y ⎧≠⎪+⎨⎪≠⎩在原点处是否可微.对于函数(,)f x y ,先计算两个偏导数: 0(,0)(0,0)00(0,0)limlim0x x x f x f f xx ∆→∆→∆--'===∆∆(0,)(0,0)00(0,0)limlim0y x x f y f f yy∆→∆→∆--'===∆∆又000522226(,)(0,0)(0,0)(0,0)limlim()()()()x y x x x x y y y y f x y f f x f yx yx y x y →→→→''∆∆--∆-∆∆∆=∆+∆⎡⎤∆+∆⎣⎦令y k x ∆=∆,则上式为213555022663()limlim 0(1)(1)x x k x kx k x k ∆→∆→∆=∆=+∆+因而(,)f x y 在原点处可微.8.4多元复合函数的求导法则 1. 设()xy z f x y=+,f 可微,求dz .22222()()()()()()()()()()()xy xy xy x y d xy xyd x y dz f d f x y x yx y x y xyyxyyf dx f dyx y x y x y x y +-+''==++++''=+++++8.5隐函数的求导1. 设(,)x x y z =,(,)y y x z =,(,)z z x y =都是由方程(,,)0F x y z =所确定的具有连续偏导数的函数,证明..1x y z y z x∂∂∂=-∂∂∂. 对于方程(,,)0F x y z =,如果他满足隐函数条件.例如,具有连续偏导数且0x F '≠,则由方程(,,)0F x y z =可以确定函数(,)x x y z =,即x 是y ,z 的函数,而y ,z 是自变量,此时具有偏导数y x F x yF '∂=-∂',z x F x zF '∂=-∂'同理, z y F y zF '∂=-∂',所以..1x y z y z x∂∂∂=-∂∂∂.8.6多元函数的极值及其求法1.设(,)f x y 在点000(,)p x y 处具有偏导数,若(,)0x f x y '=,(,)0y f x y '=则函数(,)f x y 在该点取得极值,命题是否正确?不正确,见多元函数极值存在的充分必要条件.2.如果二元连续函数在有界闭区域内有惟一的极小值点,且无极大值,那么该函数是否在该点取得最小值?不一定,对于一元函数来说上述结论是成立的,但对于多元函数,情况较为复杂,一般来说结论不能简单的推广。

相关文档
最新文档