最新人教A版必修2高中数学 2.1.1节 平面教学过程设计(精品)
福建省漳州市芗城中学高中数学 2.1.1 平面教案 新人教A版必修2

福建省漳州市芗城中学高中数学2.1.1 平面教案 新人教A 版必修2一、教学目标:1、知识与技能:利用生活中的实物对平面进行描述;掌握平面的表示法及水平放置的直观图;掌握平面的基本性质及作用;培养学生的空间想象能力。
2、过程与方法:通过讨论,对平面有了感性认识;归纳整理本节所学知识。
3、情感态度与价值观:认识到我们所处的世界是一个三维空间,增强学习的兴趣。
二、教学重点:1、平面的概念及表示;2、平面的基本性质:注意他们的条件、结论、作用、图形语言及符号语言。
难点:平面基本性质的掌握与运用。
三、学法指导:通过阅读教材,联系身边的实物思考、交流,师生共同讨论等,从而较好地完成本节课的教学目标。
四、教学过程(一)实物引入、揭示课题生活中常见的如黑板、平整的操场、桌面、平静的湖面等等,都给我们以平面的印象,请举出更多例子。
问题:平面的含义是什么?(二)研探新知1、平面的含义几何里所说的“平面”是从一些物体中抽象出来的(原始概念),平面是无限延展的。
2、平面的画法及表示问题:在平面几何中,怎样画直线?类比、迁移:水平放置的平面通常画成一个平行四边形,锐角画成450,横边长等于邻边的2倍长。
表示法:平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。
如果几个平面画在一起,当一个平面的一部分被另一个平面遮住时,应画成虚线或不画。
平面内有无数个点,平面可以看成点的集合。
点A 在平面α内,记作:A ∈α ;点B 在平面α外,记作:B α 。
3、平面的基本性质:(1)思考:如果直线l 与平面α有一个公共点P ,直线l 是否在平面α内? 如果直线l 与平面α有两个公共点呢?演示:把一把直尺边缘上的任意两点放在桌边,可以看到,直尺的整个边缘就落在了桌 D C B A α ·B面上。
归纳(公理1):如果一条直线上的两点在一个平面内,那么这条直线在此平面内。
高中数学人教A版必修课件:平面

②判断点在直线上.
高中数学人教A版必修2课件:2.1.1平 面(共2 2张PPT )
高中数学人教A版必修2课件:2.1.1平 面(共2 2张PPT )
随堂练习
1.如图,用符号表示下列图形中点、直线、平面之 间的位置关系.
a
B A
l
(1)
al
P
b
(2)
解:在(1)中, l,a A,a B.
平面公理 文字语言
存在性
基本性质2 过不在一条直线上的三点,有且只有一个平
面. 作用?
图形语言
确定平面的主要依据.
B
唯一性
A C
符号语言
不再一条直线上的三个点A、B、C所确定的平面, 可以记成“平面ABC”.
高中数学人教A版必修2课件:2.1.1平 面(共2 2张PPT )
高中数学人教A版必修2课件:2.1.1平 面(共2 2张PPT )
D A
C B
为了增强立体感,常常把被遮挡部分用虚线 画出来.
D
FC
A
E
B
被遮挡部分 用虚线表示
高中数学人教A版必修2课件:2.1.1平 面(共2 2张PPT )
平面的表示
常把希腊字母α、β、γ等写在代表平面的平行四边 形的一个角上,如平面α、平面β等;也可以用代表平 面的四边形的四个顶点,或者相对的两个顶点的大写 英文字母作为这个平面的名称.
高中数学人教A版必修2课件:2.1.1平 面(共2 2张PPT )
文字语言
平面公理
基本性质1 如果一条直线上的两点在一个平面内, 那么这条直线在此平面内.
作用?
判定直线是否在平面内.
图形语言
符号语言
高中数学人教A版必修2课件:2.1.1平 面(共2 2张PPT )
最新(人教版)高中数学必修二《2.1.1 平面》教学设计

2.1.1 平面东莞市南城中学陈立1.内容和内容解析(1)内容《2.1.1平面》是人教A版《数学》必修二的第二章第一节,教学内容安排一个课时,主要内容是平面的描述性概念及三个公理。
(2)内容解析平面是最基本的几何概念,教材以课桌面、黑板面、海平面等为例对它加以描述而不定义。
平面的基本性质即公理1、公理2、公理3,是研究立体图形的理论基础,也是进一步推理的出发点和根据。
其中公理1可以用来判断直线或者点是否在平面内;公理2用来确定一个平面,判断两平面重合,或者证明点、线共面;公理3用来判断两个平面相交,证明点共线或者线共点的问题。
平面的基本性质在高考中一般以选择和填空题型为主。
学生在第一章的学习过程中,经历了对立体图形的整体把握,这节课以学生熟知的长方体为载体,引出本节课的主要内容,拓展学生已有的平面几何观念,帮助学生观念逐步从平面转向空间。
因此,本节课的教学重点是使学生了解平面的描述性概念,了解平面的表示方法和画法;理解平面的基本性质即三个公理,会用符号语言表示图形中点、直线、平面之间的关系。
2.目标和目标解析(1)目标根据本节课的教学内容、特点及教学大纲对学生的要求,结合学生现有的知识水平和理解水平,确定本节课的教学目标如下:①了解平面的描述性概念;②了解平面的表示方法和基本画法;③理解公理1、公理2、公理3;④能正确地用数学语言表示点、直线、平面以及它们之间的关系。
⑤感知数学语言的美,激发学习兴趣。
(2)目标解析通过学生熟知的正方体、生活中的实例使学生对平面有感性的、初步的认识,借助学生已有的直线的描述性概念,通过类比让学生体验获得平面的描述性概念的思维过程。
在学生了解平面的描述性概念以后,首先给出平面的表示方法,然后类比画直线的方式,从“直观性”角度给出平面的画法。
尽管平面的描述性概念、平面的表示方法和基本画法这些内容不难,但是要让学生理解这些知识的本质还是有一定难度,没办法也没有必要从更深层次理解这些知识点,因此,将这些内容定位为了解。
高中数学必修2全套精品教案有三维目标

1.1.1柱、锥、台、球的结构特征1.知识(zhī shi)与技能:(1)通过实物操作,增强学生(xué sheng)的直观感知。
(2)能根据几何(jǐ hé)结构特征对空间物体进行分类。
(3)会用语言概述(ɡài shù)棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
(4)会表示有关于几何体以及(yǐjí)柱、锥、台的分类。
2.过程与方法:(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。
(2)让学生观察、讨论、归纳、概括所学的知识。
3.情感态度与价值观:(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。
(2)培养学生的空间想象能力和抽象括能力。
二、教学重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。
难点:柱、锥、台、球的结构特征的概括。
1.2.1 空间几何体的三视图(2课时)1.知识与技能:掌握画三视图的基本技能,丰富学生的空间想象力。
2.过程与方法:通过学生自己的亲身实践,动手作图,体会三视图的作用。
3.情感态度与价值观:提高学生空间想象力,体会三视图的作用。
二、教学重点:画出简单几何体、简单组合体的三视图;难点:识别三视图所表示的空间几何体。
1.2.2 空间几何体的直观图1.知识与技能:(1)掌握斜二测画法画水平设置的平面图形的直观图。
(2)采用对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点。
2.过程与方法:通过观察和类比,利用斜二测画法画出空间几何体的直观图。
3.情感态度与价值观:提高空间想象力与直观感受,体会对比在学习中的作用,感受几何作图在生产活动中的应用。
二、教学重点、难点:用斜二测画法画空间几何值的直观图。
1.3.1 柱体、锥体、台体的表面积1、知识与技能(1)通过对柱、锥、台体的研究,掌握柱、锥、台的表面积的求法。
2024-2025学年高中数学2.1.1倾斜角与斜率教案新人教A版选择性必修第一册

组织学生进行小组讨论,分享各自对倾斜角与斜率的理解,促进学生之间的互动。
第四环节:巩固练习与拓展(15分钟)
1.练习一:已知直线l的斜率为-3,求直线l的倾斜角α。
2.练习二:已知直线l的倾斜角为135°,求直线l的斜率k。
3.练习三:已知直线l与水平线的夹角为60°,求直线l的斜率k。
3.学生可能遇到的困难和挑战:在本节课的学习过程中,学生可能对倾斜角与斜率之间的关系产生困惑,难以理解斜率的性质及其在实际问题中的应用。此外,部分学生可能对正切函数的理解不够深入,导致在学习倾斜角与斜率时遇到困难。
为解决这些困难和挑战,教师在教学过程中应注重引导学生通过实际问题来理解倾斜角与斜率的概念及其关系,并通过讲解、练习、讨论等多种教学方法,帮助学生掌握斜率的性质及其应用。同时,教师应关注学生的个体差异,针对不同学生的学习需求进行针对性辅导,提高学生的学习效果。
(3)设计一道与倾斜角与斜率相关的数学小题目,与同学互相交换解答,并互相评价对方的解题思路和方法。
2.作业反馈:
(1)对学生的作业进行及时批改,给出明确的评分和评价,指出学生的错误和不足之处。
(2)在批改作业时,注意关注学生的解题思路和方法,给予积极的反馈和鼓励,以提高学生的自信心。
(3.对于学生存在的问题,给予针对性的指导和建议,帮助学生理解错误的原因,并指导学生如何改进和提高。
2.数学建模:培养学生运用数学知识解决实际问题能力,如计算直线与水平线的交点、求直线的倾斜程度等,从而提高学生的数学建模素养。
3.直观想象:通过观察直线与水平线的夹角和斜率的关系,培养学生直观想象能力,使学生能够形象地理解直线的倾斜程度。
4.数据分析:通过对斜率的性质及其应用的学习,培养学生分析数据、处理信息的能力,提高学生在实际问题中运用数据分析的核心素养。
高中必修二数学全册教案

高中必修二数学全册教案
第一节:直线和平面的方程
教学目标:学生能够理解和应用直线和平面的方程。
教学重点:直线和平面的一般方程、截距式方程、点斜式方程、交点坐标、平面的截距式方程。
教学难点:平面的一般方程的推导。
教学过程:
1.引入直线和平面的方程。
通过实际例子引导学生了解直线和平面的一般方程。
2.介绍直线的方程。
讲解直线的截距式方程和点斜式方程,并通过例题演示如何转换。
3.介绍平面的方程。
学习平面的一般方程和截距式方程,并讲解如何根据平面上的点和法向量来确定平面的方程。
4.练习。
让学生进行练习,巩固直线和平面的方程的知识。
5.总结。
总结本节课的重点内容,并提醒学生注意要点。
教学资源:教材、黑板、彩色粉笔、习题册。
课后作业:完成课后习题,练习直线和平面的方程,并思考如何应用到实际生活中。
扩展阅读:了解不同方程的应用领域,并与实际生活进行联系。
高中数学 (2.1.1 平面)示范教案 新人教A版必修2

第二章点、直线、平面之间的位置关系本章教材分析本章将在前一章整体观察、认识空间几何体的基础上,以长方体为载体,使学生在直观感知的基础上,认识空间中点、直线、平面之间的位置关系;通过大量图形的观察、实验和说理,使学生进一步了解平行、垂直关系的基本性质以及判定方法,学会准确地使用数学语言表述几何对象的位置关系,初步体验公理化思想,培养逻辑思维能力,并用来解决一些简单的推理论证及应用问题.本章主要内容:2.1点、直线、平面之间的位置关系,2.2直线、平面平行的判定及其性质,2.3直线、平面垂直的判定及其性质.2.1节的核心是空间中直线和平面间的位置关系.从知识结构上看,在平面基本性质的基础上,由易到难顺序研究直线和直线、直线和平面、平面和平面的位置关系.本章在培养学生的辩证唯物主义观点、公理化的思想、空间想象力和思维能力方面,都具有重要的作用.2.2和2.3节内容的编写是以“平行”和“垂直”的判定及其性质为主线展开,依次讨论直线和平面平行、平面和平面平行的判定和性质;直线和平面垂直、平面和平面垂直的判定和性质.“平行”和“垂直”在定义和描述直线和直线、直线和平面、平面和平面的位置关系中起着重要作用.在本章它集中体现在:空间中平行关系之间的转化、空间中垂直关系之间的转化以及空间中垂直与平行关系之间的转化.本章教学时间约需12课时,具体分配如下(仅供参考):2.1.1 平面约1课时2.1.2 空间中直线与直线之间的位置关系约1课时2.1.3 空间中直线与平面之间的位置关系约1课时2.1.4 平面与平面之间的位置关系约1课时2.2.1 直线与平面平行的判定约1课时2.2.3 直线与平面平行的性质约1课时2.2.2平面与平面平行的判定平面与平面平行的性质约1课时2.2.42.3.1 直线与平面垂直的判定约1课时2.3.2 平面与平面垂直的判定约1课时2.3.3 直线与平面垂直的性质约1课时2.3.4 平面与平面垂直的性质约1课时本章复习约1课时2.1 空间点、直线、平面之间的位置关系2.1.1 平面整体设计教学分析平面是最基本的几何概念,教科书以课桌面、黑板面、海平面等为例,对它只是加以描述而不定义.立体几何中的平面又不同于上面的例子,是上面例子的抽象和概括,它的特征是无限延展性.为了更准确地理解平面,教材重点介绍了平面的基本性质,即教科书中的三个公理,这也是本节的重点.另外,本节还应充分展现三种数学语言的转换与翻译,特别注意图形语言与符号语言的转换.三维目标1.正确理解平面的几何概念,掌握平面的基本性质.2.熟练掌握三种数学语言的转换与翻译,结合三个公理的应用会证明共点、共线、共面问题.3.通过三种语言的学习让学生感知数学语言的美,培养学生学习数学的兴趣.重点难点三种数学语言的转换与翻译,利用三个公理证明共点、共线、共面问题.课时安排1课时教学过程导入新课思路1.(情境导入)大家都看过电视剧《西游记》吧,如来佛对孙悟空说:“你一个跟头虽有十万八千里,但不会跑出我的手掌心”.结果孙悟空真没有跑出如来佛的手掌心,孙悟空可以看作是一个点,他的运动成为一条直线,大家说如来佛的手掌像什么?对,像一个平面,今天我们开始认识数学中的平面.思路2.(事例导入)观察长方体(图1),你能发现长方体的顶点、棱所在的直线,以及侧面、底面之间的关系吗?图1长方体由上、下、前、后、左、右六个面围成.有些面是平行的,有些面是相交的;有些棱所在的直线与面平行,有些棱所在的直线与面相交;每条棱所在的直线都可以看成是某个面内的直线等等.空间中的点、直线、平面之间有哪些位置关系呢?本节我们将讨论这个问题.推进新课新知探究提出问题①怎样理解平面这一最基本的几何概念;②平面的画法与表示方法;③如何描述点与直线、平面的位置关系?④直线与平面有一个公共点,直线是否在平面内?直线与平面至少有几个公共点才能判断直线在平面内?⑤根据自己的生活经验,几个点能确定一个平面?⑥如果两个不重合的平面有一个公共点,它们的位置关系如何?请画图表示;⑦描述点、直线、平面的位置关系常用几种语言?⑧自己总结三个公理的有关内容.活动:让学生先思考或讨论,然后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.对有困难的学生可提示如下:①回忆我们学过的最基本的概念(原始概念),如点、直线、集合等.②我们的桌面看起来像什么图形?表示平面和表示点、直线一样,通常用英文字母或希腊字母表示.③点在直线上和点在直线外;点在平面内和点在平面外.④确定一条直线需要几个点?⑤引导学生观察教室的门由几个点确定.⑥两个平面不可能仅有一个公共点,因为平面有无限延展性.⑦文字语言、图形语言、符号语言.⑧平面的基本性质小结.讨论结果:①平面与我们学过的点、直线、集合等概念一样都是最基本的概念(不加定义的原始概念),只能通过对它描述加以理解,可以用它定义其他概念,不能用其他概念来定义它,因为它是不加定义的.平面的基本特征是无限延展性,很像如来佛的手掌(吴承恩的立体几何一定不错).②我们的桌面看起来像平行四边形,因此平面通常画成平行四边形,有些时候我们也可以用圆或三角形等图形来表示平面,如图2.平行四边形的锐角通常画成45°,且横边长等于其邻边长的2倍.如果一个平面被另一个平面遮挡住,为了增强它的立体感,我们常把它遮挡的部分用虚线画出来,如图3.图2 图3平面的表示法有如下几种:(1)在一个希腊字母α、β、γ的前面加“平面”二字,如平面α、平面β、平面γ等,且字母通常写在平行四边形的一个锐角内(图4);(2)用平行四边形的四个字母表示,如平面ABCD (图5);(3)用表示平行四边形的两个相对顶点的字母来表示,如平面AC (图5).图4 图5③下面我们总结点与直线、平面的位置关系如下表: 点A 在直线a 上(或直线a 经过点A )A∈a 元素与集合间的关系点A 在直线a 外(或直线a 不经过点A )A ∉a 点A 在平面α内(或平面α经过点A ) A∈α 点A 在平面α外(或平面α不经过点A )A ∉α④直线上有一个点在平面内,直线没有全部落在平面内(图7),直线上有两个点在平面内,则直线全部落在平面内.例如用直尺紧贴着玻璃黑板,则直尺落在平面内.公理1:如果一条直线上的两个点在一个平面内,那么这条直线上所有的点都在这个平面内. 这是用文字语言描述,我们也可以用符号语言和图形语言(图6)描述.空间图形的基本元素是点、直线、平面.从运动的观点看,点动成线,线动成面,从而可以把直线、平面看成是点的集合,因此它们之间的关系除了用文字和图形表示外,还可借用集合中的符号语言来表示.规定直线用两个大写的英文字母或一个小写的英文字母表示,点用一个大写的英文字母表示,而平面则用一个小写的希腊字母表示.公理1也可以用符号语言表示:若A∈a,B∈a,且A∈α,B∈α,则a⊂α.图6 图7请同学们用符号语言和图形语言描述直线与平面相交.若A∈a,B∈a,且A∉α,B∈α,则a⊄α.如图(图7).⑤在生活中,我们常常可以看到这样的现象:三脚架可以牢固地支撑照相机或测量用的平板仪等等.上述事实和类似的经验可以归纳为下面的公理.公理2:经过不在同一直线上的三点,有且只有一个平面.如图(图8).图8公理2刻画了平面特有的性质,它是确定一个平面位置的依据之一.⑥我们用平行四边形来表示平面,那么平面是不是只有平行四边形这么个范围呢?不是,因为平面是无限延展的.直线是可以落在平面内的,因为直线是无限延伸的,如果平面是有限的,那么无限延伸的直线又怎么能在有限的平面内呢?所以平面具有无限延展的特征.现在我们根据平面的无限延展性来观察一个现象(课件演示给学生看).问:两个平面会不会只有一个公共点?不会,因为平面是无限延展的,应当有很多公共点.正因为平面是无限延展的,所以有一个公共点,必有无数个公共点.那么这无数个公共点在什么位置呢?可见,这无数个公共点在一条直线上.这说明,如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.此时,就说两平面相交,交线就是公共点的集合,这就是公理3.如图(图9),用符号语言表示为:P∈α,且P∈β⇒α∩β=l,且P∈l.图9公理3告诉我们,如果两个不重合的平面有一个公共点,那么这两个平面一定相交,且其交线一定过这个公共点.也就是说,如果两个平面有一个公共点,那么它们必定还有另外一个公共点,只要找出这两个平面的两个公共点,就找出了它们的交线.由此看出公理3不仅给出了两个平面相交的依据,还告诉我们所有交点在同一条直线上,并给出了找这条交线的方法.⑦描述点、直线、平面的位置关系常用3种语言:文字语言、图形语言、符号语言.⑧“平面的基本性质”小结:名称作用公理1 判定直线在平面内的依据公理2 确定一个平面的依据公理3 两平面相交的依据应用示例思路1例1 如图10,用符号语言表示下列图形中点、直线、平面之间的位置关系.图10活动:学生自己思考或讨论,再写出(最好用实物投影仪展示写的正确的答案).教师在学生中巡视,发现问题及时纠正,并及时评价.解:在(1)中,α∩β=l,a∩α=A,a∩β=B.在(2)中,α∩β=l,a⊂α,b⊂β,a∩l=P,b∩l=P.变式训练1.画图表示下列由集合符号给出的关系:(1)A∈α,B∉α,A∈l,B∈l;(2)a⊂α,b⊂β,a∥c,b∩c=P,α∩β=c.解:如图11.图112.根据下列条件,画出图形.(1)平面α∩平面β=l,直线AB⊂α,AB∥l,E∈AB,直线EF∩β=F,F∉l;(2)平面α∩平面β=a,△ABC的三个顶点满足条件:A∈a,B∈α,B∉a,C∈β,C∉a. 答案:如图12.图12点评:图形语言与符号语言的转换是本节的重点,主要有两种题型:(1)根据图形,先判断点、直线、平面的位置关系,然后用符号表示出来.(2)根据符号,想象出点、直线、平面的位置关系,然后用图形表示出来.例2 已知直线a和直线b相交于点A.求证:过直线a和直线b有且只有一个平面.图13证明:如图13,点A是直线a和直线b的交点,在a上取一点B,b上取一点C,根据公理2经过不在同一直线上的三点A、B、C有一个平面α,因为A、B在平面α内,根据公理1,直线a在平面α内,同理直线b在平面α内,即平面α是经过直线a和直线b的平面.又因为A、B在a上,A、C在b上,所以经过直线a和直线b的平面一定经过点A、B、C. 于是根据公理2,经过不共线的三点A、B、C的平面有且只有一个,所以经过直线a和直线b的平面有且只有一个.变式训练求证:两两相交且不共点的四条直线在同一平面内.证明:如图14,直线a、b、c、d两两相交,交点分别为A、B、C、D、E、F,图14∵直线a∩直线b=A,∴直线a和直线b确定平面设为α,即a,b⊂α.∵B、C∈a,E、F∈b,∴B、C、E、F∈α.而B、F∈c,C、E∈d,∴c、d⊂α,即a、b、c、d在同一平面内.点评:在今后的学习中经常遇到证明点和直线共面问题,除公理2外,确定平面的依据还有:(1)直线与直线外一点.(2)两条相交直线.(3)两条平行直线.思路2例1 如图15,已知α∩β=EF,A∈α,C、B∈β,BC与EF相交,在图中分别画出平面ABC 与α、β的交线.图15活动:让学生先思考或讨论,然后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对作图不准确的学生提示引导考虑问题的思路.解:如图16所示,连接CB,∵C∈β,B∈β,∴直线CB⊂β.图16∵直线CB⊂平面ABC,∴β∩平面ABC=直线CB.设直线CB与直线EF交于D,∵α∩β=EF,∴D∈α,D∈平面ABC.∵A∈α,A∈平面ABC ,∴α∩平面ABC=直线AD.变式训练1.如图17,AD∩平面α=B,AE∩平面α=C ,请画出直线DE 与平面α的交点P ,并指出点P 与直线BC 的位置关系.图17解:AD 和AC 是相交直线,它们确定一个平面ABC ,它与平面α的交线为直线BC ,DE ⊂平面ABC ,∴DE 与α的交点P 在直线BC 上.2.如图18,正方体ABCD —A 1B 1C 1D 1的棱长为8 cm ,M 、N 、P 分别是AB 、A 1D 1、BB 1的中点,图18(1)画出过M 、N 、P 三点的平面与平面A 1B 1C 1D 1的交线,以及与平面BB 1C 1C 的交线.(2)设过M 、N 、P 三点的平面与B 1C 1交于点Q ,求PQ 的长.解:(1)设M 、N 、P 三点确定的平面为α,则α与平面AA 1B 1B 的交线为直线MP ,设MP∩A 1B 1=R ,则RN 是α与平面A 1B 1C 1D 1的交线,设RN∩B 1C 1=Q ,连接PQ ,则PQ 是所要画的平面α与平面BB 1C 1C 的交线.如图18.(2)正方体棱长为8 cm ,B 1R=BM=4 cm ,又A 1N=4 cm ,B 1Q=31A 1N, ∴B 1Q=31×4=34(cm ).在△PB 1Q 中,B 1P=4 cm ,B 1Q=34cm , ∴PQ=10342121=+Q B P B cm. 点评:公理3给出了两个平面相交的依据,我们经常利用公理3找两平面的交点和交线. 例2 已知△ABC 三边所在直线分别与平面α交于P 、Q 、R 三点,求证:P 、Q 、R 三点共线. 解:如图19,∵A、B 、C 是不在同一直线上的三点,图19∴过A 、B 、C 有一个平面β.又∵AB∩α=P,且AB⊂β,∴点P既在β内又在α内.设α∩β=l,则P∈l,同理可证:Q∈l,R∈l,∴P、Q、R三点共线.变式训练三个平面两两相交于三条直线,若这三条直线不平行,求证:这三条直线交于一点.已知平面α、β、γ两两相交于三条直线l1、l2、l3,且l1、l2、l3不平行.求证:l1、l2、l3相交于一点.证明:如图20,α∩β=l1,β∩γ=l2,α∩γ=l3,图20∵l1⊂β,l2⊂β,且l1、l2不平行,∴l1与l2必相交.设l1∩l2=P,则P∈l1⊂α,P∈l2⊂γ,∴P∈α∩γ=l3.∴l1、l2、l3相交于一点P.点评:共点、共线问题是本节的重点,在高考中也经常考查,其理论依据是公理3.知能训练画一个正方体ABCD—A′B′C′D′,再画出平面ACD′与平面BDC′的交线,并且说明理由.解:如图21,图21∵F∈CD′,∴F∈平面ACD′.∵E∈AC,∴E∈平面ACD′.∵E∈BD,∴E∈平面BDC′.∵F∈DC′,∴F∈平面DC′B.∴EF为所求.拓展提升O1是正方体ABCD—A1B1C1D1的上底面的中心,过D1、B1、A作一个截面,求证:此截面与对角线A1C的交点P一定在AO1上.解:如图22,连接A1C1、AC,图22因AA1∥CC1,则AA1与CC1可确定一个平面AC1,易知截面AD1B1与平面AC1有公共点A、O1,所以截面AD1B1与平面AC1的交线为AO1.又P∈A1C,得P∈平面AC1,而P∈截面AB1D1,故P在两平面的交线上,即P∈AO1.点评:证明共点、共线问题关键是利用两平面的交点必在交线上.课堂小结1.平面是一个不加定义的原始概念,其基本特征是无限延展性.2.通过三个公理介绍了平面的基本性质,及作用.名称作用公理1 判定直线在平面内的依据公理2 确定一个平面的依据公理3 两平面相交的依据3.利用三个公理证明共面、共线、共点问题.作业课本习题2.1 A组5、6.设计感想本节的引入精彩独特,用如来佛的手掌形象地刻画了平面的基本特征;本节设计了较多的语言转换题目,反复训练学生的读图、作图能力,以及用符号语言表达数学问题的能力,因为这是学好立体几何的基础,是本节的重点;本节的难点是利用三个公理证明共面、共线、共点问题,本节设计了大量题目来突破这一难点,每个题目都精彩活泼难度适中,我相信这是一节值得期待的精彩课例.。
人教A版高中数学导学案必修2 第2章 点线面的位置关系

1§2.1.1 平面学习目标1. 了解平面的描述性概念;2. 掌握平面的表示方法和基本画法;3. 掌握平面的基本性质;4. 能正确地用数学语言表示点、直线、平面以及它们之间的关系.学习过程一、课前准备4043引入:平面是构成空间几何体的基本要素.那么什么是平面呢?平面如何表示呢?平面又有哪些性质呢?二、新课导学※探索新知探究1:平面的概念与表示问题:生活中哪些物体给人以平面形象?你觉得平面可以拉伸吗?平面有厚薄之分吗?新知1:平面(plane)是平的;平面是可以无限延展的;平面没有厚薄之分.问题:通常我们用一条线段表示直线,那你认为用什么图形表示平面比较合适呢?新知2:如上图,通常用平行四边形来表示平面.平面可以用希腊字母,,αβγ来表示,也可以用平行四边形的四个顶点来表示,还可以简单的用对角线的端点字母表示.如平面α,平面ABCD,平面AC等.规定:①画平行四边形,锐角画成45°,横边长等于其邻边长的2倍;②两个平面相交时,画出交线,被遮挡部分用虚线画出来;③用希腊字母表示平面时,字母标注在锐角内.问题:点动成线、线动成面.联系集合的观点,点和直线、平面的位置关系怎么表示?直线和平面呢?新知3:⑴点A在平面α内,记作Aα∈;点A在平面α外,记作Aα∉.⑵点P在直线l上,记作P l∈,点P在直线外,记作P l∉.⑶直线l上所有点都在平面α内,则直线l在平面α内(平面α经过直线l),记作lα⊂;否则直线就在平面外,记作lα⊄.探究2:平面的性质问题:直线l与平面α有一个公共点P,直线l是否在平面α内?有两个公共点呢?新知4:公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内.用集合符号表示为:,,A lB l∈∈且,A B lααα∈∈⇒⊂问题:两点确定一直线,两点能确定一个平面吗?任意三点能确定一个平面吗?新知5:公理2 过不在一条直线上的三点,有且只有一个平面. 如上图,三点确定平面ABC.问题:把三角板的一个角立在课桌面上,三角板所在平面与桌面所在平面是否只相交于点B?为什么?新知6:公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.如下图所示:平面α与平面β相交于直线l,记作lαβ=.公理3用集合符号表示为,P a∈且Pβ∈⇒lαβ=,且P l∈※典型例题例1 如图,用符号表示下列图形中点、直线、平面之间的位置关系.2例2 如图在正方体ABCD A B C D ''''-中,判断下列⑴直线AC 在平面ABCD ⑵设上下底面中心为,O O 则平面AA C C ''与平面BB D D '的交线为OO ';⑶点,,A O C '⑷平面AB C ''与平面AC '重合.※ 动手试试练 用符号表示下列语句,并画出相应的图形: ⑴点A 在平面α内,但点B 在平面α外; ⑵直线a 经过平面α外的一点M ; ⑶直线a 既在平面α内,又在平面β内.三、总结提升※ 学习小结1. 平面的特征、画法、表示;2. 平面的基本性质(三个公理);3. 用符号表示点、线、面的关系.※ 知识拓展平面的三个性质是公理(不需要证明,直接可以用),是用公理化方法证明命题的基础.其中公理1可以用来判断直线或者点是否在平面内;公理2用来确定一个平面,判断两平面重合,或者证明点、线共面;公理3用来判断两个平面相交,证明点共线或者线共点的问题.※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 ※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 下面说法正确的是( ).①平面ABCD 的面积为210cm ②100个平面重合比50个平面重合厚③空间图形中虚线都是辅助线④平面不一定用平行四边形表示.A.①B.②C.③D.④ 2. 下列结论正确的是( ).①经过一条直线和这条直线外一点可以确定一个平面②经过两条相交直线,可以确定一个平面③经过两条平行直线,可以确定一个平面④经过空间任意三点可以确定一个平面A.1个B.2个C.3个D.4个3. 们的交点一定( ) A.在直线DB 上B.在直线AB 上C.在直线CB 上D.都不对4. 直线12,l l 相交于点P ,并且分别与平面γ相交于点,A B 两点,用符号表示为____________________.5. 两个平面不重合,在一个面内取4点,另一个面内取3点,这些点最多能够确定平面_______个. 1. 画出满足下列条件的图形:⑴三个平面:一个水平,一个竖直,一个倾斜; ⑵ ,,,l AB CD αβαβ=⊂⊂AB ∥l ,CD ∥l .2.如图在正方体中,A 是顶点,,B C 都是棱的中点,请作出经过,,A B C 三点的平面与正方体的截面.3§2.1.2空间直线与直线之间的位置关系1. 正确理解异面直线的定义;2. 会判断空间两条直线的位置关系;3. 掌握平行公理及空间等角定理的内容和应用;4. 会求异面直线所成角的大小.一、课前准备(预习教材P 44~ P 47,找出疑惑之处) 复习1:平面的特点是______、 _______ 、_______.复习2:平面性质(三公理)公理1___________________________________; 公理2___________________________________; 公理3___________________________________.二、新课导学※ 探索新知探究1:异面直线及直线间的位置关系问题:平面内两条直线要么平行要么相交(重合不考虑),空间两条直线呢?观察:如图在长方体中,直线A B'与CC '的位置关系如何?结论:直线A B '与CC '既不相交,也不平行.新知1:像直线A B '与CC '这样不同在任何一个平面内的两条直线叫做异面直线(skew lines).试试:请在上图的长方体中,再找出3对异面直线.问题:作图时,怎样才能表示两条直线是异面的?新知2:异面直线的画法有如下几种(,a b 异面):试试:请你归纳出空间直线的位置关系.探究2:平行公理及空间等角定理问题:平面内若两条直线都和第三条直线平行,则这两条直线互相平行,空间是否有类似规律?观察:如图2-1,在长方体中,直线C D ''∥A B '',AB ∥A B '',那么直线AB 与C D ''平行吗?图2-1新知3: 公理4 (平行公理)平行于同一条直线的两条直线互相平行.问题:平面上,如果一个角的两边与另一个角的两边分别平行,则这两个角相等或者互补,空间是否有类似结论?观察:在图2-1中,ADC ∠与A D C '''∠,ADC ∠与A B C '''∠的两边分别对应平行,这两组角的大小关系如何?新知4: 定理 空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.探究3:异面直线所成的角问题:平面内两条直线的夹角是如何定义的?想一想异面直线所成的角该怎么定义?图2-2新知5: 如图2-2,已知两条异面直线,a b ,经过空间任一点O 作直线 a '∥a ,b '∥b ,把a '与b '所成的锐角(或直角)叫做异面直线,a b 所成的角(夹角).如果两条异面直线所成的角是直角,就说这两条直线互相垂直,记作a b ⊥.反思:思考下列问题.⑴ 作异面直线夹角时,夹角的大小与点O 的位置有关吗?点O 的位置怎样取才比较简便? ⑵ 异面直线所成的角的范围是多少?4⑶ 两条互相垂直的直线一定在同一平面上吗?⑷ 异面直线的夹角是通过什么样的方法作出来的?它体现了什么样的数学思想?※ 典型例题例1 如图2-3,,,,E F G H 分别为空间四边形ABCD 各边,,,AB BC CD DA 的中点,若对角线2,BD = 4AC =,则22EG HF +的值为多少?(性质:平行四边形的对角线的平方和等于四条边的平方和).图2-3例2 如图2-4,在正方体中,求下列异面直线所成的角.⑴BA '和CC ' ⑵B D ''和C A '图2-4※ 动手试试练 正方体ABCD A B C D ''''-的棱长为a ,求异面直线AC 与A D ''所成的角.三、总结提升※ 学习小结1. 异面直线的定义、夹角的定义及求法;2. 空间直线的位置关系;3. 平行公理及空间等角定理.※ 知识拓展异面直线的判定定理:过平面外一点与平面内一点的直线,和平面内不经过该点的直线是异面直线.如图,,,,a A B B a ααα⊂∉∈∉,则直线AB 与直线※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 ※ 当堂检测(时量:5分钟 满分:10分)计分: 1. ,,a b c 为三条直线,如果,a c b c ⊥⊥,则,a b 的位置关系必定是( ).A.相交B.平行C.异面D.以上答案都不对 2. 已知,a b 是异面直线,直线c 平行于直线a ,那么c 与b ( ).A.一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线 3. 已知l αβ=,,a b αβ⊂⊂,且,a b 是异面直线,那么直线l ( ).A.至多与,a b 中的一条相交B.至少与,a b 中的一条相交C.与,a b 都相交D.至少与,a b 中的一条平行4. 正方体ABCD A B C D ''''-的十二条棱中,与直线AC '是异面直线关系的有___________条.5. 长方体1111ABCD A B C D -中,3AB =,2,BC =1AA =1,异面直线AC 与11AD 所成角的余弦值是______. 1. 已知,E E '是正方体AC '棱AD ,A D ''的中点,求证:CEB C E B '''∠=∠.2. 如图2-5,在三棱锥P ABC -中,PA BC ⊥,E 、F 分别是PC 和AB 上的点,且32PE AF EC FB ==,设EF 与PA 、BC 所成的角分别为,αβ, 求证:90αβ+=°.5图2-5§2.1.3空间直线与平面之间的位置关系 §2.1.4平面与平面之间的位置关系1. 掌握直线与平面之间的位置关系,理解直线在平面外的概念,会判断直线与平面的位置关系;2. 掌握两平面之间的位置关系,会画相交平面的图形.一、课前准备(预习教材P 48~ P 50,找出疑惑之处)复习1:空间任意两条直线的位置关系有_______、 _______、_______三种.复习2:异面直线是指________________________ 的两条直线,它们的夹角可以通过______________ 的方式作出,其范围是___________.复习3:平行公理:__________________________ ________________;空间等角定理:____________ ___________________________________________.二、新课导学※ 探索新知 探究1:空间直线与平面的位置关系 问题:用铅笔表示一条直线,作业本表示一个平面,你试着比画,它们之间有几种位置关系?观察:如图3-1,直线A B 与长方体的六个面有几种位置关系?图3-1新知1:直线与平面位置关系只有三种:⑴直线在平面内—— ⑵直线与平面相交—— ⑶直线与平面平行——其中,⑵、⑶两种情况统称为直线在平面外.反思:⑴从交点个数方面来分析,上述三种关系对应的交点有多少个?请把结果写在新知1的——符号后面 ⑵请你试着把上述三种关系用图形表示出来,并想想用符号语言该怎么描述.探究2:平面与平面的位置关系 问题:平面与平面的位置关系有几种?你试着拿两个作业本比画比画.观察:还是在长方体中,如图3-2,你看看它的六个面两两之间的位置关系有几种? 图3-2新知2:两个平面的位置关系只有两种: ⑴两个平面平行——没有公共点 ⑵两个平面相交——有一条公共直线试试:请你试着把平面的两种关系用图形以及符号语言表示出来.6※ 典型例题例1 下列命题中正确的个数是( )①若直线l 上有无数个点不在平面α内,则l ∥α. ②若直线l 与平面α平行,则l 与平面α内的任意一条直线都平行.③如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行.④若直线l 与平面α平行,则l 与平面α内的任意一条直线都没有公共点.A.0B.1C.2D.3例2 已知平面,αβ,直线,a b ,且α∥β,a α⊂, b β⊂,则直线a 与直线b 具有怎样的位置关系?※ 动手试试练1. 若直线a 不平行于平面α,且a α⊄,则下列结论成立的是( )A.α内的所有直线与a 异面B.α内不存在与a 平行的直线C.α内存在唯一的直线与a 平行D.α内的直线与a 都相交.练2. 已知,,a b c 为三条不重合的直线,,,αβγ为三个不重合的平面:①a ∥c ,b ∥c ⇒a ∥b ; ②a ∥γ,b ∥γ⇒a ∥b ; ③a ∥c ,c ∥α⇒a ∥α; ④a ∥γ,a ∥αα⇒∥γ;⑤a α⊄,b α⊂,a ∥b ⇒a ∥α. 其中正确的命题是( )A.①⑤B.①②C.②④D.③⑤三、总结提升※ 学习小结1. 直线与平面、平面与平面的位置关系;2. 位置关系用图形语言、符号语言如何表示;3. 长方体作为模型研究空间问题的重要性.※ 知识拓展求类似确定空间的部分、平面的个数、交线的条数、交点的个数问题,都应对相应的点、线、面的位置关系进行分类讨论,做到不重不漏.分类讨论是数学中常用的重要数学思想方法,可以使问题化难※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 ※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 直线l 在平面α外,则( ).A.l ∥αB.l 与α至少有一个公共点C.l A α=D.l 与α至多有一个公共点 2. 已知a ∥α,b α⊂,则( ). A.a ∥b B.a 和b 相交C.a 和b 异面D.a 与b 平行或异面3. 四棱柱的的六个面中,平行平面有( ). A.1对 B.1对或2对 C.1对或2对或3对D.0对或1对或2对或3对4. 过直线外一点与这条直线平行的直线有____条;过直线外一点与这条直线平行的平面有____个.5. 若在两个平面内各有一条直线,且这两条直线互相平行,那么这两个平面的位置关系一定是______. 1. 已知直线,a b 及平面α满足: a ∥α,b ∥α,则 直线,a b 的位置关系如何?画图表示.2. 两个不重合的平面,可以将空间划为几个部分?三个呢?试画图加以说明.§2.1 空间点、直线、平面之间的1. 理解和掌握平面的性质定理,能合理运用;2. 掌握直线与直线、直线与平面、平面与平面的位置关系;3. 会判断异面直线,掌握异面直线的求法;4. 会用图形语言、符号语言表示点、线、面的位置关系.一、课前准备(预习教材P40~ P50,找出疑惑之处)复习1:概念与性质⑴平面的特征和平面的性质(三个公理);⑵平行公理、等角定理;⑶直线与直线的位置关系⎧⎪⎨⎪⎩平行相交异面⑷直线与平面的位置关系⎧⎪⎨⎪⎩在平面内相交平行⑸平面与平面的位置关系⎧⎨⎩平行相交复习2:异面直线夹角的求法:平移线段作角,解三角形求角.复习3:图形语言、符号语言表示点、线、面的位置关系⑴点与线、点与面的关系;⑵线与线、线与面的关系;⑶面与面的关系.二、新课导学※典型例题例1 如图4-1,ABC∆在平面α外,AB Pα=,BC Qα=,AC Rα=,求证:P,Q,R三点共线.图4-1小结:证明点共线的基本方法有两种⑴找出两个面的交线,证明若干点都是这两个平面的公共点,由公理3可推知这些点都在交线上,即证若干点共线.⑵选择其中两点确定一条直线,证明另外一些点也都在这条直线上.例2 如图4-2,空间四边形ABCD中,E,F分别是AB和CB上的点,G,H分别是CD和AD上的点,且EH FG与相交于点K.求证:EH,BD,FG三条直线相交于同一点.图4-2小结:证明三线共点的基本方法为:先确定待证的三线中的两条相交于一点,再证明此点是二直线所在平面的公共点,第三条直线是两个平面的交线,由公理3得证这三线共点.例3 如图4-3,如果两条异面直线称作“一对”,那么在正方体的12条棱中,共有异面直线多少对?图4-378反思:分析清楚几何特点是避免重复计数的关键,计数问题必须避免盲目乱数,分类时要不重不漏.※ 动手试试练1. 如图4-4,是正方体的平面展开图,图4-4则在这个正方体中:①BM 与ED 平行 ②CN 与BE 是异面直线 ③CN 与BM 成60°角 ④DM 与BN 是异面直线 其中正确命题的序号是( )A.①②③B.②④C.③④D.②③④练2. 如图4-5,在正方体中,E ,F 分别为AB 、AA '的中点,求证:CE ,D F ',DA 三线交于一点.图4-5练3. 由一条直线和这条直线外不共线的三点,能确定平面的个数为多少?小结:分类讨论的数学思想三、总结提升※ 学习小结1. 平面及平面基本性质的应用;2. 点、线、面的位置关系;3. 异面直线的判定及夹角问题.※ 知识拓展异面直线的判定方法:①定义法:利用异面直线的定义,说明两直线不平行,也不相交,即不可能在同一个平面内. ②定理法:利用异面直线的判定定理说明.③反证法(常用):假设两条直线不异面,则它们一定共面,即这两条直线可能相交,也可能平行,然.学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 ※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 直线1l ∥2l ,在1l 上取3个点,在2l 上取2个点,由这5个点确定的平面个数为( ). A.1个 B.3个 C.6个 D.9个 2. 下列推理错误的是( ).A.A l ∈,A α∈,B l ∈,B α∈l α⇒⊂B.A α∈,A β∈,B α∈,B β∈AB αβ⇒=C.l α⊄,A l A α∈⇒∉D.A ,B ,C α∈, A ,B ,C β∈,且A ,B ,C 不共线αβ⇒与重合3. a ,b 是异面直线,b ,c 是异面直线,则a ,c 的位置关系是( ).A.相交、平行或异面B.相交或平行C.异面D.平行或异面4. 若一条直线与两个平行平面中的一个平面平行,则它与另一平面____________.5. 垂直于同一条直线的两条直线位置关系是_____ _____________;两条平行直线中的一条与某一条直线垂直,则另一条和这条直线______.课后作业1. 如图4-6,在正方体中M ,N 分别是AB 和DD '的中点,求异面直线B M '与CN 所成的角.图4-62. 如图4-7,已知不共面的直线a,b,c相交于O点,M,P点是直线α上两点,N,Q分别是直线b,c上一点.求证:MN和PQ§2.2.1 直线与平面平行的判定1. 通过生活中的实际情况,建立几何模型,了解直线与平面平行的背景;2. 理解和掌握直线与平面平行的判定定理,并会用其证明线面平行.一、课前准备(预习教材P54~ P55,找出疑惑之处)复习:直线与平面的位置关系有______________,_______________,_________________.讨论:直线和平面的位置关系中,平行是最重要的关系之一,那么如何判定直线和平面是平行的呢?根据定义好判断吗?二、新课导学※探索新知探究1:直线与平面平行的背景分析实例1:如图5-1,一面墙上有一扇门,门扇的两边是平行的.当门扇绕着墙上的一边转动时,观察门扇转动的一边l与墙所在的平面位置关系如何?图5-1实例2:如图5-2,将一本书平放在桌面上,翻动书的封面,观察封面边缘所在直线l与桌面所在的平面具有怎样的位置关系?图5-2结论:上述两个问题中的直线l与对应平面都是平行的.探究2:直线与平面平行的判定定理问题:探究1两个实例中的直线l为什么会和对应的平面平行呢?你能猜想出什么结论吗?能作图把这一结论表示出来吗?新知:直线与平面平行的判定定理定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.如图5-3所示,a∥α.图5-3反思:思考下列问题⑴用符号语言如何表示上述定理;⑵上述定理的实质是什么?它体现了什么数学思想?⑶如果要证明这个定理,该如何证明呢?※典型例题例1 有一块木料如图5-4所示,P为平面BCEF内一点,要求过点P在平面BCEF内作一条直线与平面ABCD平行,应该如何画线?图5-4例2 如图5-5,空间四边形ABCD中,,E F分别是910,AB AD 的中点,求证:EF ∥平面BCD .图5-5※ 动手试试练1. 正方形ABCD 与正方形ABEF 交于AB ,M 和N 分别为AC 和BF 上的点,且AM FN =,如图5-6 所示.求证:MN ∥平面BEC .图5-6练 2. 已知ABC ∆,,D E 分别为,AC AB 的中点,沿DE 将ADE ∆折起,使A 到A '的位置,设M 是A B '的中点,求证:ME ∥平面A CD '.三、总结提升※ 学习小结1. 直线与平面平行判定定理及其应用,其核心是线线平行⇒线面平行;2. 转化思想的运用:空间问题转化为平面问题.※ 知识拓展判定直线与平面平行通常有三种方法: ⑴利用定义:证明直线与平面没有公共点.但直接证明是困难的,往往借助于反正法来证明. ⑵利用判定定理,其关键是证明线线平行.证明线线平行可利用平行公理、中位线、比例线段等等. ⑶利用平面与平面平行的性质.(后面将会学习到)※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 ※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 若直线与平面平行,则这条直线与这个平面内的( ).A.一条直线不相交B.两条直线不相交C.任意一条直线都不相交D.无数条直线不相交 2. 下列结论正确的是( ). A.平行于同一平面的两直线平行B.直线l 与平面α不相交,则l ∥平面αC.,A B 是平面α外两点,,C D 是平面α内两点,若AC BD =,则AB ∥平面αD.同时与两条异面直线平行的平面有无数个3. 如果AB 、BC 、CD 是不在同一平面内的三条线段,则经过它们中点的平面和直线AC 的位置关系是( ).A.平行B.相交C.AC 在此平面内D.平行或相交 4. 在正方体1111ABCD A B C D -的六个面和六个对角面中,与棱AB 平行的面有________个.5. 若直线,a b 相交,且a ∥α,则b 与平面α的位置关系是_____________.1. 如图5-7,在正方体中,E 为1DD 的中点,判断1BD 与平面AEC 的位置关系,并说明理由.图5-72. 如图5-8,在空间四边形ABCD 中,P 、Q 分别是ABC ∆和BCD ∆的重心.求证:PQ ∥平面ACD.图5-8§2.2. 2 平面与平面平行的判定1. 能借助于长方体模型讨论直线与平面、平面与平面的平行问题;2. 理解和掌握两个平面平行的判定定理及其运用;3. 进一步体会转化的数学思想.一、课前准备 (预习教材P 56~ P 57,找出疑惑之处) 复习1:直线与平面平行的判定定理是___________ ___________________________________________. 复习2:两个平面的位置关系有___种,分别为____ ___和_______.讨论:两个平面平行的定义是两个平面没有公共点,怎样证明两个平面没有公共点呢?你觉得好证吗?二、新课导学※ 探索新知探究:两个平面平行的判定定理问题1:平面可以看作是由直线构成的.若一平面内的所有直线都与另一个平面平行,则这两个平面平行吗?由此你可以得到什么结论?结论:两个平面平行的问题可以转化为一个平面内的直线与另一个平面平行的问题.问题2:一个平面内所有直线都平行于另外一个平面好证明吗?能否只证明一个平面内若干条直线和另外一个平面平行,那么这两个平面就平行呢?试试:在长方体中,回答下列问题⑴如图6-1,AA AA B B '''⊂面,AA '∥面BB C C '',则面AA B B ''∥面BBC C ''吗?图6-1⑵如图6-2,AA '∥EF ,AA '∥DCC D ''面,EF ∥DCC D ''面,则A ADD ''面∥DCCD ''面吗?图6-2⑶如图6-3,直线A C ''和B D ''相交,且A C ''、B D ''都和平面ABCD 平行(为什么),则平面A B C D ''''∥平面ABCD 吗?图6-3反思:由以上3个问题,你得到了什么结论?新知:两个平面平行的判定定理 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行. 如图6-4所示,α∥β.图6-4反思:⑴定理的实质是什么?⑵用符号语言把定理表示出来.⑶如果要证明定理,该怎么证明呢?※ 典型例题例1 已知正方体1111ABCD A B C D -,如图6-5,求证: 平面11AB D ∥1CB D.图6-5例2 如图6-6,已知,a b 是两条异面直线,平面α过 a ,与b 平行,平面β过b ,与a 平行, 求证:平面α∥平面β图6-6小结:证明面面平行,只需证明线线平行,而且这两条直线必须是相交直线.※ 动手试试练. 如图6-7,正方体中,,,,M N E F 分别是棱A B '',A D '',BC '',CD ''的中点,求证:平面∥ 平面EFDB .三、总结提升※ 学习小结1. 平面与平面平行的判定定理及应用;2. 转化思想的运用.※ 知识拓展判定平面与平面平行通常有5种方法 ⑴根据两平面平行的定义(常用反证法); ⑵根据两平面平行的判定定理;⑶垂直于同一条直线的两个平面平行(以后学习);⑷两个平面同时平行于第三个平面,则这两个平面平行(平行的传递性);⑸一个平面内的两条相交直线分别平行于另外一个平面内的两条直线,则这两个平面平行(判定定理※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 平面α与平面β平行的条件可以是( ). A.α内有无穷多条直线都与β平行B.直线a 与,αβ都平行,且不在α和β内C.直线a α⊂,直线b β⊂,且a ∥β,b ∥αD.α内的任何直线都与β平行2. 经过平面α外的一条直线a 且与平面α平行的平面( ).A.有且只有一个B.不存在C.至多有一个D.至少有一个3. 设有不同的直线,a b ,及不同的平面α、β,给出的三个命题中正确命题的个数是( ).①若a ∥α,b ∥α,则a ∥b ②若a ∥α,α∥β,则a ∥β③若,a αα⊂∥β,则a ∥β.A.0个B.1个C.2个D.3个4. 如果两个平面分别经过两条平行线中的一条,则这两个平面的位置关系是________________.5. 若两个平面都平行于两条异面直线中的每一条,则这两平面的位置关系是_______________. 1. 如图6-8,在几何体ABC A B C '''-中,1∠+ 2180∠=°,34180∠+∠=°,求证:平面ABC ∥ 平面A B C '''.图6-82. 如图6-9,A '、B '、C '分别是PBC ∆、PCA ∆、 PAB ∆的重心.求证:面A B C '''∥ABC 面.图6-9§2.2.3 直线与平面平行的性质1. 掌握直线和平面平行的性质定理;2. 能灵活运用线面平行的判定定理和性质定理,掌握“线线”“线面”平行的转化.5860复习1:两个平面平行的判定定理是____________ _____________________________________;它的实质是由__________平行推出__________平行.复习2:直线与平面平行的判定定理是___________ _____________________________________.讨论:如果直线a 与平面α平行,那么a 和平面α内的直线具有什么样的关系呢?二、新课导学※ 探索新知探究:直线与平面平行的性质定理问题1:如图7-1,直线a 与平面α平行.请在图中的平面α内画出一条和直线a 平行的直线b .图7-1问题2:我们知道两条平行线可以确定一个平面(为什么?),请在图7-1中把直线,a b 确定的平面画出来,并且表示为β.问题3:在你画出的图中,平面β是经过直线,a b 的平面,显然它和平面α是相交的,并且直线b 是这两个平面的交线,而直线a 和b 又是平行的.因此,你能得到什么结论?请把它用符号语言写在下面.问题4:在图7-2中过直线a 再画另外一个平面γ与平面α相交,交线为c .直线a ,c 平行吗?和你上面得出的结论相符吗?你能不能从理论上加以证明呢?图7-2新知:直线与平面平行的性质定理 一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线都与该直线平行.反思:定理的实质是什么?※ 典型例题例 1 如图7-3所示的一块木料中,棱BC 平行于A C ''面.⑴要经过A C ''面内的一点P 和棱BC 将木料锯开,应怎样画线?⑵所画的线与平面AC 是什么位置关系?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图6 请同学们用符号语言和图形语言描述直线与平面相交. 若A∈a,B∈a,且A α,B∈α,则a α.如图(图7).
图7
⑤在生活中,我们常常可以看到这样的现象:三脚架可以牢固地支撑照相机或测量用的平板仪 等等. 上述事实和类似的经验可以归纳为下面的公理. 公理2:经过不在同一直线上的三点,有且只有一个平面. 如图(图8).
图8
公理2刻画了平面特有的性质,它是确定一个平面位置的依据之一. ⑥我们用平行四边形来表示平面,那么平面是不是只有平行四边形这么个范围呢? 不是,因为平面是无限延展的.直 线是可以落在平面内的,因为直线是无限延伸的,如果平面 是有限的,那么无限延伸的直线又怎么能在有限的平面内呢?所以平面具有无限延展的特征. 现在我们根据平面的无限延展性来观察一个现象(课件演示给学生看). 问:两个平面会不会只有一个公共点?不会,因为平面是无限延展的,应当有很多公共点.正 因为平面是无限延展的,所以有一个公共点,必有无数个公共点.那么这无数个公共点在什么位 置呢?可见,这 无数个公共点在一条直线上.
图11 2.根据下列条件,画出图形.
由此看出公理3不仅给出了两个平面相交的依据,还告诉我们所有交点在同一条直线上,并给出 了找这条交线的方法. ⑦描述点、直线、平面的位置关系常用3种语言:文字语言、图形语言、符号语言. ⑧“平面的基本性质”小结:
名称 公理1 公理2 公理3 应用示例 ቤተ መጻሕፍቲ ባይዱ1
作用 判定直线在平面内的依据 确定一个平面的依据 两平面相交的依据
如图10,用符号语言表示下列图形中点、直线、平面之间的位置关系.
图10 活动:学生自己思考或讨论,再写出(最好用实物投影仪展示写的正确的答案).教师在学生中 巡视,发现问题及时纠正,并及时评价. 解:在(1)中,α∩β=l,a∩α =A,a∩β=B. 在(2)中,α∩β=l,a α,b β,a∩l=P,b∩l=P. 变式训练 1.画图表示下列由集合符号给出的关系: (1)A∈α,B α,A∈l,B∈l; (2)a α,b β,a∥c,b∩c=P,α∩β=c. 解:如图11.
这说明,如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.此时,就 说两平面相交,交线就是公共点的集合,这就是公理3.如图(图9),用符号语言表示为:P∈ α,且P∈β α∩β=l,且P∈l.
图9
公理3告诉我们,如果两个不重合的平面有一个公共点,那么这两个平面 一定相交,且其交线 一定过这个公共点.也就是说,如果两个平面有一个公共点,那么它 们必定还有另外一个公共 点,只要找出这两个平面的两个公共点,就找出了它们的交线.
空间图形的基本元素是点、直线、平面.从运动的观点看,点动成线,线动成面,从而可以把直 线、平面看成是点的集合,因此它们之间的关系除了用文字和图形表示外,还可借用集合中的 符号语言来表示.规定直线用两个大写的英文字母或一个小写的英文字母表示,点用一个大写的 英文字母表示,而平面则用一个小写的希腊字母表示.公理1也可以用符号语言表示: 若A∈a,B∈a,且A∈α,B∈α,则a α.
讨论结果:①平面与我们学过的点、直线、集合等概念一样都是最基本的概念(不加定义的原 始概念),只能通过对它描述加以理解,可以用它定义其他概念,不能用其他概念来定义它, 因为它是不加定义的.平面的基本特征是无限延展性,很像如来佛的手掌(吴承恩的立体几何一 定不错). ②我们的桌面看起来像平行四边形,因此平面通常画成平行四边形,有些时候我们也可以用圆 或三角形等图形来表示平面,如图2.平行四边形的锐角通常画成45°,且横边长等于其邻边长 的2倍.如果一个平面被另一个平面遮挡住,为了增强它的立体感,我们常把它遮挡的部分用虚 线画出来,如图3.
图2
图3
平面的表示法有如下几种:(1)在一个希腊字母α、β、γ的前面加“平面”二字,如平面α 、平面β、平面γ等,且字母通常写在平行四边形的一个锐角内(图4);(2)用平行四边形的 四个字母表示,如平面ABCD(图5);(3)用表示平行四边形的两个相对顶点的字母来表示, 如平面AC(图5).
图4 ③下面我们总结点与直线、平面的位置关系如下表: 点A在直线a上(或直线a经过点A) 点A在直线a外(或直线a不经过点A)
第二章
空间点、直线、平面之间的位置关系
第2.1.1节
提出问题 ①怎样理解平面这一最基本的几何概念; ②平面的画法与表示方法; ③如何描述点与直线、平面的位置关系?
平面
④直线与平面有一个公共点,直线是否在平面内?直线与平面至少有几个公共点才能判断直线 在平面内? ⑤根据自己的生活经验,几个点能确定一个平面? ⑥如果两个不重合的平面有一个公共点,它们的位置关系如何?请画图表示; ⑦描述点、直线、平面的位置关系常用几种语言? ⑧自己总结三个公理的有关内容. 活动:让学生先思考或讨论, 然后再回答,经教师提示、点拨,对回答正确的学生及时表扬, 对回答不准确的学生提示引导考虑问题的思路.对有困难的学生可提示如下: ①回忆我们学过的最基本的概念(原始概念),如点、直线、集合等. ②我们的桌面看起来像什么图形?表示平面和表示点、直线一样,通常用英文字母或希腊字母 表示. ③点在直线上和点在直线外;点在平面内和点在平面外. ④确定一条直线需要几个点? ⑤引导学生观察教室的门由几个点确定. ⑥两个平面不可能仅有一个公共点,因为平面有无限延展性. ⑦文字语言、图形语言、符号语言. ⑧平面的基本性质小结.
图5
[
A∈a 元素与 A a[ 集合间 的关系
点A在平面α内(或平面α经过点A)
A∈α
点A在平面α外(或平面α 不经过点A)
A α
④直线上有一个点在平面内,直线没有全部落在平面内(图7),直线上有两个点在平面内,则直 线全部落在平面内.例如用直尺紧贴着玻璃黑板,则直尺落在平面内. 公理1:如果一条直线上的两个点在一个平面内,那么这条直线上所有的点都在这个平面内. 这是用文字语言描述,我们也可以用符号语言和图形语言(图6)描述.